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Abstract
State abstractions are often used to reduce the
complexity of model-based reinforcement learn-
ing when only limited quantities of data are avail-
able. However, choosing the appropriate level
of abstraction is an important problem in prac-
tice. Existing approaches have theoretical guaran-
tees only under strong assumptions on the domain
or asymptotically large amounts of data, but in
this paper we propose a simple algorithm based
on statistical hypothesis testing that comes with
a finite-sample guarantee under assumptions on
candidate abstractions. Our algorithm trades off
the low approximation error of finer abstractions
against the low estimation error of coarser abstrac-
tions, resulting in a loss bound that depends only
on the quality of the best available abstraction and
is polynomial in planning horizon.

1. Introduction
In this paper, we advance the theoretical understanding of
a fundamentally important setting in reinforcement learn-
ing (RL): sequential decision-making problems with large
state spaces but only limited amounts of data and no pre-
existing model. This is, of course, the typical setting for
many RL applications, and a number of algorithms that ex-
ploit some form of compact function approximation either
to learn a model or to directly learn value functions or poli-
cies have been applied successfully across domains from
control, robotics, resource allocation, and others. Examples
of such methods include value function approximation (Sut-
ton & Barto, 1998), policy-gradient methods (Sutton et al.,
1999), kernel RL and related non-parametric dynamic pro-
gramming algorithms (Ormoneit & Sen, 2002; Lever et al.,
2012), and pre-processing with state abstraction/aggregation
followed by standard RL algorithms (Li et al., 2006).

However, state-of-the-art theoretical analysis in this area
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mostly either (1) makes structural assumptions about the
domain (e.g., linear dynamics (Parr et al., 2008)) to allow
an RL algorithm using a fixed and finite-capacity function
approximator to guarantee bounded loss as the size of the
dataset grows to infinity, or (2) makes smoothness assump-
tions about the domain (e.g., Ormoneit & Sen, 2002) but
guarantees zero loss only when both the function approxi-
mation capacity and the dataset size go to infinity. In con-
trast, we are interested in analyzing the more realistic case
where no assumptions about the domain can be made—other
than that it can be described by a Markov decision process
(MDP)—and the dataset is finite.

In particular, we consider a scenario in which a domain ex-
pert offers a set of possible state abstractions for a given do-
main. We assume that these abstractions are finite aggrega-
tions of states; for instance, the expert may provide discrete-
valued state features, implicitly defining an abstraction that
aggregates states with identical feature values. Given a finite
amount of data, our task is to discover which abstraction
to use for computing a policy from the data. If the dataset
is large, we should prefer finer abstractions that are more
faithful to the domain (those with low approximation error),
but for smaller datasets, coarse, lossy abstractions may be
preferable because they simplify learning (low estimation
error).

To simplify our analysis, we assume the dataset is fixed
in advance. To remove the choice of RL algorithm from
our analysis, we assume certainty equivalence, i.e., we as-
sume that the agent behaves optimally with respect to the
maximum-likelihood model estimated from the data under
the chosen abstraction. When the quality of the abstrac-
tion is known, the theory of approximate homomorphisms
in MDPs bounds the loss of the certainty equivalence pol-
icy (Even-Dar & Mansour, 2003; Ravindran, 2004). How-
ever, here the quality of the abstractions is unknown, and
must itself be estimated from data. Existing theoretical
results in this setting either have exponential dependence
on the effective planning horizon (Mandel et al., 2014), or
apply to the online setting and depend on the total size of
all abstract state spaces under consideration (Ortner et al.,
2014). For our purposes the latter result is no better than
simply always choosing the finest abstraction.
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Initially, we consider choosing between two abstractions,
one of which is a refinement of the other (e.g., the finer
abstraction uses a superset of the features of the coarser
abstraction). We propose a simple algorithm, and prove a
theoretical guarantee that only depends on the better ab-
straction and is polynomial in effective planning horizon.
Then, we show how to extend our analysis to an arbitrary
set of abstractions that are successive refinements.

The algorithm we present and analyze is similar to existing
algorithms that aggregate/split states via hypothesis testing
with various state aliasing criteria (Jong & Stone, 2005;
Dinculescu & Precup, 2010; Talvitie & Singh, 2011; Hal-
lak et al., 2013). However, our analysis provides the first
finite-sample guarantee theoretically justifying this family
of methods. Previous theoretical work has assumed that at
least one of the candidate abstractions is perfect and will be
discovered asymptotically in the limit of data (e.g., Hallak
et al., 2013, Section 5). However, abstractions are usually
approximate in practice, and we need abstractions in the first
place primarily because the data is insufficient. Asymptotic
analyses offer little guidance for balancing approximation
error and estimation error in this setting. Our analysis shows
that a carefully designed hypothesis test can balance this
finite-sample tradeoff even when none of the abstractions
are perfect, and works almost as well as if the abstraction
qualities were known in advance.

The rest of the paper is organized as follows. Section 2
introduces preliminaries and defines the abstraction selec-
tion problem. Section 3 develops a bound on the loss of a
single abstraction, setting up the approximation error and
estimation error trade-off. Section 4 proposes and analyzes
our algorithm. Section 5 reviews other approaches to the
abstraction selection problem, and finally we conclude in
Section 6.

2. Preliminaries
2.1. Markov Decision Processes (MDPs)

An MDP M specifies a dynamical environment an agent
interacts with by a 5-tuple M = 〈S,A, P,R, γ〉, where S is
the state space,A is the action space, P : S×A×S → [0, 1]
is the transition probability function, R : S × A → R is
the expected reward function, and γ is the discount factor.
Actual rewards obtained by the agent can be stochastic and
are assumed to have bounded support [0, Rmax]. The agent’s
goal is to optimize its expected value, which is the sum of
discounted rewards.

A mapping π : S → A is called a (deterministic and station-
ary) policy, and specifies the way the agent behaves. We use
V πM (s) to denote the expected value of behaving according
to policy π starting in state s. The policy that maximizes the
value function V πM for all states is called an optimal policy

of M , denoted π∗M , and its value function is abbreviated as
V ∗M . Given the model M , the optimal policy can be found
via dynamic programming using the Bellman optimality
equation, namely

V ∗M (s) = max
a∈A

Q∗M (s, a), (1)

Q∗M (s, a) = R(s, a) + γ 〈P (s, a, ·), V ∗M (·)〉 , (2)

where 〈·, ·〉 denotes vector dot product and QπM is called a
Q-value function.

2.2. Abstractions for Model-Based RL

A state abstraction h is a mapping from the primitive state
space S to an abstract state space h(S). We use h(s) ∈ h(S)
to denote the abstract state that contains a particular prim-
itive state s. Following certainty equivalence, we assume
that the agent builds a model Mh

D from a dataset D under
abstraction h, and then follows the optimal policy for Mh

D.

Data The dataset D is a set of four-tuples (s, a, r, s′), col-
lected by repeatedly and independently sampling a state-
action pair (s, a) from some fixed distribution p fully sup-
ported over S ×A (i.e., p(s, a) > 0 ∀s, a), and then, given
(s, a), sampling a reward r from R and a next state s′ from
P . If some fixed exploration policy is used to collect data,
then p will correspond to the state-action occupancy distri-
bution (though the samples will not be strictly independent
in this case). For x ∈ h(S), we denote by Dx,a the restric-
tion of D to tuples whose first two elements are s ∈ h−1(x)
and a; that is, Dx,a is the portion of the dataset concerning
abstract state x and action a.

Model The model estimated from dataset D using abstrac-
tion h is Mh

D = 〈h(S), A, PhD, R
h
D, γ〉, where PhD(x, a, x′)

is the empirical likelihood of the transition (x, a)→ x′, for
x, x′ ∈ h(S) and a ∈ A, and RhD(x, a) is the empirical
average reward in (x, a). When referring to the model con-
structed using the primitive state space, we use the notation
MD, omitting the superscript.

2.3. Problem Statement

Our goal is to choose an abstraction h from a candidate set
H so as to minimize the loss of the optimal policy for Mh

D:

Loss(h,D) =

∥∥∥∥V ∗M − V π∗Mh
D

M

∥∥∥∥
∞
. (3)

Note that π∗
Mh

D
is a mapping from h(S) to A, and has to

be lifted as [π∗
Mh

D
]M : s 7→ π∗

Mh
D

(h(s)) to be evaluated in
M . For notational simplicity, we will not distinguish an
abstract policy from its lifted version as long as there is no
confusion.

For most of the paper we will be concerned with the follow-
ing assumption. Later we will discuss how to extend our
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algorithm and analysis to a more general setting.

Assumption 1. H = {hc, hf}, where finer abstraction hf
is a refinement of coarser abstraction hc, i.e., hf (s) =
hf (s′)⇒ hc(s) = hc(s

′),∀ s, s′ ∈ S.

3. Bounding the Loss of a Single Abstraction
Before proceeding to describe our solution to the abstraction
selection problem, we first establish an upper bound on
Loss(h,D) for any fixed abstraction h. This will allow us
to compare the results of our selection algorithm to the loss
bounds we could achieve if the qualities of the abstractions
were known in advance. Abstraction quality is characterized
by the following definitions.

Definition 1. Let Mh = 〈h(S), A, Ph, Rh, γ〉, where, for
all x, x′ ∈ h(S) and a ∈ A,

Ph(x, a, x′) =

∑
s∈h−1(x) p(s, a)

∑
s′∈h−1(x′) P (s, a, s′)∑

s∈h−1(x) p(s, a)
,

Rh(x, a) =

∑
s∈h−1(x) p(s, a)R(s, a)∑

s∈h−1(x) p(s, a)
.

Then Mh is said to be an approximate homomorphism of
M with transition error and reward error

εhT = max
s∈S,a∈A

∑
x′∈h(S)

∣∣∣Ph(h(s), a, x′)−
∑

s′∈h−1(x′)

P (s, a, s′)
∣∣∣,

εhR = max
s∈S,a∈A

∣∣Rh(h(s), a)−R(s, a)
∣∣ .

If εhT = εhR = 0,Mh is said to be a (perfect) homomorphism
of M , and it is known that π∗Mh is an optimal policy for M .
As εhT and εhR increase, π∗Mh may incur more loss.

Theorem 1 improves upon and tightens existing bounds
from the literature on approximate homomorphisms1 and
bisimulation (e.g., Ravindran & Barto, 2004). (Paduraru
et al. (2008) proved a bound tighter than ours by a factor
of 1/(1 − γ), but required an asymptotic assumption that
nh(D) is sufficiently large.)

Theorem 1 (Loss bound for a single abstraction). For any
abstraction h, ∀δ ∈ (0, 1), w.p. ≥ 1− δ,

Loss(h,D) ≤ 2

(1− γ)2
(

Appr(h) + Estm(h,D, δ)
)

where

Appr(h) = εhR +
γRmaxε

h
T

2(1− γ)
,

1In general, approximate homomorphisms can incorporate ac-
tion aggregation/permutation, but in this paper we only consider
aggregation in the state space.

Estm(h,D, δ) =
Rmax

1− γ

√
1

2nh(D)
log

2|h(S)||A|
δ

,

nh(D) = min
x∈h(S),a∈A

|Dx,a|.

The proof is deferred to Appendix A2. The bound consists of
two terms, where the first increases with the approximation
parameters (εhT , ε

h
R) but is independent of the datasetD, and

the second has no dependence on εhT or εhR, but depends on
the abstraction via nh(D), the minimal number of visits to
any abstract state-action pair, and |h(S)|. The first term is
small for accurate abstractions (which have small (εhT , ε

h
R)),

while the second term is small for compact abstractions
(which have small |h(S)| and large nh(D)).

Our goal in this paper is to select from the candidate set
H an abstraction achieving the lowest loss, and we can use
the bound in Theorem 1 as a proxy for that loss. (This is a
common approach in existing work on abstraction selection
as well as machine learning in general; see Section 5 for
details.) If the size of the dataset is very small, the bound
suggests that we should select a coarse abstraction to reduce
estimation error. However, as the size of D grows, nh(D)
increases, and the second term goes to zero while the first
remains constant, implying that finer and finer abstractions
will in general become preferable (see Jiang et al. (2014)
for an empirical illustration). Under Assumption 1, then,
the crucial question is: How much data should we require
before selecting hf over hc?

If εhT and εhR were known for both abstractions, we could
simply calculate an appropriate boundary from Theorem 1.
However, in practice, εhT and εhR are unknown. Nevertheless,
we will show that our algorithm can approximately estimate
this boundary from data. In particular, we will use D to
statistically test whether Q∗

Mhf
and Q∗Mhc are equal (when

lifted); in general, we will reject this hypothesis after we
obtain a sufficient amount of data. Perhaps surprisingly,
our analysis shows that the point at which this rejection
first occurs is almost the same (in the appropriate technical
sense) as the point at which hf becomes preferable to hc
(see Figure 1 for an illustration). Thus, we will use this
hypothesis test to define a simple algorithm for abstraction
selection that is near-optimal with respect to Theorem 1.

4. Proposed Algorithm and Theoretical
Analysis

Before proposing our algorithm, we first define the operators
BhD and Bh.

2All appendices mentioned in this paper are in-
cluded in an extended version available at https:
//sites.google.com/a/umich.edu/nanjiang/
icml2015-abstraction.pdf.

https://sites.google.com/a/umich.edu/nanjiang/icml2015-abstraction.pdf
https://sites.google.com/a/umich.edu/nanjiang/icml2015-abstraction.pdf
https://sites.google.com/a/umich.edu/nanjiang/icml2015-abstraction.pdf
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Mhc

D is better | M
hf

D is better
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ |D|
Null accepted by D | Null rejected by D

Figure 1. Upper part: The preferred abstraction changes as
dataset size grows beyond some threshold. Lower part: Our
algorithm uses the dataset to perform a hypothesis test; when
dataset size exceeds some threshold, the null hypothesis will be
rejected. We show that the two thresholds have bounded difference,
regardless of hc and hf .

Definition 2. Given dataset D and abstraction h, BhD :
RS×A → RS×A is defined as follows. For any Q-value
function Q ∈ RS×A,

(BhDQ)(s, a) =

∑
(r,s′)∈Dh(s),a

(r + γVQ(s′))

|Dh(s),a|
,

where VQ(s′) = maxa′∈AQ(s′, a′). We define Bh as

(BhQ)(s, a) =

∑
s′:h(s′)=h(s) p(s

′, a) · (BQ)(s′, a)∑
s′:h(s′)=h(s) p(s

′, a)
,

where B is the Bellman optimality operator for M , namely
(BQ)(s, a) = R(s, a) + γ 〈P (s, a, ·), VQ(·)〉.

The operator BhD is a variation of the Bellman optimality
operator for Mh

D, and Bh is the same for Mh. It is not
hard to verify that [Q∗

Mh
D

]M and [Q∗Mh ]M are, respectively,

fixed points of BhD and Bh (recall that [·]M is the lifting
operation).

With these definitions, we propose Algorithm 1. It computes
a particular statistic using D, and then selects hf if and only
if the statistic exceeds a threshold.

Algorithm 1 ComparePair(D,H, δ)
assertH = {hc, hf} satisfies Assumption 1
let Q = [Q∗

Mhc
D

]M

if ∥∥∥Bhf

D Q−Q
∥∥∥
∞
≥ 2 Estm(hf , D, δ/3) (4)

then output hf , else output hc

4.1. Intuition of the Algorithm

Before formally analyzing Algorithm 1, we first present an
intuitive explanation for its behavior and show that it makes
sensible decisions in various scenarios. The central idea is
to statistically test whether

[Q∗
Mhf

]M = [Q∗Mhc ]M , (5)

which is equivalent (see Lemma 1 and Appendix C) to∥∥Bhf [Q∗Mhc ]M − [Q∗Mhc ]M
∥∥
∞ = 0. (6)

The LHS of Equation (6) is effectively the Bellman resid-
ual of Q∗Mhc when treating Mhf as the true model. Since
the required quantities are not known in advance, we ap-
proximate them from data and check whether the measured
error exceeds a positive rejection threshold. This gives the
selection criterion of Equation (4).

Consider two extreme cases. First, when Mhc is a perfect
homomorphism of Mhf , Equation (5) always holds and we
never reject the null hypothesis, thus our algorithm always
returns hc. This makes sense, since the abstractions have
equal approximation error but hc has lower estimation error.
On the other hand, when Equation (5) does not hold, given
enough data our test will reject the null hypothesis and select
hf . Again, this is sensible since hf has lower approximation
error, and in the limit of data the estimation error for both
abstractions is zero.

Of course, the usual situation is that Equation (5) does not
hold but D is finite. Suppose in this case that Mhf is a
perfect homomorphism of M ; then Algorithm 1 can be
seen as approximately comparing the bound in Theorem 1
for hf and hc, as follows. Since Appr(hf ) = 0 and the
estimation errors are computable from known quantities,
the only unknown quantity needed for this comparison is
Appr(hc). In principle, Appr(hc) is a function of M and
Mhc , and could be approximated from data using MD and
Mhc

D ; however, the estimate of MD will be poor when |S| is
large (which is why we require abstraction in the first place).
Instead, since hf is exact by assumption, we can compare
Mhc directly to Mhf . The LHS of Equation (4) provides
this estimate of Appr(hc); see the left panel of Figure 2 for
a visual illustration.

In the most general scenario, where the dataset is finite and
both abstractions are approximate, we need a reliable es-
timate of Appr(hc) − Appr(hf ) to make the comparison
using Theorem 1, but we no longer have a statistically effi-
cient way of estimating Appr(hf ) or Appr(hc). However,
our analysis shows that even when Mhf is not homomor-
phic to M , the three models can be seen as roughly “on
the same line”, as visualized in the right panel of Figure 2.
As a result, we can use the dashed line—a measure of dis-
tance between Mhf and Mhc—to approximate the desired
difference between the solid lines. This idea is the basis
for Lemma 4, which is a key ingredient in the theoretical
guarantee for Algorithm 1.

4.2. Theoretical Analysis

We next state the formal guarantee of our algorithm.
Theorem 2. Given dataset D, ifH satisfies Assumption 1,
the loss of the abstraction selected by Algorithm 1 is
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Figure 2. Left panel: When Mhf is a perfect homomorphism of
M , we can obtain the true approximation error of Mhc (solid line)
by computing its approximation error w.r.t. Mhf (dashed line).
The two notions of approximation are equivalent, but the latter is
statistically easier to estimate. Right panel: When Mhf is also
approximate, our theoretical analysis shows that M , Mhf , and
Mhc are always roughly “on the same line”, so that the approxi-
mation error of Mhc w.r.t. Mhf (dashed line) is a good proxy for
the difference between the true approximation errors of Mhc and
Mhf (solid lines).

bounded by

2

(1− γ)2
min

{
Appr(hf ) +

3− γ
1− γ

Estm(hf , D, δ/3),

3− γ
1− γ

Appr(hc) +
1 + γ

1− γ
Estm(hc, D, δ/3)

}
(7)

with probability at least 1− δ.

Equation (7) is the minimum of two terms. The first is
nearly (up to a factor of O(1/(1−γ))) the loss bound of hf
using Theorem 1, and the second is nearly the loss bound of
hc. Recall that Theorem 1 is our proxy for loss; therefore,
the loss bound for Algorithm 1 is as good as the loss bound
of the better abstraction up to a factor linear in 1/(1− γ).
Compared to Theorem 1, the estimation error terms in Equa-
tion (7) have increased from Estm(·, ·, δ) to Estm(·, ·, δ/3);
however, this has little influence as Estm(·, ·, δ) depends
only square-root logarithmically on 1/δ.

Claim 1 (Theorem 2 is near-optimal w.r.t. Theorem 1).
Equation (7) is at most the minimum of the bound in Theo-
rem 1 as applied to hf and to hc, up to a factor of O( 1

1−γ ).

We will prove Theorem 2 with the help of the following
lemmas. Their proofs are deferred to Appendices A and B.

Lemma 1. For any Bellman optimality operators B1, B2

(both operating on RS×A and having contraction rate γ),
letting Q1 and Q2 be their respective fixed points, we have

‖Q1 −Q2‖∞ ≤
‖B1Q2 −Q2‖∞

1− γ
.

Lemma 2. ConsiderBhD as defined in Definition 2. For any
h ∈ H and deterministic Q : RS×A with bounded range
[0, Rmax/(1− γ)], w.p. ≥ 1− δ,∥∥BhDQ−BhQ∥∥∞ ≤ Estm(h,D, δ).

Lemma 3. Let B be the Bellman optimality operator of M .
For anyQ : Rh(S)×A with bounded range [0, Rmax/(1−γ)],
we have ∥∥B[Q]M −Bh[Q]M

∥∥
∞ ≤ Appr(h).

Lemma 4. ∀Q : RS×A with bounded range [0, Rmax/(1−
γ)],

‖BQ − BhcQ
∥∥
∞

≤
∥∥BQ−BhfQ

∥∥
∞ +

∥∥BhfQ−BhcQ
∥∥
∞

≤ 3
∥∥BQ−BhcQ

∥∥
∞ .

We briefly sketch the proof of Theorem 2 before proceeding
to the details. Recall that our goal is to determine which
abstraction has a smaller loss bound according to Theorem 1;
that is, we want to check whether

Appr(hc)−Appr(hf )

≥ Estm(hf , D, δ)− Estm(hc, D, δ),

where the LHS is unknown. To approximate it, we first use
Lemma 4, which implies that

‖B[Q∗Mhc ]M − [Q∗Mhc ]M‖∞ (8)

≈
∥∥B[Q∗Mhc ]M −Bhf [Q∗Mhc ]M

∥∥
∞ (9)

+
∥∥Bhf [Q∗Mhc ]M − [Q∗Mhc ]M

∥∥
∞ . (10)

Expression (10) is a quantity closely related to the statis-
tic computed by our algorithm (see Equation (6)), so to
establish that the statistic is a good proxy for Appr(hc)−
Appr(hf ), we will show that

Appr(hc)−Appr(hf )

≈ Expression (8)− Expression (9).

Expression (8) is easy to deal with, as the Bellman residual
of [Q∗Mhc ]M is a better characterization of the approxima-
tion error of hc than Appr(hc).3 Expression (9) is a bit
trickier: we know it is not an overestimate, as Lemma 3
guarantees that it is upper bounded by Appr(hf ). However,
there exists the risk of underestimation: for instance, if hc
aggregates all primitive states into a single abstract state,
then [Q∗Mhc ]M is a constant function and Expression (9)
only reflects the reward error of hf , and will not change
regardless of the transition error.

3In this discussion we do not strictly distinguish between
approximate homomorphism (Appr(h)) and approximate Q∗-
irrelevance (the Bellman residual of Q∗

Mh ) in characterizing the
approximation error of h. Technical details can be found in proofs
and we point the readers to Li et al. (2006) for further reading.
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To deal with this, we consider two cases separately. First,
when hc is the better abstraction, we have [Q∗Mhc ]M ≈ Q∗M ,
hence

Expression (9) ≈
∥∥BQ∗M −BhfQ∗M

∥∥
∞ . (11)

According to Lemma 1, the RHS of Equation (11) is an
alternative characterization of the approximation error of
hf , so in this case we will not underestimate too much. On
the other hand, when hf is better, underestimation of its
approximation error only biases our selection towards the
better abstraction, and is not a concern.

Below we include part of the proof of Theorem 2.

Proof of Theorem 2. Using Lemma 2, w.p. at least 1 − δ
we have∥∥∥Bhf

D [Q∗
Mhf

]M −Bhf [Q∗
Mhf

]M

∥∥∥
∞
≤ Estm(hf , D, δ/3),

and similar concentration bounds hold for Bhc

D [Q∗Mhc ]M

and Bhf

D [Q∗Mhc ]M simultaneously.

Regardless of which abstraction the algorithm selects, we
can always bound its loss using Theorem 1, so it suffices to
show that we can bound the loss of the selected abstraction
in terms of the other. We consider each possibility in turn.

If the algorithm outputs hc, we can bound the loss of hc by
parameters of hf :

Loss(hc, D)

≤ 2

(1− γ)2

∥∥∥B[Q∗
Mhc

D

]M − [Q∗
Mhc

D

]M

∥∥∥
∞

(12)

≤ 2

(1− γ)2

(∥∥∥B[Q∗
Mhc

D

]M −B
hf

D [Q∗
Mhc

D

]M

∥∥∥
∞

+
∥∥∥Bhf

D [Q∗
Mhc

D

]M − [Q∗
Mhc

D

]M

∥∥∥
∞

)
(13)

≤ 2

(1− γ)2

(∥∥∥B[Q∗Mhc ]M −B
hf

D [Q∗Mhc ]M

∥∥∥
∞

+ 2 Estm(hf , D, δ/3)

+ 2γ
∥∥∥[Q∗Mhc ]M − [Q∗

Mhc
D

]M

∥∥∥
∞

)
(14)

≤ 2

(1− γ)2

(∥∥B[Q∗Mhc ]M −Bhf [Q∗Mhc ]M
∥∥
∞

+ 3 Estm(hf , D, δ/3)

+
2γ

1− γ
Estm(hc, D, δ/3)

)
(15)

≤ 2

(1− γ)2

(
Appr(hf ) +

3− γ
1− γ

Estm(hf , D, δ/3)

)
.

Equation (12) is a standard loss bound using the Bellman
residual. In Equation (13), we use the triangle inequality
to introduce the statistic computed by our algorithm. In
the first term of Equation (14), we replace [Q∗

Mhc
D

]M by

[Q∗Mhc ]M using the fact that the Bellman operators have
contraction rate γ (‖BQ−BQ′‖∞ ≤ γ ‖Q−Q′‖∞), and
in the second term we use the fact that the algorithm chose
hc, and thus Equation (4) did not hold. Next, we apply
the probabilistic guarantees stated at the beginning of the
proof to remove the D subscripts on operators and Q-value
functions, and finally the Appr(hf ) term appears thanks to
Lemma 3.

The remainder of the proof uses similar techniques and
appears in Appendix B.

4.3. Extension to Arbitrary-Size Candidate Sets

We briefly discuss how to extend the above algorithm and
analysis to the following setting.

Assumption 2. H = {h1, . . . , h|H|}, where hi is a refine-
ment of hi−1 for i = 2, . . . , |H|.

This is the setting considered by Hallak et al. (2013), and
H = {hc, hf} is the special case where |H| = 2. A natural
idea is to use Algorithm 1 as a subroutine, successively com-
paring the best abstraction seen so far with the remaining
elements in H in some order. The crucial questions are:
(1) in what order should we examine the abstractions (e.g.,
coarse-to-fine, fine-to-coarse, or a random/adaptive order),
and (2) can we adapt the analysis in Section 4.2 to show that
the selected abstraction is still near-optimal w.r.t. Theorem 1
for larger H? It turns out that, if we examine abstractions
in order from coarse to fine, near-optimality is preserved.
Algorithm 2 provides a detailed specification for the process,
and Theorem 3 gives the resulting guarantee.

Algorithm 2 CompareSequence(D,H, δ)
assertH = {h1, . . . , h|H|} satisfies Assumption 2
let ĥ = h1 // start with the coarsest abstraction
for i=2 to |H| do
ĥ = ComparePair(D, {ĥ, hi}, 2δ/|H|2)

end for
output ĥ

Theorem 3. IfH satisfies Assumption 2 and has constant
size, then Algorithm 2 is near-optimal w.r.t. Theorem 1, i.e.,
the loss of the selected abstraction is bounded w.p. at least
1− δ by

min
h∈H

(
Appr(h) + Estm

(
h,D, 2δ/(3|H|2)

))
up to a factor polynomial in 1/(1− γ).
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The biggest challenge in generalizing our analysis to the
case of |H| > 2 is that the two sides of Equation (7) have dif-
ferent semantics—that is, the LHS is loss, while the RHS is
approximation/estimation error. This means that successive
comparisons cannot (naively) apply the bound transitively.
Recall that, in the proof of Theorem 2, we considered the se-
lection of hc and the selection of hf separately. It turns out
that we can modify the analysis to obtain consistent, tran-
sitive semantics, but only for the case where hc is selected.
This is enough for near-optimality as long as we order the
abstractions from coarse to fine, avoiding the bad case of
problematic abstractions. For a more detailed discussion
and a proof sketch of Theorem 3, see Appendix C.

5. Related Work
In this section we review prior theoretical work that is rel-
evant to the abstraction selection problem. The discussion
is summarized in Table 1. For recent empirical advances
on the problem, we refer the reader to Konidaris & Barto
(2009), Cobo et al. (2014), and Seijen et al. (2014).

5.1. Hypothesis Test Based Algorithms

Jong & Stone (2005) (row 1) considered the factored MDP
setting, where state is determined by a vector of features
and an abstraction is a subset of those features. They pro-
posed a selection procedure that statistically tests whether
the optimal policy depends on certain features, aiming to
aggregate states having the same optimal action and thus cre-
ate a π∗-irrelevance abstraction. However, π∗-irrelevance
abstractions can yield sub-optimal policies when applying
Q-learning even with infinite data, so this method is not
statistically consistent (Li et al., 2006, Theorem 4).

Hallak et al. (2013) (row 2), in the work most closely related
to ours, considered the setting of Assumption 2 and sug-
gested comparing hc and hf by statistically testing whether
Mhc is a perfect homomorphism of Mhf using D. They
showed theoretically that their procedure will asymptotically
identify any abstraction that is a perfect homomorphism of
M . However, if all the candidate abstractions are approxi-
mate, or the dataset is finite, their analysis does not apply.

Nevertheless, there are interesting similarities between our
Algorithm 1 and the method of Hallak et al. (2013): both
algorithms test relative properties of hc and hf so as to
avoid the large primitive representation, and both choose the
coarser abstraction unless a statistical test rejects the null
hypothesis that hc and hf are (in some sense) equivalent.
However, our analysis shows that this type of algorithm
can still have provable guarantees even when the data are
insufficient and the abstractions are approximate—in fact, it
can be near-optimal with respect to a loss bound.

There are several important technical differences between

our algorithm and that of Hallak et al. (2013): (1) We use
Q∗-irrelevance as the equivalence criterion in our hypothe-
sis test, whereas they use homomorphism; Q∗-irrelevance is
a strictly more general relationship than homomorphism (Li
et al., 2006, Theorem 2) that avoids the problematic L1

norm as a characterization of estimation error (Maillard
et al., 2014) and enables convenient mathematical tools for
finite sample analysis (e.g., the BhD operator). (2) We fully
specify the rejection threshold for the hypothesis test (up to
the probability guarantee δ) without introducing additional
hyperparameters, while in their work the rate of threshold
decay as the dataset grows is left to the practitioner. This
choice can have a significant impact on the transient behav-
ior of the algorithm.

5.2. Reduction to Offline Policy Evaluation

Inspired by model selection techniques in supervised
learning, abstractions can also be selected using a cross-
validation procedure: if a second dataset D′ is given inde-
pendently of D, then we can evaluate the policies computed
under different abstractions from D (i.e., {π∗

Mh
D

: h ∈ H})
on D′. This turns the abstraction selection problem into an
offline policy evaluation problem, and the loss guarantee
depends entirely on the accuracy of the offline evaluation
estimator. Below we briefly discuss two commonly used
estimators; see more details in Paduraru (2013).

5.2.1. IMPORTANCE SAMPLING ESTIMATOR

When D′ comprises trajectories sampled according to a
known stochastic policy, importance sampling (row 3) can
be used to obtain an unbiased estimate of the value, with
respect to the initial state distribution in the data, of the
policy under evaluation (Precup et al., 2000). The vari-
ance of this estimate has no dependence on the size of the
primitive state space, but in general has exponential depen-
dence on the horizon (Mandel et al., 2014): to evaluate a
deterministic policy π, the estimator must restrict itself to
trajectories in which the action choice at each time step ex-
actly agrees with π. If, for instance, the sampled trajectories
are L = 1/(1 − γ) steps long and generated by choosing
uniformly random actions, then the probability of any single
trajectory being useful is 1/|A|L, hence the proportion of
data available for estimation decreases exponentially with
L. Even so, importance sampling can be practical and has
been successfully applied to real-world problems with very
short horizons (Li et al., 2011; Mandel et al., 2014).

5.2.2. MODEL-BASED ESTIMATOR

For problems with longer horizons, an alternative is the
model-based estimator (row 4), which uses D′ to construct
a model MD′ (without abstraction) and then evaluates a
policy π by computing V πMD′

. However, this approach is not
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Table 1. Comparison of algorithms that can be applied to the abstraction selection problem. If an entry exhibits a desired property (which
we judge by generality and practicality), we mark it as bold. In the first row we provide the properties of model-based RL with primitive
representation as a baseline to compare against.

Finite Sample Guarantee Assumption Tuning Optimization
Dependence on
Representation

Dependence
on Horizon

on Candidate
Abstractions

Hyperparameters Objective

No Abstraction |S| Polynomial - - -
1.Jong & Stone (2005) [No guarantee] Subsets of

state features
Noa -

2.Hallak et al. (2013) [Only asymptotic guarantee] Successive re-
finements

Statistical test thresh-
old as a function of
sample size

Coarseness of
perfect homo-
morphisms

3.Importance Sampling No Exponential No No Loss
4.Model-based Estimator |S| Polynomial No No Loss
5.Farahmand &
Szepesvári (2011)

Size of regres-
sor abstraction

Polynomial No Choice of regressor
abstraction

Bellman resid-
ual loss bound

Our method Size of best ab-
straction

Polynomial Successive re-
finements

No Approximate
homomorphism
loss bound

aTheir algorithm has a single parameter which is the p-value threshold for hypothesis test, and they suggest using 0.05 in practice. In
fact, all the methods listed in this table except the first 3 rows require a similar confidence level parameter.

useful in our setting, since MD′ is itself hard to estimate:
the bound on the estimation error

∥∥∥V πM − V πMD′

∥∥∥
∞

depends
on the minimal state visitation number, and therefore on
|S| (Mannor et al., 2007; Paduraru et al., 2008).

Alternatively, the validation model can be estimated under
an abstraction to avoid the dependence on |S|, but this so-
lution is circular: if we knew a good abstraction for policy
evaluation, we could have used it to obtain a good policy in
the first place. For instance, Farahmand & Szepesvári (2011)
(row 5) proposed an offline policy evaluation procedure that
selects value functions (from which policies are computed)
based on their estimated Bellman residuals, which are es-
timated with the help of an additional regressor that learns
BQ from data for the candidate Qs. The theoretical guaran-
tee for this method depends on the accuracy of the regressor
(see their Theorem 2, especially the dependence on b̄k). For
the reason noted above, this is problematic in our setting:
the abstractions are themselves regressors (where BhDQ is
the function being learned), so if we knew how to select a
good abstraction for regression, then the same one could
have been used to learn a policy instead.

5.3. The Online Setting

Ortner et al. (2014) proposed a representation (abstraction)
selection algorithm in the online exploration and exploita-
tion setting that tests whether a representation faithfully pre-
dicts the return of a roll-out trajectory. Their regret bound
depends on the sum of sizes of the state spaces for all repre-

sentations under consideration (see their Theorem 3). While
the online setting has additional complications, in our offline
setting this bound is loose and can be improved simply by
selecting the finest available abstraction. On the other hand,
although our algorithm assumes structure in the candidate
abstractions (they must be successive refinements), our loss
bound depends only on the best abstraction.

6. Conclusion
In this paper we considered the abstraction selection prob-
lem in the setting where the amount of data is limited and
candidate abstractions may all be approximate. As far as
we know, there is no provable algorithm that achieves sig-
nificantly better dependence on representation (than the
baseline of the primitive state space) without blowing up
the dependence on horizon exponentially, suggesting that
the problem is generally hard. Our work showed that, when
the candidate abstractions satisfy certain refinement assump-
tions, a simple hypothesis test based algorithm can select
abstractions with a loss bound only depending on the best
abstraction up to a factor polynomial in horizon. The the-
oretical analysis is fundamentally based on the approxima-
tion/estimation error trade-off with finite data, departing
from the asymptotic analysis of previous work that only
considered perfect abstractions in the limit of data. Possible
directions for future work include relaxing the assumption
(e.g., to the setting of feature selection), and developing
heuristic algorithms based on the algorithmic ideas provided
in this paper.
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A. Proof of Theorem 1
We first prove Lemma 1, 2 and 3.

Proof of Lemma 1. ∀s ∈ S, a ∈ A,

‖Q1 −Q2‖∞
= ‖B1Q1 −B1Q2 +B1Q2 −Q2‖∞
≤ γ ‖Q1 −Q2‖∞ + ‖B1Q2 −Q2‖∞ .

Hence the bound follows. Note that this result subsumes
the standard Bellman residual bound, when we let Q2 be an
approximate Q-value function (e.g. [Q∗Mh ]M , where B2 =
Bh), and Q1 be the true optimal value function Q∗M (where
B1 = B). Furthermore, thanks to the definition of Bh, we
can use this bound in an alternative form, namely bounding∥∥Q∗M − [Q∗Mh ]M

∥∥
∞ by

∥∥Q∗M −BhQ∗M∥∥∞. We will use
both forms (and sometimes treating Mh as the true model)
throughout the theoretical analysis depending on the context.

Proof of Lemma 2. According to Definition 2,
(BhDQ)(s, a) is the average of r + γVQ(s′) for (r, s′) ∈
Dh(s),a, which are independent random variables with
bounded range [0, Rmax/(1 − γ)]. When |Dh(s),a| > 0,4

it is straight-forward to verify that for any deterministic
Q, (BhQ)(s, a) = ED

{
(BhDQ)(s, a)

∣∣ |Dh(s),a| > 0
}

.
Hence, Hoeffding’s inquality applies, ∀t > 0,

PD
{∣∣∣(BhDQ)(s, a)− (BhQ)(s, a)

∣∣∣ ≥ t}
≤ 2 exp

(
− 2t2|Dx,a|
R2

max/(1− γ)2

)
.

Now we find t that makes the inequality hold for all
(s, a) ∈ S ×A simultaneously w.p. at least 1− δ via union
bound. Note, however, that BhDQ (and BhQ) takes constant
value among states aggregated by h, hence we only have
|h(S)||A| events in the union bound instead of |S||A| ones.
The t that satisfies our requirement turns out to be

t =
Rmax

1− γ

√
1

2nh(D)
log

2|h(S)||A|
δ

= Estm(h,D, δ),

and this completes the proof.

Proof of Lemma 3. ∀s ∈ S, a ∈ A,∣∣(B[Q]M )(s, a)− (Bh[Q]M )(s, a)
∣∣

=
∣∣∣R(s, a) + γ

〈
P (s, a, ·), [VQ]M (·)

〉
−Rh(h(s), a)− γ

〈
Ph(h(s), a, ·), VQ(·)

〉∣∣∣
4When |Dh(s),a| = 0, nh(D) = 0 and the RHS of the bound

goes to infinity, which promises nothing and is always correct.

=
∣∣∣R(s, a) + γ

〈 ∑
s′∈h−1(·)

P (s, a, s′), VQ(·)− Rmax

2(1− γ)

〉
−Rh(h(s), a)− γ

〈
Ph(h(s), a, ·), VQ(·)− Rmax

2(1− γ)

〉∣∣∣
≤ εhR + εhT

Rmax

2(1− γ)
= Appr(h).

This completes the proof.

Proof of Theorem 1. Let [Q∗
Mh

D
]M denote Q∗

Mh
D

lifted to
M , namely [Q∗

Mh
D

]M (s) = Q∗
Mh

D
(h(s)). We have,

∥∥∥∥V ∗M − V π∗Mh
D

M

∥∥∥∥
∞

≤ 2

1− γ

∥∥∥Q∗M − [Q∗Mh
D

]M

∥∥∥
∞

(Singh & Yee, 1994)

≤ 2

1− γ

(
‖Q∗M − [Q∗Mh ]M‖∞ +

∥∥∥[Q∗Mh ]M − [Q∗Mh
D

]M

∥∥∥
∞

)
=

2

1− γ

(
‖Q∗M − [Q∗Mh ]M‖∞ +

∥∥∥Q∗Mh −Q∗Mh
D

∥∥∥
∞

)
.

According to Lemma 3, the first term in the bracket can be
bounded as:

‖Q∗M − [Q∗Mh ]M‖∞ ≤
∥∥B[Q∗Mh ]M −Bh[Q∗Mh ]M

∥∥
∞

1− γ

≤ Appr(h)

1− γ
.

For the second term, we use Lemma 1 by letting B1 = Bhf

andB2 = B
hf

D , and then apply Lemma 2: w.p. at least 1−δ,

∥∥∥Q∗Mh −Q∗Mh
D

∥∥∥
∞
≤
∥∥Bh[Q∗Mh ]M −BhD[Q∗Mh ]M

∥∥
∞

1− γ

≤ Estm(h,D, δ)

1− γ
.

Combining the bounds for the two terms and the theorem
follows.

B. Proof of Theorem 2
We first prove the remaining Lemma.

Proof of Lemma 4. The left inequality is trivial from the
triangular inequality. To prove the right inequality,
we bound

∥∥BQ−BhfQ
∥∥
∞ and

∥∥BhfQ−BhcQ
∥∥
∞ by∥∥BQ−BhcQ

∥∥
∞ separately. The key is to notice that, for

any x ∈ hf (S), (BhfQ)(x, a) is always a convex average
of

{(BQ)(s, a) : s ∈ h−1f (x)}.
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We first show
∥∥BQ−BhfQ

∥∥
∞ ≤ 2

∥∥BQ−BhcQ
∥∥
∞.

Notice that there exist s, s′ ∈ S, a ∈ A s.t. hf (s) = hf (s′)
and

|(BQ)(s, a)− (BQ)(s′, a)| ≥
∥∥BQ−BhfQ

∥∥
∞ .

Using the same argument on hc, it is obvious that∥∥BQ−BhcQ
∥∥
∞

≥ max
hc(s)=hc(s

′)
a∈A

|(BQ)(s, a)− (BQ)(s′, a)| / 2

≥ max
hf (s)=hf (s

′)
a∈A

|(BQ)(s, a)− (BQ)(s′, a)| / 2

≥
∥∥BQ−BhfQ

∥∥
∞ / 2,

hence the bound follows.

Next we show
∥∥BhfQ−BhcQ

∥∥
∞ ≤

∥∥BQ−BhcQ
∥∥
∞.

Consider the state-action pair that achieves the max norm
of
∥∥BhfQ−BhcQ

∥∥
∞, i.e.∣∣(BhfQ)(s, a)− (BhcQ)(s, a)

∣∣ =
∥∥BhfQ−BhcQ

∥∥
∞ .

Since (BhfQ)(s, a) is a convex average of {(BQ)(s′, a) :
hf (s′) = hf (s)}, there always exists s′ : hf (s′) = hf (s)
such that (BQ)(s′, a) ≥ (BhfQ)(s, a), and s′′ : hf (s′′) =
hf (s) such that (BQ)(s′′, a) ≤ (BhfQ)(s, a). Note that
(BhcQ)(s, a) = (BhcQ)(s′, a) = (BhcQ)(s′′, a), hence
either ∣∣(BQ)(s′, a)− (BhcQ)(s′, a)

∣∣
or ∣∣(BQ)(s′′, a)− (BhcQ)(s′′, a)

∣∣
will be no less than∣∣(BhfQ)(s, a)− (BhcQ)(s, a)

∣∣,
which implies that∥∥BhfQ−BhcQ

∥∥
∞ ≤

∥∥BQ−BhcQ
∥∥
∞ .

This completes the proof.

Proof of Theorem 2 (continued). Similarly, if the algo-
rithm outputs hf ,

Loss(hf , D)

≤ 2

1− γ

(∥∥∥Q∗M − [Q∗
Mhf

]M

∥∥∥
∞

+

∥∥∥∥[Q∗
Mhf

]M − [Q∗
M

hf
D

]M

∥∥∥∥
∞

)

≤ 2

(1− γ)2

(∥∥BhfQ∗M −BQ∗M
∥∥
∞

+ Estm(hf , D, δ/3)

)
(16)

≤ 2

(1− γ)2

(∥∥Bhf [Q∗Mhc ]M −B[Q∗Mhc ]M
∥∥
∞

+ 2γ ‖Q∗M − [Q∗Mhc ]M‖∞ + Estm(hf , D, δ/3)

)

≤ 2

(1− γ)2

(
3
∥∥Bhc [Q∗Mhc ]M −B[Q∗Mhc ]M

∥∥
∞

−
∥∥Bhf [Q∗Mhc ]M −Bhc [Q∗Mhc ]M

∥∥
∞

+
2γ

1− γ
‖B[Q∗Mhc ]M − [Q∗Mhc ]M‖∞

+ Estm(hf , D, δ/3)

)

≤ 2

(1− γ)2

(
3− γ
1− γ

‖B[Q∗Mhc ]M − [Q∗Mhc ]M‖∞

−
∥∥∥Bhf

D [Q∗Mhc ]M − [Q∗Mhc ]M

∥∥∥
∞

+ 2 Estm(hf , D, δ/3)

)

≤ 2

(1− γ)2

(
3− γ
1− γ

‖B[Q∗Mhc ]M − [Q∗Mhc ]M‖∞

−
∥∥∥Bhf

D [Q∗
Mhc

D

]M − [Q∗
Mhc

D

]M

∥∥∥
∞

+ 2 Estm(hf , D, δ/3)

+ (1 + γ)
∥∥∥[Q∗

Mhc
D

]M − [Q∗Mhc ]M

∥∥∥
∞

)

≤ 2

(1− γ)2

(
3− γ
1− γ

∥∥B[Q∗Mhc ]M −Bhc [Q∗Mhc ]M
∥∥
∞

+
1 + γ

1− γ
Estm(hc, D, δ/3)

)
(17)

=
2

(1− γ)2

(
3− γ
1− γ

Appr(hc) +
1 + γ

1− γ
Estm(hc, D, δ/3)

)
.

The derivation is similar to the previous one, with a few
small changes. In Equation (16), instead of the Bellman
residual we use Lemma 1 to bound the value difference.
We also replace Q∗M with [Q∗Mhc ]M , and use Lemma 4 to
introduce a term similar to the statistic computed by the algo-
rithm. Then, using the probabilistic guarantees stated at the
beginning, we obtain exactly that statistic, and bound it us-
ing Equation (4). Finally, Appr(hc) appears from Lemma 3
and Estm(hc) from the probabilistic guarantees.

C. Proof Sketch of Theorem 3
We first prove a lemma on Bellman residuals.
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Lemma 5. For any Q-value function Q : RS×A,

‖BQ−Q‖∞ ≤ (1 + γ) ‖Q−Q∗M‖∞ .

Proof.

‖BQ−Q‖∞ = ‖BQ−Q∗M +Q∗M −Q‖∞
≤ ‖BQ−BQ∗M‖∞ + ‖Q∗M −Q‖∞
≤ γ ‖Q∗M −Q‖∞ + ‖Q∗M −Q‖∞
= (1 + γ) ‖Q∗M −Q‖∞ .

So the lemma follows.

Theorem 3 will a direct corollary of Lemma 6, by noticing
that the loss of the selected abstraction can be upper bounded
by the LHS of Equation (18).

Lemma 6. Suppose Assumption 2 holds. Let ĥi be the best-
so-far abstraction among h1, . . . , hi found by Algorithm 2,
then for δ′ = 2δ/(3|H|2), the following bound holds w.p. ≥
1− δ: ∀i = 1, 2, . . . , |H|,∥∥∥[Q∗

M ĥi
]M −Q∗M

∥∥∥
∞

+
1

1− γ
Estm(ĥi, D, δ

′)

≤ poly
( 1

1− γ
)
· min
h∈{h1,...,hi}

(Appr(h) + Estm(h,D, δ′)) .

(18)

Proof Sketch. For every pair of possible comparison we
require the 3 probabilistic guarantees in the proof of The-
orem 2 to hold, hence by union bound we can guarantee
that each of them occurs w.p. at least 1 − δ′. Then, we
prove the lemma by induction. For the case of i = 1, it
holds obviously from Theorem 1, by noticing that the LHS
of Lemma 6 is an intermediate step of proving Theorem 1
(up to 2/(1− γ)), and the RHS is consistent with the final
bound.

Suppose the induction assumption holds for i, and consider
the comparison between hc = ĥi and hf = hi+1. If hc is
selected, we only need to prove that

∥∥[Q∗Mhc ]M −Q∗M
∥∥
∞+

1
1−γ Estm(hc, D, δ

′) can be bounded by Appr(hf ) and
Estm(hf , D, δ

′), which is possible by slightly adapting the
previous analysis. In particular,

2

1− γ

(
‖[Q∗Mhc ]M −Q∗M‖∞ +

1

1− γ
Estm(hc, D, δ

′)

)
≤ 2

(1− γ)2

(∥∥B[Q∗Mhc ]M −Bhc [Q∗Mhc ]M
∥∥
∞

+ Estm(hc, D, δ
′)
)

≤ 2

(1− γ)2

(∥∥∥B[Q∗Mhc ]M −Bhc

D [Q∗Mhc ]M

∥∥∥
∞

+ 2 Estm(hc, D, δ
′)
)

≤ 2

(1− γ)2

(∥∥∥B[Q∗
Mhc

D

]M −Bhc

D [Q∗
Mhc

D

]M

∥∥∥
∞

+ 2γ
∥∥∥[Q∗

Mhc
D

]M − [Q∗Mhc ]M

∥∥∥
∞

+ 2 Estm(hc, D, δ
′)
)
,

and now we arrive at Equation (12), up to some extra depen-
dence on Estm(hc, D, δ

′) (which we can always afford),
and the difference between δ and δ′. Following the rest part
of the previous analysis we will have the desired bound.

If hf is selected, the beginning part of the previous analysis
can be adapted much more easily:

2

1− γ

(∥∥∥[[Q∗
Mhf

]M −Q∗M
∥∥∥
∞

+
1

1− γ
Estm(hf , D, δ

′)

)
≤ 2

(1− γ)2

(∥∥BQ∗M −BhfQ∗M
∥∥
∞ + Estm(hf , D, δ

′)
)
,

and now we are at Equation (16). This time, however,
we cannot follow the previous analysis all the way to the
end, as our induction assumption promises nothing for
Appr(hc) and Estm(hc). Instead, we can departure from
Equation (17):

(17)

≤ 2

(1− γ)2

(
(3− γ)(1 + γ)

1− γ
‖[Q∗Mhc ]M −Q∗M‖∞

+
1 + γ

1− γ
Estm(hc, D, δ

′)

)
,

which follows from Lemma 5. Now we can apply our
induction assumption, and this shows that the induction
assumption holds for i+ 1, so the lemma follows.


