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Abstract—Modeling information diffusion in networks enables
reasoning about the spread of ideas, news, opinion, and technol-
ogy across a network of agents. Existing models generally assume
a given network structure, in practice derived from observations
of agent communication or other interactions. In many realistic
settings, however, observing all connections is not feasible. We
consider the problem of modeling information diffusion when
the network is only partially observed, and investigate two
approaches. The first learns graphical model potentials for a
given network structure, compensating for missing edges through
induced correlations among node states. The second learns
the missing connections directly. Using data generated from a
cascade model with different network structures, we empirically
demonstrate that both methods improve over assuming the given
network is fully observed, as well as a previously proposed
structure-learning technique. We further find that potential
learning outperforms structure learning when given sufficient
data.

I. MODELING INFORMATION DIFFUSION

Information diffusion can be seen at work in a wide range
of scenarios, such as news propagation, political grass-root
campaigning, product promotion, and technology adoption.
Models of information diffusion on social networks, for in-
stance, can inform viral marketing campaigns by offering
predictions and analyses of product popularity and advertising
effectiveness, given information about early buyers’ behaviors
[Leskovec et al., 2007]. They can also be employed to assess
more abstract properties, such as the likelihood of information
diffusing from one node to another node separated by a given
distance [Song et al., 2007, Choudhury et al., 2008, Bakshy
et al., 2009], or the conditions for information survival in a
dynamic network [Chakrabarti et al., 2007].

Applying such models requires knowing the structure of
the network, typically inferred based on evidence of affil-
iation, communication, or other observable traits of agent
relationships. In practice, however, such evidence is generally
incomplete and uncertain. Sophisticated learning methods may
improve detection in such circumstances [Adar and Adamic,
2005, De Choudhury et al., 2010, Backstrom and Leskovec,
2011], but inevitably, real-world agents will have connections
that are unobserved by specific third parties. For example,
Internet social networks do not capture offline human interac-
tions. Thus, any model of information diffusion must account
for propagation of information along paths not included in the
observed network.

In the now standard approach to modeling information
diffusion on networks [Kleinberg, 2007], a node or agent is in
one of a finite set of states (e.g., having particular information,
adopting a technology, etc.) at a given time. In each discrete
time period, each agent decides what state to adopt in the next
period, as a probabilistic function of the states of its neighbors.
Formally, let G be a network of n agents over a discrete time
horizon T . We restrict attention here to capturing the diffusion
of a single bit of information, so at time t, each agent i can
be in either of two states: sti = 1 indicates that agent i has
been infected, and sti = −1 otherwise. An undirected edge
(i, j) in G represents a connection between agents i and j:
conceptually, that i and j interact and may be aware of each
other’s state. For each node i, Ni denotes the neighborhood
of i: Ni = {j | (i, j) ∈ G} ∪ {i}. Let st = st{1,...,n} be the
state of all agents at time t.

In the version of information diffusion we study, infection
persists: there exists no agent i and time t such that sti = 1
and st+1

i = −1. We define a binary feature a(sti, s
t−1
i ) = 1

to indicate that i becomes infected at time t (st−1i = −1 and
sti = 1), otherwise a(sti, s

t−1
i ) = −1. We define t∗i as the time

when i becomes infected, and c(stNi
) = |{j ∈ Ni | stj = 1}|,

the count of agents in Ni who are infected at t. Similarly, let
σ(stNi

, st−1Ni
) = |{j ∈ Ni | a(stj , s

t−1
j ) = 1}|, the number of

agents in Ni that become infected at time t.
The most popular model of infection is the cascade model

[Kempe et al., 2003], in which the tendency to infect increases
with the proportion of infected neighbors. Goldenberg et al.
[2001] proposed a cascade model form:

Pr(sti = 1 | st−1i = 1, st−1Ni−{i}) = 1

Pr(sti = 1 | st−1i = −1, st−1Ni−{i}) = 1− (1− α)(1− β)
c(st−1

Ni
)
.

(1)

In this model, β ∈ [0, 1] represents the tendency of infection
from interacting with one of its infected neighbors, and
α ∈ [0, 1] reflects the possibility of node i getting information
from sources other than its neighbors, or in other words
spontaneously becoming infected.1 For example, when α = 0,

1The cascade model entails that influence is uniform across a node’s
neighbors and all network nodes will eventually become infected. We adopt
this model not because we necessarily desire these characteristics, but because
the model is widely applied in the literature. Nothing about our approach is
particularly geared to these properties.



β > 0, and c(st−1Ni
) = 1, i does not get information from

sources other than its neighbors, and can become infected
only from interacting with its sole infected neighbor with
probability 1− (1− β) = β.

Stonedahl et al. [2010] introduced an alternative cascade
model, which we label C, that induces similar behavior
based on the same intuitions, but with a simplified probability
expression:

Pr(sti = 1 | st−1Ni
) = α+ β

c(st−1Ni
)

|Ni|
. (2)

Assuming independence of agent states given past states, the
cascade models define a joint distribution of states at time t:

Pr(st | st−1) =
∏
i

Pr(sti | st−1Ni
). (3)

Although the cascade models allow for positive probability
of infection even if no known neighbors are infected, its
accuracy suffers if the network structure is missing connec-
tions. Gomez-Rodriguez et al. [2010] were first to identify and
tackle the problem of discovering underlying network structure
given only diffusion history. They introduce an algorithm
called NetInf, which identifies a network that optimizes an
approximate measure of fit to observed infection times.2 In the
present work, we consider the structure learning approach:
a greedy algorithm of our own, named MaxLInf, as well
as a version NetInf′ of the previous algorithm modified to
fit our problem setup. We further introduce a fundamentally
different approach, potential learning, which can compensate
for missing edges by capturing induced correlations of behav-
ior in potential functions that encompass nodes not directly
connected in the given graph.

II. PROBLEM SETUP

Let G be the observed network, and S = {s} a set of diffu-
sion instances or traces, each of length T , s = {s0, . . . , sT }.
We assume that the diffusion was generated by some process
(in our empirical study, the cascade model) on a true underly-
ing network G∗ ⊇ G. Given G and S, we would like to make
inferences about future diffusion events. We next provide an
example of the problem and formally define our objectives.

A. Example

Consider the example four-node scenario shown in Figure 1,
where the edge between nodes 1 and 3 is not observed.
Suppose that in the true underlying model nodes can become
infected only from interacting with their neighbors. In the
example run, the spread started with node 1 at time t = 1 and
reached nodes 4 and 3 at t = 5 and t = 6, respectively. The
missing edge (1, 3) may mislead us to interpret node 3’s infec-
tion as spontaneous. Throughout Section III, we provide more
details about how each approach in this study compensates for
the missing connection (1, 3) in this particular example.

2Gomez-Rodriguez et al. [2011] introduced an improved version of NetInf
that treats the underlying diffusion as a continuous-time process and learns
the model parameters from data.
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Fig. 1. A four-node scenario with one missing edge (dashed). Infected nodes
are shaded. Newly infected nodes at each time period are marked with dashed
rims.

B. Evaluation

We capture the dynamics of information diffusion using
the joint probability distribution of agent states, conditional
on past states. Notationally, PrM (st | st−1) is the joint
distribution of agent states at time t induced by a particular
model M . Given a set S of m traces, we can compute the
data’s average logarithmic likelihood induced by M ,

LM (S) =
1

m

∑
s∈S

1

T

∑
t

log PrM (st | st−1). (4)

As in many information network studies, we are also
interested in predicting the aggregate extent of future network
infection, given some initial diffusion data. In particular, given
an initial network state s0, we sample diffusion traces of length
T̂ from the model M starting with s0. These traces define
a distribution over the fraction c(sT̂ )/n of nodes that are
infected at time T̂ , denoted as QM (c(sT̂ )/n | s0). We employ
a version of the Kullback-Leibler (KL) divergence metric,
the skew divergence [Lee, 1999], to measure the distance
between the two discrete value distributions Q induced by
the true model M∗ and by the test model M , conditional
on observations of the initial state s0. We specify the KL
divergence as:

dKL(QM
∗
, QM | s0) =

n∑
c=0

QM
∗
(c/n | s0) log

QM
∗
(c/n | s0)

QM (c/n | s0)
,

and average skew divergence given data S,

D(QM
∗
, QM | S) =

1

m

∑
s0|s∈S

dKL(QM , ρQM
∗

+ (1− ρ)QM | s0),

with ρ set at 0.99 to avoid the problem of undefined KL
divergence values [Lee, 1999].

We can further measure the quality of the graphs learned by
MaxLInf and NetInf′ in simulated scenarios where access to
the true underlying graph is available. In particular, we employ
the following metrics on structural differences between the
true underlying graph G∗ = (V,E∗) and the learned structure
G′ = (V,E′):3

δ−(G∗, G′) =
|E∗ \ E′|
|E∗|

, and δ+(G∗, G′) =
|E′ \ E∗|
|E′|

.

3A version of these metrics was also employed in evaluating the original
NetInf [Gomez-Rodriguez et al., 2010].



Here δ−(G∗, G′) represents the proportion of false negative
edges in the true network G∗, or in other words, edges that
remain missing in the learned graph G′. Similarly, δ+(G∗, G′)
captures the proportion of false positive edges in the learned
structure G′.

III. DEALING WITH PARTIALLY OBSERVED NETWORKS

We consider two broad approaches to learning diffusion
models despite unobserved network edges. The potential learn-
ing approach captures probabilistic dependencies induced by
the missing edges in the potential function of a graphical
model. The structure learning approach attempts to recover
the edges explicitly by learning network structure.

A. Graphical Multiagent Models

A graphical multiagent model (GMM) is a graphical model
with vertices V representing the n agents, and edges E
capturing pairwise interactions between them [Duong et al.,
2008]. We employ here a dynamic extension, the history-
dependent graphical multiagent model (hGMM) [Duong et al.,
2010], which captures agent interactions in dynamic scenarios
by conditioning joint states on abstracted history. We limit
conditioning to the previous state, associating with each agent i
a potential function πi(s

t
Ni
| st−1Ni

). The potential of a local
state configuration stNi

represents its unnormalized likelihood
of being included in the global outcome, conditional on past
state [Kakade et al., 2003, Daskalakis and Papadimitriou,
2006, Duong et al., 2010]:

Pr(st | st−1) =
1

Z

∏
i

πi(s
t
Ni
| st−1Ni

).

Unlike the cascade models (3), hGMMs do not assume
conditional independence of agent states given history, but
specify the joint state directly. That hGMMs compute the
potentials of all state configurations of a neighborhood allows
reasoning about state correlations between neighbors who
appear disconnected in the input graphical structure, and thus
helps to compensate for missing edges. We approximate the
normalization factor Z using the belief propagation method
[Yedidia et al., 2000], which has shown good results with
reasonable time in sparse cyclic graphs. In particular, we
employ the libDAI approximate inference package [Mooij,
2010].

Figure 2 illustrates an example four-agent hGMM of the
scenario described in Section II-A. Note that the figure dis-
tinguishes two kinds of edges. Undirected edges define the
neighborhoods Nu

i within a time slice, capturing correlations
among the nodes in Nu

i at a particular time t . Directed
edges ending at i capture how past states of the neighborhood
Nd
i influence i’s present state. This distinction supports a

generalized form of potential function, πi(stNu
i
| st−1

Nd
i

), by
allowing that the conditioning nodes be different from the
nodes interdependent within a time slice. In contrast, a cascade
model of the same scenario would omit the undirected edges,
expressing the cascade functional form Pr(sti | s

t−1
Ni

). For most
of this paper, we similarly assume that Nu

i , Nd
i , and the given

Ni are the same for all i, and employ the potential function
form πi(s

t
Ni
| st−1Ni

).
Given data from the example scenario of Section II-A,

the cascade models would learn a high value for α, assum-
ing spontaneous infections, even though in the true model,
information spreads only from node to node. In contrast,
hGMMs could use the potential function of node 2 to ex-
press correlations between nodes 1 and 3 to compensate for
the missing edge (1, 3). For instance, consider neighborhood
N2 = (1, 2, 3) with history s5N2

= (s51, s
5
2, s

5
3) = (1,−1,−1),

as depicted in Figure 1. Since the potentials π(s6N2
=

(1,−1,−1) | s5N2
) and π(s6N2

= (1,−1, 1) | s5N2
) govern

how node 1 infects node 3, assigning positive values to these
potentials enables hGMMs to capture the interaction. Unlike
π(s6N2

| s5N2
), the corresponding cascade-model construct

Pr(s62 | s5N2
) cannot compensate in this way because it

inherently assumes independence among nodes in N2.
We introduce hGMMs for information diffusion in two

different forms.
1) Tabular hGMMs: The tabular hGMM tabG explicitly

specifies the potential function of each neighborhood, π(stNi
|

st−1Ni
), as a function of five features:

c(st−1Ni
), σ(stNi

, st−1Ni
), |Ni|, st−1i , sti.

For learning such forms, we treat the potential value corre-
sponding to each configuration of these features as a parame-
ter. The number of parameters thus grows polynomially with
the largest neighborhood’s size.

2) Parametric hGMMs: The parametric hGMM paG em-
ploys a functional form for potentials based on the cascade
model formula (2). We define g(sy = 1 | sY ) as a probability
measure of any uninfected node y in the set of nodes Y be-
coming infected given the current state sY : g(sy = 1 | sY ) =
α + βc(sY )/|Y |. We overload g(sY ) = g(sy = 1 | sY ), as g
is identical for all y. Let N ′i = Ni \{i} and c = σ(stN ′i

, st−1N ′i
).

The potential function of neighborhood Ni is the product of
three terms:

π(stNi
| st−1Ni

) = Pr(sti | st−1Ni
;α, β)g(st−1N ′i

;α1, β1)|c−γ|Ni||(
1− g(st−1N ′i

;α−1, β−1)
)|N ′i |−c

. (5)

The first term of (5) represents the probability of node i’s
infection, given by the cascade model (2). The second term
corresponds to nodes in N ′i that become infected at t, whereas
the final term corresponds to nodes in N ′i not infected at t.
If we assumed independence of agent states, the exponent in
the second term would simply be c, as the joint probability
of c nodes from Y becoming infected is g(sY )c. From our
study of tabG, we find that the distance of this count from a
fraction of neighborhood size provides a good way to capture
correlation among neighbor infections, hence the exponent in
the second term |c− γ|Ni|| with γ ∈ [0,∞). Here γ indicates
the degree of correlation among agent states. Thus, complete
independence of agent states results in γ = 0. Overall, the



!" !#$"!%$"

Fig. 2. A history-dependent graphical multiagent model of four nodes. Undirected edges capture correlations among nodes of the same time point. Directed
edges capture the conditioning of each node’s state on its neighborhood’s previous states: dashed arrows connect nodes from t to t+1, and solid arrows link
nodes from t− 1 to t.

paG model employs seven parameters: α, β, α1, β1, α−1,
β−1, and γ.

Our graphical multiagent model approach does not explic-
itly seek to discover missing edges, but instead takes advantage
of the GMM’s flexibility in capturing joint states to model
information diffusion on the original network.

B. Learning Graphical Structures

In the structure-learning approach, we attempt to discover
unobserved connections using diffusion observation data. We
consider two algorithms: one adapted from prior work under
a different model, and the second a straightforward greedy
learner introduced here.

1) NetInf and NetInf′ Algorithms: Gomez-Rodriguez
et al. [2010] employed the independent cascade model to
capture information diffusion, and further assumed that ev-
ery node becomes infected from exactly one other infected
neighbor node. Given a graph structure G, let T be the set of
all possible directed trees τ whose edges Eτ are a subset of
EG. A model M over G computes the likelihood of observing
the transmissions in a diffusion instance s on each tree τ ∈ T
as follows. We first describe the computation of Pr(i; s, τ):
the probability of observing node i becoming infected in s
on tree τ . For each node i such that there (uniquely) exists
an edge (j, i) ∈ τ , Pr(i; s, τ) is defined as the probability of
transmission from node j, infected at time t∗j , to node i at
time t∗i , which is a function of t∗i − t∗j . NetInf employs the
power-law and exponential waiting time models in specifying
Pr(i; s, τ), which would put it at a disadvantage when given
data from this study’s generative cascade model. Therefore,
the modified version NetInf′ replaces their definition with
Pr(i; s, τ) = β(1−β)(t

∗
i−t
∗
j−1) if t∗j < t∗i , and Pr(i; s, τ) = 0

otherwise. For each i that does not have an incoming edge in
τ , the probability of observing node i’s spontaneous infection
is Pr(i; s, τ) = α. Model M then interprets the probability
of observing s on tree τ : Pr(s; τ) =

∏
i Pr(i; s, τ). From this

the algorithm approximates the probability of observing s on
graph G as that of observing s on the maximum-likelihood
tree τs: Pr(s | G) ≈ maxτ∈T Pr(s; τ).

Starting with some initial graph G, at each step, the NetInf′

algorithm, as well as NetInf, adds an edge (i, j) that max-
imizes the log likelihood of data S: Ltree(S | G ∪ (i, j)) =∑
s∈S log(Pr(s | G ∪ (i, j)). As Ltree is monotone in graph

size, this method would produce the complete graph without a
limit K on the number of edges that can be added. Note that
α and β here have the same interpretation as in the cascade
model (1). Since NetInf′ does not learn parameters α and
β, we provide it with the parameter values used to generate
the input data. We refer to the model learned by NetInf′ as
netC.

2) MaxLInf Algorithm: We introduce a similar greedy
algorithm MaxLInf, described in pseudocode below. The result
maxC is a cascade model (2). Unlike NetInf′, the MaxLInf

algorithm learns the cascade model parameters α and β as
well as the graphical structure G′. The algorithm employs as
its objective function the average log likelihood (4) of diffusion
instances S.

Algorithm 1 MaxLInf

1: Input (G,S)
2: G′ ← G
3: Learn (α, β) that maximizes LmaxC(S | G′)
4: repeat
5: Find (i, j) 6∈ G′ maximizing LmaxC(S | G′ ∪ (i, j))
6: if ∆(i, j) = LmaxC(S | G′∪(i, j))−LmaxC(S | G′) >

0 then
7: G′ ← G′ ∪ (i, j)
8: Learn (α, β) that maximizes LmaxC(S | G′)
9: end if

10: until ∆(i, j) > 0 or ¬∃(i, j) 6∈ G′

Note that MaxLInf does not require any predetermined
constraint on the model’s complexity, since adding more
edges does not necessarily increase the likelihood L of input
diffusion observations.

3) Discussion: In the example of Section II-A, these two
learning algorithms may be able to discover the hidden edge
(1, 3), given sufficient observations. Since they are greedy,



however, they may also add spurious edges that distort their
views of the true network. For example, given some limited
data set in which the case where node 4 was infected before
node 3 occurs disproportionally frequently, they may greedily
add (3, 4) first to best explain the data, and stop before adding
(1, 3).

IV. EMPIRICAL STUDY

Our empirical study employs graphs of modest size to focus
on investigating the relative ability of structure learning and
graphical models to deal with unobserved connections. We
empirically evaluate models paG, tabG, and maxC against
baseline models C and netC on simulated data generated
from the true cascade C∗, with various graphical structures
and experiment settings. We examine their detailed prediction
performance based on the log likelihood L, aggregate pre-
diction performance captured in the skew divergence D, and
graph difference measures δ− and δ+.

A. Data Generation

Our empirical study consists of two experiment groups:
(A) stylized graphs of three to five nodes, and (B) larger graphs
of size 30 and 100. In experiment group B, we employ the
Erdos-Renyi model (ER) and the Barabasi-Albert preferential
attachment model (PA) to generate random graphs G∗ [Erdos
and Renyi, 1959, Barabási and Albert, 1999]. The ER model
randomly creates an edge between each pair of nodes with
equal probability, independently of the other edges. The PA
model constructs graphs such that the more connected nodes
are more likely to receive new connections. We generate data
from the C∗ model on the underlying graphs G∗ with time
horizon T = 30, using the α and β values that Stonedahl et al.
[2010] learned from various real-world social networks at two
different diffusion speeds: normal and fast (viral).

We uniformly randomly remove 50% of the edges from
each G∗ to generate the observable graph G, supplied as
input to all the methods tested. Whereas Gomez-Rodriguez
et al. [2010] developed and evaluated their original NetInf
algorithm without graph input, we seed the modified version
NetInf′ with the partial structure G.

We employ the log-likelihood function (4) for training mod-
els in the methods studied here, except for NetInf′. To learn
model parameters, we search for settings that maximize the
objective function using gradient descent with early stopping
and random restarts.

B. Experiment Settings

Each result data point is averaged over 10 trials. The
group A trials use 200 diffusion instances for training and
500 for testing. In experiment group B, we vary the number
of diffusion traces for training from 25 to 100, and use 200
instances for testing in each trial. For clarity, we present the
negated log likelihood measure −LM (S) for a model M ;
lower values indicate better performance. To assess aggregate
infection statistics for model M , we generate 200 diffusion
traces of length T̂ = 5 from the initial state of each given

test instance s. From these we construct the conditional dis-
tribution QM (c(sT̂ )/n | s0). Given the distributions QM , we
calculate the aggregate prediction performance for model M ,
D(QC∗ , QM | S). To establish statistical comparisons of two
models M1 and M2, we further perform bootstrapped paired t-
tests for both measures L and D. We distinguish three different
outcomes in comparison tables: M1 outperforms M2 with
p < 0.05 (black), M2 outperforms M1 with p < 0.05 (white),
and neither (gray). We investigate two variants of NetInf′,
set to induce graphs with 50% (model netC-small) and 100%
(model netC-large) more edges than the given graph G. In
addition to trials with partially observed networks (partial),
we include some fully observed cases (full) for calibration
and sanity checking.

We label our experiments to indicate the following features:
(i) coverage of the underlying graph by the given graph (partial
or full), (ii) graph family (PA or ER), (iii) graph size, (iv) fast
cascade speed in the generative model, and (v) number of input
diffusion traces (in parenthesis).

C. Results

We present results on detailed prediction performance,
measured by L, for the 5-node case in Figure 3. We used
the insights gained from analyzing the potential function
parameters for tabG in the three- and four-node cases to
construct paG, but do not report results from these cases
here. We also omit comparisons of D, δ−, and δ+, which
provide little differentiation among the models for such small
networks.
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Fig. 3. Detailed prediction performance for the 5-node graph (normal and
fast spreading speeds).

Models maxC, tabG, and paG provide better detailed
prediction performance than the baseline models C and netC,
when the input graph has missing edges. When the input graph
is fully observed, C is the correct model, and as expected pro-
vides the best predictions. In addition, the hGMMs outperform
maxC in the normal-spreading case but trail maxC in the
fast-spreading scenario. In fact, we observe that maxC con-
tains more correct edges (false negative δ−(G∗, G′) = 0.1) in



the fast spreading case than in the normal case (δ−(G∗, G′) =
0.25). As there are more spontaneous infections and fewer
inter-node transmissions in the normal case, MaxLInf may too
quickly add edges that help to explain spontaneous infections
even though these edges are not present in the underlying
graph. The statistical test results in Table I further cement
confidence in the model comparisons above.

partial-5! partial-5
-fast!

full-5! full-5-
fast!

maxC vs C!

tabG vs C!

paG vs C!

netC-small vs C!

netC-large vs C!

paG vs maxC!

TABLE I
PAIRWISE COMPARISONS OF DETAILED PREDICTIONS FOR THE 5-NODE

GRAPH. FOR M1 VS M2 BLACK INDICATES M1 OUTPERFORMS M2 WITH
p < 0.05, WHITE THE REVERSE, AND GRAY NO SIGNIFICANT DIFFERENCE

FOUND.
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Fig. 5. Graph difference measures in experiment group B for 30-node and
100-node graphs with different amounts of training data.

The results for larger graphs of 30 and 100 nodes in Figure 4
and Table II confirm that our methods in general provide better
predictions than C when there are missing edges. Since paG
is more complex than the cascade models, paG’s performance
improves as the amount of training data increases. With
sufficient data, paG emerges as the best performer, exceeding
C and notably maxC in both ER and PA graphs of 30 and
100 nodes. In fast diffusion cases, paG’s performance trails
that of maxC. As for experiment group A, we verified in
group B that C is the best model when the underlying graph
is fully observed.

Model maxC outperforms the baseline C for ER graphs,
but trails C for PA graphs. We speculate that missing edges

in PA graphs may be harder to learn, particularly for nodes
with few connections. Figure 5 suggests that as the amount of
training data increases, MaxLInf becomes more conservative
in adding edges, reflected by its relatively constant false
negative measure δ− and decreasing false positive δ+.

We do not show most of the results for NetInf′, as the
models produced by this algorithm perform relatively poorly
by our measures, despite the advantage of being given the true
cascade model’s parameter values. This discrepancy is likely a
consequence of NetInf′’s use of an objective function Ltree at
variance from our use of LM (S) for evaluation. The respective
objective functions are applicable for two different types of
network influence data: ordinal-time and snapshot [Cosley
et al., 2010]. The objective Ltree is suitable for ordinal-time
data sets, which record the time of each individual node’s
change of state. The majority of data sets, however, store
snapshots of the network state at various time periods, which
align more directly with the objective LM (S). Future work
could investigate the connection between these two objective
functions, based on recent work exploring the correspondence
between ordinal time and snapshot data [Cosley et al., 2010].

Even for ordinal data, Ltree is only an approximate measure
of the likelihood of observed infection times, and thus does
not exactly capture how information diffuses through connec-
tions. NetInf′ also requires a predetermined constraint on
the final graph’s complexity. With respect to graph difference
metrics, NetInf′ is able to discover more missing edges than
MaxLInf, resulting in a lower proportion of false negatives
δ− as depicted in Figure 4. However, NetInf′ also adds
significantly more spurious edges than MaxLInf, as reflected
by δ+. This problem worsens as NetInf′ has more freedom
to add new edges: netC-large contains many more spurious
edges than netC-small, although netC-large is basically
informed with the exact number of unobserved connections.
Moreover, whereas maxC can compensate for the learned
graph’s inaccuracy by fitting its parameters to data, netC has
to use the fixed parameters from the generative cascade model,
since the objective function Ltree is maximized when α =∞
and β = 1.

Learned parameters of paG can provide additional insights
about the underlying network. In particular, analyzing paG’s
β1 and β−1 may help to detect if the given network has unob-
served edges. Intuitively, given a fully observed network, paG
should use β solely in capturing information transmissions
facilitated by the given network, and set β1 and β−1 to near
zero. When there exist missing edges, paG may assign higher
values to β1 and β−1 to capture how information diffuses
among its seemingly unconnected neighbors. Let us define
b1 = β1/β and b−1 = β−1/β. Table III shows that both b1
and b−1 are notably higher in partially observed graphs than in
fully observed structures, confirming this intuition. However,
a more thorough examination using a wide range of measures
is needed in order to draw a sufficiently confident connection
between learned paG parameters and network structure.
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Fig. 4. Detailed predictions (left) and aggregate predictions (right) in experiment group B for ER and PA 30-node graphs with different amounts of training
data (numbers in parenthesis).

Detailed Predictions	
 maxC vs C	
 paG vs C	
 paG vs maxC	


partial-ER-30(25)	


partial-ER-30(100)	


partial-ER-30-fast(25)	


partial-ER-30-fast(100)	


partial-ER-100(25)	


partial-PA-30(25)	


partial-PA-30(100)	


Aggregate Predictions	
 maxC vs C	
 paG vs C	
 paG vs maxC	


partial-ER-30(25)	


partial-ER-30(100)	


partial-ER-30-fast(25)	


partial-ER-30-fast(100)	


partial-ER-100(25)	


partial-PA-30(25)	


partial-PA-30(100)	


TABLE II
PAIRWISE COMPARISONS OF DETAILED PREDICTIONS (LEFT) AND AGGREGATE PREDICTIONS (RIGHT) FOR EXPERIMENT GROUP B FOR ER AND PA

GRAPHS OF 30 AND 100 NODES WITH DIFFERENT AMOUNTS OF TRAINING DATA (NUMBERS IN PARENTHESIS). FOR M1 VS M2 BLACK INDICATES M1

OUTPERFORMS M2 WITH p < 0.05, WHITE THE REVERSE, AND GRAY NO SIGNIFICANT DIFFERENCE FOUND.

5 (200) 5-fast (200) ER (25) ER-fast (25)
b1 partial 2.37 1.65 4.68 1.44
b1 full 0.051 0.038 0.24 0.01
b−1 partial 3.87 3.15 2.68 1.722
b−1 full 0.02 0.01 0.03 0.015

TABLE III
PARAMETER COMPARISONS IN paG IN EXPERIMENT GROUPS A AND B

(DATA AMOUNTS IN PARENTHESES).

V. DISCUSSION

We introduce two solutions to the problem of modeling
information diffusion in networks with unobserved edges:
learning an hGMM on the given network structure (potential
learning), and directly discovering the missing connections
(structure learning). We show that our approaches can improve
prediction over existing methods in various settings of infor-
mation diffusion with a considerable number of missing edges.
With limited data, our structure-learning algorithm MaxLInf

performs best in most scenarios, except for preferential at-

tachment graphs. The hGMM approach produces superior
predictions as more data is available, while dominating the
other methods in experiments with PA structures. If structure
learning could recover the true network reliably, that would
clearly be preferred under our assumption that the actual data
is generated by the cascade model. The inevitable imperfection
of structure learning, however, opens the door to alterna-
tive model forms. By relaxing the conditional independence
structure of the cascade model, our hGMMs can capture
dependencies manifest in the data due to unobserved edges.

NetInf was originally designed for a different evaluation
measure, which accounts for its relatively poor showing in our
study. It remains possible that some ideas of that method could
be incorporated in an algorithm that learns network structures
with high predictive accuracy. Future work should explore that
possibility as well as other approaches to improve MaxLInf,
such as more effective interleaving of structure and parameter
learning. Another promising approach is to combine structure
learning with graphical models, capturing some unobserved



edges explicitly and some implicitly.
The inference complexity of paG grows exponentially

with respect to the largest neighborhood’s size. Although
this result enables paG to model medium-size systems, such
as academic co-authorship networks [Leskovec et al., 2009]
and dynamic consensus experiments [Kearns et al., 2009],
handling large social networks on the order of Facebook or
Twitter remains a challenge for future work. In one potential
approach, we can exploit the potential function’s generalized
form, πi(stNu

i
| st

Nd
i
), where the neighborhood size of stNu

i

dictates the inference complexity, while the role of st−1
Nd

i

in
the model’s complexity is negligible. In other words, we may
choose to include only nodes whose states are most likely to be
correlated in the within-time neighborhood Nu

i , while keep-
ing the conditioning neighborhood Nd

i intact. Another future
direction is to apply the mean field method for approximate
inference in graphical models, which in general generates less
accurate approximations than the currently employed method,
belief propagation [Weiss, 2001]. However, the recent success
of the mean field method in comparable settings with large
social networks containing tens of thousands of users [Shi
et al., 2009] suggests that its employment in GMMs can
potentially provide reasonably accurate results and acceptable
scalability in large domains.
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