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Abstract

Predictive state representations use probabilities of future
events as the state of a partially observable system, as op-
posed to most classical models, which use probabilistic state-
ments about latent variables as state. We present a new ver-
sion of the predictive linear-Gaussian model (PLG), a pre-
dictive state representation that models discrete-time dynami-
cal systems with real-vector-valued actions and observations.
This extends earlier work on PLGs in which the dynami-
cal systems were limited to scalar observations. We show
that the new PLG subsumes linear dynamical systems (LDSs,
sometimes called Kalman filter models) of equal dimension.
Finally, we introduce an algorithm to estimate PLG param-
eters from data and show that our algorithm is a consistent
estimation procedure.

1 Introduction

Linear dynamical system models (LDSs), also known as
state-space models and Kalman filter models, are an impor-
tant class of models of dynamical systems. They are used
to control and make predictions about dynamical systems
in a wide variety of applications, and are very useful when
their parameters are known or can be estimated with the
help of domain knowledge. However, their parameters are
not easily learned from data. The predictive linear-Gaussian
model (PLG), a predictive state representation for discrete-
time stochastic dynamical systems with continuous scalar
observations, was introduced by Rudary et al. (2005; 2006).
They showed that PLGs were equivalent to LDSs with scalar
observations. Predictive state representations (PSRs) like
the PLG use predictions about future events in the system
as their state representation, rather than (for example) prob-
ability distributions over latent variables. PSRs have advan-
tages over some traditional models. For example, in do-
mains with discrete observations, PSRs have more expres-
sive power than hidden Markov models and partially observ-
able Markov decision processes (POMDPs) (Jaeger 1997;
Singh, James, & Rudary 2004). In addition, Wolfe, James,
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& Singh (2005) showed that learning one type of PSR from
data outperforms learning POMDPs using expectation max-
imization on several simulated problems.

Outside of the PLG, work on PSRs has focused mainly
on modeling dynamical systems with discrete observations
(Jaeger 1997; Littman, Sutton, & Singh 2001), though see
Section 4 for related work. Here, we extend the PLG model
to domains with vector-valued observations and show that
the new PLG subsumes the LDS model. This is a critical ad-
vance, as nearly all problems in robotics, control, and other
fields require that multiple observations be modeled. Ad-
ditionally, we present a parameter estimation algorithm for
PLGs that is non-iterative and provably consistent.

2 The PLG Model

Like all models of dynamical systems, the PLG computes
probability distributions over future events given the history
of past interactions with the system. It does this by sum-
marizing the information contained in this interaction into a
compact representation called the model’s state; the seman-
tics of the state and how it is updated in the face of new
information is where models differ. This section will de-
scribe how the PLG uses the mean and variance of future
observations as state.

We begin with some notation. In the systems modeled by
the PLG, the world is observed at discrete points in time,
starting with t = 1. At each time step, an action (or con-
trol) vector ut is provided as input to the system. This is a
real-valued vector of length l, but it is not modeled as a ran-
dom variable; in particular, the model does not require that
actions take on any particular (distribution of) values.1 An
observation (or measurement) Yt is then observed. This is a
real-valued vector of length m, modeled as a random vari-
able. The sequence of actions and observations from time 1
up to and including t is denoted ht, the history of interaction
with the system up to time t.

2.1 The Scalar PLG

To aid the reader in understanding the vector-valued PLG,
we first present the scalar PLG originally described by

1Though we shall see that the parameter estimation algorithm
does have such requirements to guarantee consistency.



Rudary, Singh, & Wingate (2005). The scalar PLG was de-
signed to model dynamical systems with no actions (l = 0)
and scalar observations (m = 1). The state of the scalar
PLG is the mean and variance of the next n observations; n

is called the dimension of the system. That is, the informa-
tion given by the history ht is summed up in the distribution
of future observations.

More precisely, let Zt be a random vector that collects the
n observations following t; that is,

Zt =





Yt+1

Yt+2
...

Yt+n



 .

The state of the scalar PLG at time t (i.e. just after observing
Yt) is the mean (µt) and variance (Σt) of Zt|ht. This can be
written as Zt|ht ∼ N (µt,Σt). The fact that the state of
the model is given by predictions of the future (in the form
of a probability distribution over future observations) is the
reason that the PLG is called a predictive state model.

Given these state semantics, it still remains to define the
parameters of the PLG and how those parameters are used to
update the state. This is begun by defining the core dynamics
of the model:

Zt+1 = GZt + ηt+1,

where ηt+1 is a noise term that captures the stochasticity of
the model. What this means is that Zt evolves according
to a noisy linear function G. But G is heavily constrained
because of the semantics of Zt. For instance, the first ele-
ment of Zt+1 and the second element of Zt are both equal
to Yt+2. In fact, Z

i
t = Z

i−1
t+1 for i = 2, 3, . . . , n (it will be

useful hereafter to refer compactly to specific elements of Zt

and other vectors; the ith element of Zt is denoted by Z
i
t ).

The only “new” element of Zt+1 is its last, Z
n
t+1 = Yt+n+1.

This means that only the nth row of G is made up of free
parameters of the PLG; the remaining elements are the same
for all scalar PLGs.

Up to this point, the scalar PLG may seem quite simi-
lar to the autoregressive (AR) model (Pandit & Wu 1983),
which uses the values of the previous n observations as state
and also has linear dynamics. The key difference is in how
the noise term is defined. In the AR models (as well as
many others), the noise term at each time step would be an
i.i.d. Gaussian variable. In the scalar PLG, ηt+1 is still a
Gaussian variable, but it is allowed to covary with Zt; this
gives the PLG representational power equivalent to the LDS
(which allows infinite memory and properly subsumes the
AR model).

To be more concrete, we fix the first n − 1 elements of
ηt+1 to be 0. This is because it is necessary to apply ad-
ditive noise to a particular observation only once; as noted
above, a given observation Yt+n+1 appears as an element
of Zt, Zt+1, · · · , Zt+n−1. When multiple noise terms apply
to the same observation, it leads to conflicting probability
distributions depending on which noise term is being con-
sidered. By fixing the first n− 1 elements to zero, the noise
associated with Yt+n+1 will be introduced at time t into Zt,

and will be carried into future iterations by the linear func-
tion G. So we now define the distribution of η

n
t+1 given a

history ht as follows:

η
n
t+1|ht ∼ N (0, σ) and Cov[Zt, η

n
t+1|ht] = C.

Here σ is the scalar and time-independent variance of ηt+1,
and C is the vector-valued and time-independent covariance
of Zt with ηt+1.

Together with the initial state µ0 and Σ0, G, σ, and C are
the parameters of the scalar PLG. Using the dynamics given
above, a pair of state update equations can be derived that
compute the next state (µt+1 and Σt+1) from the previous
state (µt and Σt) whenever a new observation Yt+1 = yt+1

is seen.2 The derivation is as follows. Zt+1 and Yt+1 are
jointly distributed Gaussian random variables, which can be
seen by the following relation:



 Zt

Yt+n+1



 =





Yt

Yt+1
...

Yt+n+1



 =





Yt

Zt+1



 .

The distribution of Zt|ht is known (it is the state at
time t), and the distribution of Yt+n+1|ht (as well as
Cov[Zt, Yt+n+1|ht]) can be computed from the equation
Yt+n+1 = Gn,·Zt + η

n
t+1, where Gn,· is the nth row of G.

These distributions can be used to compute the distribution
of Zt+1|(ht, Yt+1 = yt+1), whose mean and variance are
the next state. (We omit the details of the update equations
here; they can be taken as a special case of Equations (4)
and (5) developed in this paper for the more general vector-
valued case.)

Again, the covariance C is the key to the power of this
model; whereas an AR model’s “memory” only goes n time
steps into the past (because its state is the value of the last
n observations), the fact that the observations covary with
one another means that an observation’s distribution can
be affected by an event arbitrarily far into the past, giving
it significant representational ability. In particular, the n-
dimensional scalar PLG can model any system that an n-
dimensional linear dynamical system3 can (this was demon-
strated by Rudary, Singh, & Wingate (2005) and is also a
special case of our Theorem 1).

2.2 The Vector-Valued PLG

When extending the scalar PLG to deal with vector-valued
observations and actions, there are several challenges to
overcome. The most basic, and probably the most impor-
tant, is to decide which observations comprise Zt and then
work out the details of the dynamics based on this decision.
The effects of actions must also be determined. We must
also show that the vector-valued PLG can represent any sys-
tem that an LDS of the same dimension can; as we shall see
in Section 2.3, this will require a slight change to the next-
observation semantics of the model presented here.

2This introduces a convention used hereafter: The realization
of a random variable is set in lowercase, while the variable itself is
set in uppercase.

3The LDS model is discussed in more detail in Section 2.4.
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Figure 1: This figure shows the makeup of Zt in a system
with n = 6 and m = 4. This figure forms a skyline—no box
is used in Zt unless the boxes below it are also used.

As with the scalar version, the state of the vector-valued
PLG is the mean (µt) and variance (Σt) of Zt|ht, where Zt is
an n-dimensional vector of future observations; n is called
the dimension of the PLG model. As before, Zt|ht is dis-
tributed according to a multivariate Gaussian distribution.
The PLG then uses this distribution to compute the distri-
bution of any desired future observation(s). By comparison,
in an n-dimensional LDS model, the distribution of future
observations is computed from the distribution of Xt, an n-
dimensional latent state vector.

Makeup of Zt The concept at the heart of the vector-
valued PLG is how Zt is constructed. Each element of the
vector Zt is an element of an observation vector that will be
observed after time t. In the scalar PLG, Zt is just the con-
catenation of the next n observations Yt+1, Yt+2, . . . , Yt+n.
It would be possible to use the concatenation of the next n

observations in the vector-valued PLG as well; in the class
of systems we consider (n-dimensional LDSs), knowledge
of the distribution of this vector would be sufficient to com-
pute the distribution of any future observation(s). However,
this is inefficient—this Zt would contain mn elements when
just n are sufficient. The solution, then, is to pick a subset of
those mn elements. We select n observational elements—
that is, elements of observation vectors—whose joint distri-
bution is sufficient to reconstruct the distribution of all fu-
ture observations. It is of course not generally the case that
all such subsets are sufficient; the particular subset chosen
depends on the system to be modeled.

For a number of reasons, there are some subsets of
the next mn observations that will not be permitted. In
particular, if the jth element of the future observation
Yt+k is included as part of Zt, then the jth elements of
Yt+1, Yt+2, . . . , Yt+k−1 must be included as well. We call
this the “skyline” requirement, because when we make a di-
agram as in Figure 1, it forms a silhouette of a city skyline.
This restriction does not reduce the representative power of
the PLG.

One reason for the skyline requirement is the consistency
of the noise terms. In the scalar PLG, only the last term
of ηt+1 was non-zero because we wanted only one noise
variable associated with each observation. If the skyline re-
quirement were violated, an observation would be in non-

consecutive Z vectors. Considering the Zt layout shown
in Figure 1, suppose that the fourth element of Zt were re-
moved. Then Y

1
t+3 would be an element of Zt and Zt+2, but

not Zt+1. It is not tracked at t + 1; when it is reintroduced
at t + 2, should another noise term be applied? This would
break the assumption that each observational element has a
single noise term associated with it and would lead to con-
flicting definitions of its distribution. On the other hand, the
fact that it is not tracked at t+1 means that its distributional
information is essentially lost, and so information about the
original noise term is discarded and must be re-introduced,
which suggests that another noise term should be used. This
conflict argues in favor of the skyline requirement.

Another reason to introduce the skyline requirement is ef-
ficiency in the parameters. When an observational element
is a member of consecutive Z vectors, one row of the linear
trend G is predetermined to copy that element. The PLG
referred to by Figure 1, for example, has a G whose fourth
row copies the sixth element (Y 1

t+3) onto the fourth (Y 1
t+2)

when t increases. When an observational element is in non-
consecutive Z vectors, this copying would not be possible,
and so an additional row must be made up of free parame-
ters.

The elements that make up Zt must be selected so that the
distribution of Zt|ht is sufficient to compute the distribution
of any future observation(s) conditioned on the history ht.
We also require that they be selected so that the next obser-
vation is a linear function of Zt; i.e., Yt+1 = JZt, where
the m × n matrix J is a parameter of the model. In many
cases when m ≤ n, this can be satisfied by including every
element of Yt+1 as the first m elements of Zt and setting J

to be the first m rows of the n × n identity matrix. While
this is a limiting assumption, Section 2.3 will provide a more
general solution.

Core Dynamics of the PLG The core dynamics of the
model are linear; in an uncontrolled system,

Zt+1 = GZt + ηt+1, t = 1, 2, . . . , (1)

where G is the linear trend in the observations (a parameter
of the model) and ηt+1 is a noise term. The distribution of
this noise term is a choice that greatly affects the dynamics
of the model. If ηt+1 is chosen to be i.i.d. Gaussian noise, as
in classical models like the LDS or the autoregressive (AR)
model, this model would be quite similar to a vector-valued
version of the AR model, which has considerably less rep-
resentational power than the LDS. However, in our model,
we allow ηt+1 to covary with Zt; as we will show, this gives
the PLG power equivalent to that of the LDS. In particular,
given a history ht,

ηt+1|ht ∼ N (0,Ση) and Cov[Zt, ηt+1|ht] = Cη .

There is a restriction on Ση and Cη . It is possible that
a particular observational element Y

i
t may appear in Zs for

multiple values of s. For example, in Figure 1, the observa-
tional element Y

1
t+3 appears as Z

6
t , Z

4
t+1, and Z

1
t+2. In gen-

eral, this will happen whenever n > m and may also happen
when n ≤ m. As in the case of the scalar PLG, we want



only a single noise term to apply to each observational ele-
ment to prevent conflicting probability distributions. There-
fore, we fix η

i
t+1 = 0 when Z

i
t is a later appearance of an

observational element than the first. Equivalently, η
i
t+1 has

0 variance and 0 covariance with Zt. Thus, in the example,
the first and fourth elements of ηt will be fixed at 0 for all t,
but the sixth element may be a nontrivial random variable,
because Z

6
t is the earliest appearance of Y

1
t+3 in a Z vector.

The nonzero elements of ηt+1 correspond to the top shaded
box of each “stack” in Figure 1.

Modeling Actions We follow the approach of Rudary &
Singh (2006) in modeling actions. That is, ut, the action
at time t, affects the expected value (but not the variance)
of future observations—that is, Yt+1, Yt+2, . . .. However,
the actions are not modeled as random variables. Formally,
each action’s effect on the means of future observations is
a linear function of the action, which leads to the following
dynamical equation:

Zt+1 = GZt +
τmax�

i=1

Γiut+i + ηt+1. (2)

The model parameters Γ1, . . . ,Γτmax
are n × l matrices

that describe the linear effects of the actions, and are pa-
rameters of the PLG. The upper limit of the sum, τmax, is
the maximum look-ahead horizon of Zt. That is, Zt con-
tains at least one element of Yt+τmax but no elements of
Yt+τmax+i, i > 0 (in the example of Figure 1, τmax = 3).
Therefore, Zt+1 contains at least one element of Yt+τmax+1,
which can be affected by the action ut+τmax but not by
ut+τmax+1; hence, τmax is the upper limit on the summa-
tion.

As with the noise terms, in order for the effects of the ac-
tions to be well-defined, they should only apply to the first
appearance of a particular observational element in a Zt vec-
tor. This is accomplished by fixing the ith row of Γk to be
0 when Z

i
t is not the first appearance of an observational

element. Thus, as with the noise term, in the running exam-
ple, the first and fourth rows of Γ1, Γ2, and Γ3 are fixed at
0, but the sixth rows of each of these parameters may take
on any value. In addition, causality must be preserved: no
action may have an effect on elements of Zt+1 that will be
observed before that action will be taken. In the example,
this means that the second row of Γ1 may be nonzero, but
the second rows of Γ2 and Γ3 must be 0, because the actions
ut+2 and ut+3 cannot affect elements of Yt+2.

In controlled systems, the distribution of Zt|ht is unde-
fined without information about the actions that will be exe-
cuted between now (t) and the time that the elements of Zt

will be observed. Because the actions are not modeled as
random variables, it is impossible to marginalize out their
effects. This is important, because the PLG’s state is defined
in terms of the distribution of Zt. The simplest solution is
to assume that future actions will be 0; because of the ac-
tions’ linear effect on the future, this is the assumption that
actions that have not yet been taken will not affect the values
of future observations.

But note that this is just an assumption to make the state
well-defined; the dynamics do not require that the actions be
zero in order for the model to be correct. When the actual
value of an action is determined, its effects are propagated
onto the state using the state update equations (which we
define below).

State Update As described at the beginning of this sec-
tion, the state of the PLG is the mean and variance of Zt,
conditioned on the history of interaction (and assuming fu-
ture actions to be 0):

Zt|ht, ut+1 = 0, ut+2 = 0, . . . ∼ N (µt,Σt). (3)

With each new time step, a new observation becomes
available and another action has been taken. We must up-
date the state of the system to take this information into ac-
count. In order to do this, we must calculate the distribu-
tion of Zt+1 conditioned on both ht and the new observation
Yt+1 = yt+1. This is a relatively straightforward computa-
tion, as Yt+1|ht and Zt+1|ht are jointly Gaussian random
variables; the conditional distribution of Zt+1|ht, Yt+1 =
yt+1 is readily calculated using a standard result (e.g. Catlin
1989). Using this result, we obtain the updated values:

µt+1 = Gµt + Lut + ft(JΣtJ
�)−1(yt+1 − Jµt) (4)

Σt+1 = GΣtG
� + GCη + C

�
η G

� + Ση−
ft(JΣtJ

�)−1
f
�
t ,

(5)

where ft = (GΣt + C
�
η )J� is the covariance of Yt+1 and

Zt+1 given ht. L describes the cumulative effect that the
action has on all the observations of Zt+1:

Lu = E[Zt+1|ht, ut+1 = u, ut+2 = 0, . . .]−
E[Zt+1|ht, ut+1 = 0, ut+2 = 0, . . .].

This is computed from Γ1, . . . ,Γτmax
by

L
∆= Γ1 + GΓ2 + G

2Γ3 + · · ·+ G
τmax−1Γτmax .

We can now define the basic PLG model, though recall that
a limiting assumption will be resolved in the next section.
Definition 1. The Predictive Linear-Gaussian model is de-
fined by a) the state semantics of (3), b) the state update
of (4) and (5), and c) the parameters: the linear trend, G;
the linear effects of the action, Γ1, . . . ,Γτmax

, the “next-
observation function,” J; the noise parameters, Ση and Cη;
and the initial state, µ0 and Σ0.

The PLG can be used to compute the probability den-
sity of any trajectory sT = y1, y2, . . . , yT as follows: Ini-
tialize the state µ ← µ0 and Σ ← Σ0 and the den-
sity p(sT ) ← 1. Then, for t = 1, . . . , T , set p(sT ) ←
p(sT ) · pN (yt;Jµ, JΣJ

�), where pN (x; ν, V ) is the den-
sity at x of a multivariate Gaussian distribution with mean ν

and variance V ; update µ and Σ according to (4) and (5).

2.3 The Variance-Adjusted PLG

The next-observations dynamics of the PLG, Yt+1 = JZt,
places some limitations on the systems that PLGs can model.



For instance, it precludes most models in which the obser-
vation vector has a larger dimension than the model itself
(that is, m > n). More generally, the PLG is unable to
model systems in which the observation vector space is un-
derranked in expectation—that is, when {E[Yt+1|ht] : ht a
length-t history} has dimension less than m.4

The limitation arises because the variance need not be un-
derranked even when the means are linearly dependent—yet
this relationship is forced by Yt+1 = JZt. When that equa-
tion holds, Var[Yt+1|ht] = JΣtJ

�, which will be under-
ranked whenever J is.

For example, suppose that we wish to control an oven in
an industrial process. The oven has two temperature sen-
sors that are unbiased but whose readings differ from the
actual temperature inside the oven by i.i.d. Gaussian noise;5
these sensors are the only observations (i.e. m = 2). In
this case, E[Y 1

t+1|ht] = E[Y 2
t+1|ht], so the mean vector has

a trivial linear dependency. However, because the noise ex-
perienced by the two sensors is independent, it is not the
case that Y

1
t+1|ht = Y

2
t+1|ht. The linear dependence in the

means does not carry over to the variance of the two ele-
ments of the observation vector. Thus, there is no J that
satisfies Yt+1 = JZt.

To eliminate this problem, we introduce a variant of the
PLG: the variance-adjusted PLG. It is identical to the basic
PLG except the next observation is distributed according to

Yt+1|ht ∼ N (Jµt, JΣtJ
� + Σadj),

where Σadj is a symmetric matrix. It need not be a valid
covariance matrix (i.e. symmetric positive semidefinite), but
the sum JΣtJ

�+Σadj must be symmetric positive semidef-
inite for all t. This new formulation requires that the state
update equations be altered slightly:

µt+1 = Gµt + ft(JΣtJ
� + Σadj)−1(yt+1 − Jµt) (6)

Σt+1 = GΣtG
� + GCη + C

�
η G

� + Ση−
ft(JΣtJ

� + Σadj)−1
f
�
t .

(7)

Note that the standard PLG is a special case of the
variance-adjusted PLG in which Σadj = 0.

2.4 Equivalence of PLG and LDS

Now that the PLG and its variance-adjusted variant have
been defined, it is natural to ask if they model anything use-
ful. In fact, an n-dimensional variance-adjusted PLG can
model any system that can be modeled by an n-dimensional
LDS. Before stating this result as a theorem and sketching
its proof, we review the LDS model.

The LDS Model The LDS model is based on a pair of
stochastic processes. The first is the latent (unobservable)
Xt process, which evolves through a linear function with

4Except in certain special cases when the observation’s variance
matrix has a particular set of linear dependencies.

5While each sensor may differ from the actual temperature by
an i.i.d. Gaussian random variable, the process as a whole may still
have non-i.i.d. noise.

i.i.d. Gaussian noise. The second is the observation process
Yt, which is a linear function of the first, again with i.i.d.
Gaussian noise. Xt is an n-vector and Yt is an m-vector.
The dynamics are governed by the following:

X1 ∼ N (x−1 , P
−
1 ), E[ωt] = E[νt] = E[ωtν

�
s ] = 0,

Xt+1 = AXt + ωt+1, Cov[ωt, ωs] = δt,sQ,

Yt = HXt + νt, Cov[νt, νs] = δt,sR,

where δi,j , the Kronecker delta, is 1 if i = j and 0 otherwise.
The state of the LDS can be tracked with the Kalman filter
(Kalman 1960; Welch & Bishop 2004), which maintains the
state variables x

−
t = E[Xt|ht−1] and P

−
t = Var[Xt|ht−1]

through the following equations:

Kt = P
−
t H

�(HP
−
t H

� + R)−1
,

x
+
t = x

−
t + Kt(yt −Hx

−
t ), P

+
t = P

−
t −KtHP

−
t ,

x
−
t+1 = Ax

+
t + But, P

−
t+1 = AP

+
t A

� + Q.

Kt is known as the Kalman gain at time t, and x
+
t and P

+
t

have the semantics Xt|ht ∼ N (x+
t , P

+
t ).

Equivalence Theorem We now state our main result.
Theorem 1. Every LDS with n-dimensional state has an
equivalent n-dimensional variance-adjusted PLG.

If the LDS parameter H has rank m, it can be shown that
Σadj = 0, and thus its equivalent PLG is a standard (non-
variance-adjusted) PLG.

The full proof of Theorem 1 is similar in outline to the
proofs of similar theorems for scalar PLGs (Rudary, Singh,
& Wingate 2005; Rudary & Singh 2006). However, several
details differ, and the proof can be found in an online ap-
pendix (Rudary & Singh 2008). However, we will point out
a few salient features of that proof here.

The strategy is to construct an equivalent n-dimensional
PLG given an n-dimensional LDS. This is done by find-
ing a mapping from the Kalman filter’s state variables x

−
t+1

and P
−
t+1 to the PLG’s state variables µt and Σt such that

both models compute the same distribution for Yt+1|ht,
then computing PLG parameters that preserve this property
through the state update. An inductive argument then shows
that both models compute the same distribution over trajec-
tories of arbitrary length, showing equivalence of the mod-
els. This is the same strategy as in the scalar case.

One of the major differences in the vector-valued case is
in the first step: finding a mapping from Kalman filter state
to PLG state. In order to do that, we must populate Zt. In
the scalar case, Zt was simply the next n observations; here,
Zt is populated by taking the first n spanning rows of Mn,
which is defined by

Mn =

0

BBB@

H

HA

...
HA

n−1

1

CCCA
; note: Mnx

−
t+1 =

0

BB@

E[Yt+1|ht]
E[Yt+2|ht]

...
E[Yt+n|ht]

1

CCA .

Thus, each row of Mn corresponds to an element of a
future observation. The first n rows of Mn that span the
matrix are combined to form the matrix M ; the observation



element corresponding to the ith row of M is chosen as Z
i
t .

We say “the first n rows” that span Mn because Mn may
have rank less than n, though it will not have rank more than
n. It is most efficient to choose n so that rk(Mn) = n.

We now define the state mapping. µt can be computed
directly: µt = E[Zt|ht] = Mx

−
t+1. A more involved

derivation allows us to compute the covariance matrix Σt.
Zt can be written in terms of the LDS random variables
as Zt = MXt + Et, where each element of Et is a lin-
ear combination of (elements of) the LDS noise terms εt+i

and νt+j—as defined in Section 2.4—for various i and j.
Thus, Σt = Cov[Zt, Zt|ht] = MP

−
t M

� + Φ, where
Φ = Cov[Et, Et|ht] is independent of time and its (i, j)th
element can be written as

Φij = Hρ(i),·A
τ(i)−τ(j)

Sτ(j)−1H
�
ρ(j),·+

δτ(i),τ(j)Rρ(i),ρ(j),

for τ(i) ≥ τ(j), where τ() and ρ() are the functions for
which Z

i
t = Y

ρ(i)
t+τ(i), Hi,· indicates the ith row of H ,

Si =
�i

k=1 A
k−1

Q(Ak−1)�, and Ri,j indicates the (i, j)th
element of R. Otherwise, Φji = Φij .

Given this state mapping, it remains to be shown that there
are values of the PLG parameters for which this state map-
ping is maintained by the update equations; this is done in
the online appendix (Rudary & Singh 2008).

3 Consistent Estimation of PLG Parameters

Parameters of the LDS are often estimated using Expecta-
tion Maximization (EM) (Ghahramani & Hinton 1996)6, an
algorithm that aims to maximize the likelihood of the data
by iteratively improving parameter estimates. EM suffers
from problems with local optima, in part because there are
many symmetries in the LDS parameter space.

To estimate the parameters of the PLG, we have modi-
fied the Consistent Estimation algorithm (CE) described by
Rudary et al. (2005; 2006) to apply to the vector-valued
PLG. An estimator is consistent if it converges in probability
to the true value, where convergence in probability is defined
as follows:

Definition 2. The sequence �x1, �x2, . . . converges to x in
probability if limn→∞ Pr(|�xn − x| > δ) = 0 for all pos-
itive δ. We write this as “�xn −→p x as n→∞.”

CE’s estimates converge in probability to the true val-
ues of the parameters as the size of the training data set in-
creases, avoiding problems with local optima.

3.1 The CE Algorithm

The CE algorithm is based in large part on the direct con-
nection of the PLG parameters with statistical patterns in
the data. For instance, G is the linear trend in the mean of
the observations. This is in contrast to the LDS, in which
the linear trend in the mean of the observations depends on

6Though see Section 4 for a discussion of an alternative ap-
proach, 4SID.

both H and A. CE is noniterative and consists of simple op-
erations like linear regression and taking sample means and
covariances.

We assume that we have a data set consisting of K trajec-
tories, each of which is a sequence of N observations. Each
trajectory is started from the same (unknown) initial state
µ0,Σ0.7 The tth observation from the kth trajectory is de-
noted y

k
t ; similarly, z

k
t is the observed value of Zt from the

kth trajectory (though this notation is the same as that used
to indicate a specific element of yt or zt, the superscript k

will always indicate the entire vector, taken from the kth tra-
jectory). In addition, �G refers to an estimate of G (similarly
�Cη , �ηt+1, etc.). The algorithm as given assumes that the
dimension n is known and Zt is prepopulated—i.e. that we
know which observational element corresponds to each ele-
ment of Zt—and that all elements of Yt+1 are elements of
Zt, so that J is entirely predetermined.

We will break the presentation of this algorithm into three
parts: estimating the linear trends (G, Γ1, . . . ,Γτmax

), esti-
mating the initial state (µ0,Σ0), and estimating the noise pa-
rameters (Cη ,Ση).

Linear Trend Both G and Γ1, . . . ,Γτmax
represent linear

trends in the data. G is the linear trend of Zt in the absence
of actions, and Γ1, . . . ,Γτmax

model the linear effects of the
actions. CE estimates both together using a linear regres-
sion. However, because several rows of G, Γ1, . . . ,Γτmax
are determined by the makeup of Zt, some care is required
in setting up the regression.

Some rows of G copy an observation element from i + 1
steps in the future onto the same element i steps in the future.
For instance, if Z

1
t = Y

1
t+1 and Z

2
t = Y

1
t+2, the first row

of G simply copies the second element of Zt into the first.
We refer to the unknown rows (i.e. those not predetermined
in this way) as G

unk. In addition, the ith row of Γj (for
each j) is fixed to be 0 when Z

i
t is not the first appearance

of an observational element. Note that the same rows are
predetermined in G and Γ1, . . . ,Γτmax

. So by analogy, we
refer to the rows that are not predetermined in Γ1, . . . ,Γτmax

as Γunk
1 , . . . ,Γunk

τmax
.8 Likewise, let z

unk,k
t be the sub-vector

of z
k
t that corresponds to these rows.

Let the notation yt denote the average of y
k
t over all

the trajectories (similarly zt, ηt+1, etc.). From the PLG’s
core dynamics (2), it follows that z

unk,k
t+1 = G

unk
z

k
t +�τmax

i=1 Γunk
i u

k
t+i + η

k
t+1 for all t and k. This equality holds

when averaging across all trajectories in the data set:

z
unk
t+1 = G

unk
zt +

τmax�

i=1

Γunk
i ut+i + ηt+1

7Note that in the LDS case, this is equivalent to requiring that
X1 ∼ N (x−1 , P

−
1 ) for some x

−
1 and P

−
1 , not that X1 = x1 for

some x1; this is just putting a prior on the initial observations.
8However, some of the rows of Γunk

1 , . . . , Γunk
τmaxare also fixed

at 0. This is to preserve causality, as discussed in Section 2—
actions should not affect observations that will occur before the
action is taken. This will be taken into account in the regression.



for all t. As K grows large, the Weak Law of Large Num-
bers applies, and it can be shown that ηt+1

−→p 0 as K →∞,
where −→p denotes convergence in probability (defined be-
low). This then leaves the equation

z
unk
t+1

−→p γξt (8)

for all t, where γ
∆=

�
G

unk Γunk
1 · · · Γunk

τmax

�
and

ξ
�
t

∆=
�
z
�
t u

�
t+1 u

�
t+2 · · · u

�
t+τmax

�
.

(8) can be rewritten in matrix form as Z
unk −→p γΞ, where

the tth column of Ξ is ξt−1 and the tth column of Z
unk is

z
unk
t ; both of these matrices have N − τmax columns. This

is a rather straightforward linear regression problem. If it
weren’t for some of the elements of γ being fixed at 0, the
solution would be

�γ = Z
unkΞ�(ΞΞ�)−1 −→p γ.

As it is, each row of �γ can be computed using a separate re-
gression, where the columns of Ξ corresponding to the zero-
fixed elements are removed. Having computed an estimate
of G

unk and Γunk
1 , . . . ,Γunk

τmax
, we can combine that with the

rows predetermined by the structure of the model to obtain
�G and �Γ1, . . . ,

�Γτmax , estimates of G and Γ1, . . . ,Γτmax
, re-

spectively. These are, in general, biased estimates of G and
Γ1, . . . ,Γτmax

, as the noise in the rows of Z
unk are not inde-

pendent of one another. However, we have shown that this
regression produces a consistent estimate—that is, one that
converges in probability on the correct answer.

Initial State At first blush, it may seem that the ini-
tial state µ0 and Σ0 could be estimated through a sample
mean and sample covariance of z

k
0 , respectively. How-

ever, this fails to account for the actions; the initial state
is the distribution of Z0 given that u1 = 0, u2 = 0, etc.
This can be remedied by noting the effect of each action
u1, u2, . . . , uτmax on Z0 is additive and a function of only
G, Γ1, . . . ,Γτmax

, and the action itself. By using the esti-
mates �G, �Γ1, . . . ,

�Γτmax to compute this effect, an estimate
of Z0|u1 = 0, · · · can be obtained for each trajectory, and
the sample mean and covariance of these estimates of Z0

can be taken to estimate µ0 and Σ0. Algebraic manipulation
produces the result that these estimates can be obtained by
�zk
0|0 = z

k
0 −

�τmax−1
i=0

�τmax−1
j=i ( �Gj−i�Γj)uk

i , where it can

be assumed that u
k
0

∆= 0.
Given the estimates �zk

0|0, the initial state can be estimated
through a sample mean and variance:

�µ0 =
1
K

K�

k=1

�zk
0|0,

�Σ0 =
1
K

K�

k=1

(�zk
0|0 − �µ0)(�zk

0|0 − �µ0)�.

These are consistent estimates of the initial state.

Noise Parameters The variance Ση of the noise and co-
variance Cη of the noise with Zt can be estimated similarly.
First, we estimate the noise terms by rewriting (2):

�ηk
t+1 = z

k
t+1 − �Gz

k
t −

τmax�

i=1

Γiu
k
t+i ∀k, t.

Knowing that E[ηt+1] = 0, the sample covariance calcula-
tions yield

�Ση =
1

K(N − τmax)

N−τmax�

t=1

K�

k=1

�ηk
t �ηk�

t and

�Cη =
1

K(N − τmax)

N−τmax−1�

t=0

K�

k=1

z
k
t �ηk�

t+1.

Consistency The estimates �G, �Γ1, . . . ,
�Γτmax , �µ0, �Σ0, �Ση ,

and �Cη are consistent; that is, as the number of trajectories in
the data set increases, the estimates converge in probability
to the true values.

There are some technical requirements on the system and
the policy used to generate the data set that must be satis-
fied in order for the consistency result to hold. The major
requirement is that the matrix ΞΞ� be invertible in the limit
as K → ∞. This is both a theoretical and a practical re-
quirement. It is a theoretical requirement because consis-
tency is a property of the behavior of estimators in the limit.
It is practical because, when this condition does not hold,
conditioning problems will lead to poor estimates of G and
Γ1, . . . ,Γτmax

on large data sets. Since most of the other
estimates depend on the estimates for these parameters, this
well lead to a poor model overall.

An equivalent way of stating this requirement is that a)
E[Ξ] have full rank and b) the trajectories have sufficient
length to make Ξ at least as wide as it is tall. The latter re-
quirement means that N ≥ n + (l + 1)τmax. The former is
a joint constraint on the system and the policy used to gen-
erate the data set. In an uncontrolled system, this condition
will not be satisfied if, for example, µ0 = 0 or µ0 is an
eigenvector of G. In a controlled system, the actions affect
zt, so a well-chosen policy can overcome difficulties such as
µ0 = 0. However, a new issue is raised: The actions form
part of Ξ, so a random policy where E[u1] = E[u2] = · · ·
will lead to an under-ranked matrix. An exploration policy
that satisfies the requirement that E[Ξ] have full rank for a
given system is called a CE-learnable policy for that system.
Theorem 2. If a dynamical system can be modeled by an n-
dimensional PLG, is CE-learnable, and generates a training
set whose trajectories are at least n+(l+1)τmax time steps
long, then, as the number of trajectories K grows, the pa-
rameter estimates computed by the CE algorithm will con-
verge in probability to the true parameters.

This is proven in an online appendix (Rudary & Singh
2008).

4 Related Work

There are two areas of related research that should be com-
pared to this work. Here we will briefly contrast our work to



that of Jaeger (2001), and then compare our CE estimation
algorithm to subspace identification methods in LDSs.

Observable Operator Models (OOMs) are a general class
of models in which observations are modeled as operators
on a state vector (Jaeger 1997). Some OOMs are predictive
state models in that the elements of the state vector corre-
spond to predictions about future observations. The OOM
discussed by Jaeger (2001) is related to a hidden Markov
model that emits observations from a continuous distribu-
tion conditioned on the value of a discrete latent process.
The structure of the model is quite different from that of
the PLG. The continuous OOM is a “blending” of discrete
OOMs that uses the unobserved outputs of a discrete OOM
to generate a probability distribution over observable values;
it is a generalization of the semi-continuous HMM (Bengio
1999). Thus there is a latent component to this continuous
OOM that is not present in the PLG. As a result of these dif-
ferences, the systems that can be modeled by this OOM are
different than those that can be modeled by the PLG.

Subspace-based state-space system identification (4SID)
methods are parameter estimation algorithms for LDSs
(Viberg 1995). Like CE, 4SID methods are noniterative—
in particular, they do not perform local searches in the pa-
rameter space, as EM methods do. These methods can be
complicated, here I present a basic intuition. The core dy-
namics of the LDS can be written as

�
Xt+1

Yt

�
=

�
A

H

�
Xt +

�
ωt+1

νt

�
.

This is quite similar to (2); if an estimate for Xt were ob-
tained, A and H could be estimated through least-squares
linear regression, much as G is in the CE algorithm. The
main question answered by subspace identification is how
to estimate Xt. Define the output block Hankel matrices

Yp =

0

B@
y1 · · · yj

...
. . .

...
yi · · · yi+j−1

1

CA , Yf =

0

B@
yi+1 · · · yi+j

...
. . .

...
y2i · · · y2i+j−1

1

CA ,

where f stands for future and p for past, i is at least n,
and j is chosen so that the entire data set is included in Yp

and Yf (4SID methods operate on a single trajectory). De-
fine �Xi+1 = [�xi+1 . . . �xi+j ] as the estimates of the latent
variables Xi+1 = [Xi+1 · · · Xi+j ]. Finally, let Γi be the
extended observability matrix

Γi =





H
�

(HA)�
· · ·

(HA
i−1)�



 .

By definition, E[Yf |Xi+1 = �Xi+1] = Γi
�Xi+1. But it can

also be shown that Yf/Yp −→p Γi
�Xi+1 under certain con-

ditions as j → ∞, where Yf/Yp = YfY
�
p (YpY

�
p )†Yp is

the projection of the row space of Yf onto the row space
of Yp and A

† is the Moore-Penrose pseudo-inverse of the
matrix A. Γi can be recovered through a singular value de-
composition of Yf/Yp, and so �Xi+1 can be computed by
�Xi+1 = Γ†

i (Yf/Yp).

4SID methods vary in their details—for instance, �Xi+1

may not be computed explicitly, and other changes may
be made for the sake of efficiency or statistical guarantees.
Some variants of 4SID are consistent under quite general
conditions.

One difference between CE and 4SID methods is that
4SID methods are consistent as the length of a single tra-
jectory grows, while CE is consistent as the number of tra-
jectories grows. Some problems are naturally episodic, and
so it is easier to produce a data set with a large number
of trajectories instead of a single trajectory. For example,
when trying to model the behavior of other drivers on the
road, it makes more sense to observe many vehicles’ behav-
ior and treat each vehicle’s trajectory separately. Of course,
the opposite is also true: In some problems, it is easier to
obtain long trajectories than many trajectories. This differ-
ence make it quite difficult to compare the two algorithms
with any precision because they work on different kinds of
data sets.

5 Conclusion

We have introduced an improved Predictive Linear Gaus-
sian model, a model for stochastic dynamical systems with
vector-valued observations. We have also introduced a
variance-adjusted version of the model. We have shown
an equivalence between n-dimensional variance-adjusted
PLGs and n-dimensional Linear Dynamical Systems. Fi-
nally, we have introduced a consistent parameter estimation
algorithm for PLGs.

This work significantly improves the state of the art in
predictive state representations, for the first time allowing
them to handle real-vector-valued observations, a feature of
many realistic problems. It also adds to the field of linear
dynamical systems by introducing another consistent esti-
mation algorithm for a model that subsumes them.

However, there is much room for future work. One fu-
ture direction is to develop a maximum likelihood estima-
tion algorithm for PLGs. We are also working on a single-
trajectory CE algorithm; besides allowing parameter estima-
tion on data sets containing a single long trajectory, it will
also allow us to compare CE to subspace identification meth-
ods experimentally.
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