
Graphical Models for Game Theory

Michael Kearns�

Syntek Capital
New York, New York

Michael L. Littman
AT&T Labs–Research

Florham Park, New Jersey

Satinder Singh
Syntek Capital

New York, New York

Abstract

We introduce a compact graph-theoretic repre-
sentation for multi-party game theory. Our main
result is a provably correct and efficient algo-
rithm for computing approximate Nash equilibria
in one-stage games represented by trees or sparse
graphs.

1 INTRODUCTION

In most work on multi-player game theory, payoffs are rep-
resented intabular form: if n agents play a game in which
each player has (say) two actions available, the game is
given byn matrices, each of size2n, specifying the pay-
offs to each player under any possible combination of joint
actions. For game-theoretic approaches to scale to large
multi-agent systems,compactyet generalrepresentations
must be explored, along with algorithms that can efficiently
manipulate them1.

In this work, we introducegraphical modelsfor multi-
player game theory, and give powerful algorithms for com-
puting their Nash equilibria in certain cases. Ann-player
game is given by an undirected graph onn vertices and a
set ofn matrices. The interpretation is that the payoff to
player i is determined entirely by the actions of playeri
and his neighbors in the graph, and thus the payoff matrix
for playeri is indexed only by these players. We thus view
the globaln-player game as being composed of interacting
local games, each involving (perhaps many) fewer players.
Each player’s action may have global impact, but it occurs
through the propagation of local influences.

�The research described here was completed while the
authors were at AT&T Labs. Authors’ email addresses:
michael.kearns@syntekcapital.com ,
mlittman@research.att.com ,
satinder.baveja@syntekcapital.com .

1For multi-stagegames, there is a large literature on compact
state-based representations for the different stages of the game,
such as stochastic games or extensive form games (Owen 1995).
Our focus is on representingone-stage, multi-playergames.

There are many common settings in which such graphical
models may naturally and succinctly capture the underly-
ing game structure. The graph topology might model the
physical distribution and interactions of agents: each sales-
person is viewed as being involved in a local competition
(game) with the salespeople in geographically neighboring
regions. The graph may be used to represent organizational
structure: low-level employees are engaged in a game with
their immediate supervisors, who in turn are engaged in a
game involving their direct reports and their own managers,
and so on up to the CEO. The graph may coincide with the
topology of a computer network, with each machine nego-
tiating with its neighbors (to balance load, for instance).

There is a fruitful analogy between our setting and
Bayesian networks. We propose a representation that is
universal: anyn-player game can be represented by choos-
ing the complete graph and the originaln-player matrices.
However, significant representational benefits occur if the
graph degree is small: if each player has at mostk � n
neighbors, then each game matrix is exponential only ink
rather thann. The restriction to small degree seems insuffi-
cient to avoid the intractability of computing Nash equilib-
ria. All of these properties hold for the problem of repre-
senting and computing conditional probabilities in a Bayes
net. Thus, as with Bayes nets, we are driven to ask the nat-
ural computationalquestion: for which classes of graphs
can we give efficient (polynomial-time) algorithms for the
computation of Nash equilibria?

Our main technical result is an algorithm for computing
Nash equilibria when the underlying graph is a tree (or
can be turned into a tree with few vertex mergings). This
algorithm comes in two related but distinct forms. The
first version involves an approximation step, and computes
an approximation ofeveryNash equilibrium. (Note that
there may be an exponential or infinite number of equilib-
ria.) This algorithm runs in time polynomial in the size of
the representation (the tree and the associated local game
matrices), and constitutes one of the few known cases in
which equilibria can be efficiently computed for a large
class of general-sum, multi-player games. The second ver-

sion of the algorithm runs in exponential time, but allows
the exactcomputation of all Nash equilibria in a tree. In
an upcoming paper (Littman et al. 2001), we describe a
polynomial-time algorithm for the exact computation of a
single Nash equilibrium in trees. Our algorithms require
only local message-passing (and thus can be implemented
by the players themselves in a distributed manner).

2 RELATED WORK

Algorithms for computing Nash equilibria are well-studied.
McKelvey and McLennan (1996) survey a wide variety of
algorithms covering 2- andn-player games; Nash equilib-
ria and refinements; normal and extensive forms; comput-
ing either a sample equilibrium or exhaustive enumeration;
and many other variations. They note thatn-player games
are computationally much harder than 2-player games, in
many important ways. The survey discusses approxima-
tion techniques for finding equilibria inn-player games.
Several of the methods described are not globally conver-
gent, and hence do not guarantee an equilibrium. A method
based on simplicial subdivision is described that converges
to a point with equilibrium-like properties, but is not neces-
sarily near an equilibrium or an approximate equilibrium.
In contrast, for the restricted cases we consider, our algo-
rithms provide running time and solution quality guaran-
tees, even in the case of general-sum,n-player games.

Nash (1951), in the paper that introduces the notion of Nash
equilibria, gives an example of a 3-player, finite-action
game, and shows it has a unique Nash equilibria. Although
all payoffs are rational numbers, Nash shows that the play-
ers’ action probabilities at the equilibrium are irrational.
This suggests that no finite algorithm that takes rational
payoffs and transforms them using addition, subtraction,
multiplication, and division will be able to compute exact
equilibrium policies in general. Thus, the existence of an
exact algorithm for finding equilibria in games with tree-
structured interactions shows that these games are some-
what simpler than generaln-player games. It also sug-
gests that approximation algorithms are probably unavoid-
able for generaln-player games.

Several authors have examined graphical representations
of games. Koller and Milch (2001) describe an extension
of influence diagrams to representingn-player games, and
suggest the importance of exploiting graphical structure in
solving normal-form games. La Mura (2000) describes a
closely related representation, and provides globally con-
vergent algorithms for finding Nash equilibria.

3 PRELIMINARIES

An n-player, two-action2 game is defined by a set ofn ma-
tricesMi (1 � i � n), each withn indices. The entry
Mi(x1; : : : ; xn) = Mi(~x) specifies the payoff to playeri
when the joint action of then players is~x 2 f0; 1gn 3.
Thus, eachMi has2n entries. If a game is given by simply
listing the2n entries of each of then matrices, we will say
that it is represented intabular form.

The actions 0 and 1 are thepure strategiesof each player,
while a mixedstrategy for playeri is given by the proba-
bility pi 2 [0; 1] that the player will play 0. For any joint
mixed strategy, given by a product distribution~p, we define
the expected payoff to playeri asMi(~p) = E~x�~p[Mi(~x)],
where~x � ~p indicates that eachxj is 0 with probabilitypj
and 1 with probability1� pj.

We use~p[i : p0i] to denote the vector which is the same as
~p except in theith component, where the value has been
changed top0i. A Nash equilibriumfor the game is a mixed
strategy~p such that for any playeri, and for any value
p0i 2 [0; 1], Mi(~p) � Mi(~p[i : p0i]). (We say thatpi is a
best responseto ~p.) In other words, no player can improve
their expected payoff by deviating unilaterally from a Nash
equilibrium. The classic theorem of Nash (1951) states that
for any game, there exists a Nash equilibrium in the space
of joint mixed strategies (product distributions).

We will also use the standard definition for approximate
Nash equilibria. An�-Nash equilibriumis a mixed strategy
~p such that for any playeri, and for any valuep0i 2 [0; 1],
Mi(~p) + � � Mi(~p[i : p0i]). (We say thatpi is an�-best
responseto ~p.) Thus, no player can improve their expected
payoff by more than� by deviating unilaterally from an
approximate Nash equilibrium.

An n-player graphical gameis a pair (G;M), whereG
is an undirected graph onn vertices andM is a set ofn
matricesMi (1 � i � n), called thelocal game matri-
ces. Playeri is represented by a vertex labeledi in G.
We useNG(i) � f1; : : : ; ng to denote the set ofneigh-
bors of player i in G—that is, those verticesj such that
the undirected edge(i; j) appears inG. By convention,
NG(i) always includesi itself. The interpretation is that
each player is in a game with only their neighbors inG.
Thus, if jNG(i)j = k, the matrixMi hask indices, one for
each player inNG(i), and if ~x 2 [0; 1]k, Mi(~x) denotes
the payoff toi when hisk neighbors (which include him-
self) play~x. The expected payoff under a mixed strategy
~p 2 [0; 1]k is defined analogously. Note that in the two-
action case,Mi has2k entries, which may be considerably

2For simplicity, we describe our results for the two-action
case. However, we later describe an efficient generalization of
the approximation algorithm to multiple actions.

3For simplicity, we shall assume all payoffs are bounded in
absolute value by 1, but all our results generalize (with a linear
dependence on maximum payoff).

smaller than2n.

Since we identify players with vertices inG, and since
it will sometimes be easier to treat vertices symbolically
(such asU; V andW) rather than by integer indices, we
also useMV to denote the local game matrix for the player
identified with vertexV .

Note that our definitions are entirely representational, and
alter nothing about the underlying game theory. Thus, ev-
ery graphical game has a Nash equilibrium. Furthermore,
every game can be trivially represented as a graphical game
by choosingG to be the complete graph, and letting the
local game matrices be the original tabular form matrices.
Indeed, in some cases, this may be the most compact graph-
ical representation of the tabular game. However, exactly
as for Bayesian networks and other graphical models for
probabilistic inference, any time in which the local neigh-
borhoods inG can be bounded byk << n, exponential
spacesavings accrue. Our main results identify graphical
structures for which significantcomputationalbenefits may
also be realized.

4 ABSTRACT TREE ALGORITHM

In this section, we give an abstract description of our al-
gorithm for computing Nash equilibria in trees (see Fig-
ure 1). By “abstract”, we mean that we will leave unspec-
ified (for now) the representation of a certain data struc-
ture, and the implementation of a certain computational
step. After proving the correctness of this abstract algo-
rithm, in subsequent sections we will describe two instan-
tiations of the missing details—yielding one algorithm that
runs in polynomial time and computes approximations of
all equilibria, and another algorithm that runs in exponen-
tial time and computes all exact equilibria.

If G is a tree, we can orient this tree by choosing an arbi-
trary vertex to be the root. Any vertex on the path from a
vertex to the root will be calleddownstreamfrom that ver-
tex, and any vertex on a path from a vertex to a leaf will be
calledupstreamfrom that vertex. Thus, each vertex other
than the root has exactly one downstream neighbor (child),
and perhaps many upstream neighbors (parents). We use
UpG(U) to denote the set of vertices inG that are upstream
fromU , includingU by definition.

Suppose thatV is the child ofU in G. We letGU de-
note the the subgraph induced by the vertices inUpG(U).
If v 2 [0; 1] is a mixed strategy for player (vertex)V ,
MU

V=v will denote the subset of matrices ofM corre-
sponding to the vertices inUpG(U), with the modifica-
tion that the game matrixMU is collapsed by one index
by fixing V = v. We can think of a Nash equilibrium for
the graphical game(GU ;MU

V=v) as an equilibrium “up-
stream” fromU (inclusive),giventhatV playsv.

Suppose some vertexV hask parentsU1; : : : ; Uk, and the

single childW . We now describe the data structures sent
from eachUi to V , and in turn fromV toW , on the down-
stream pass of the algorithm.

Each parentUi will send to V a binary-valued table
T (v; ui). The table is indexed by the continuum of pos-
sible values for the mixed strategiesv 2 [0; 1] of V and
ui 2 [0; 1] of Ui. The semantics of this table will be as fol-
lows: for any pair(v; ui), T (v; ui) will be 1 if and only if
there exists a Nash equilibrium for(GUi ;MUi

V=v) in which
Ui = ui. Note that we will slightly abuse notation by let-
ting T (v; ui) refer both to the entire table sent fromUi to
V , and the particular value associated with the pair(v; ui),
but the meaning will be clear from the context.

Sincev andui are continuous variables, it is not obvious
that the tableT (v; ui) can be represented compactly, or
even finitely, for arbitrary vertices in a tree. As indicated
already, for now we will simply assume a finite represen-
tation, and show how this assumption can be met in two
different ways in later sections.

The initialization of the downstream pass of the algorithm
begins at the leaves of the tree, where the computation of
the tables is straightforward. IfU is a leaf andV its only
child, thenT (v; u) = 1 if and only if U = u is a best
response toV = v (step 2c of Figure 1).

Assuming for induction that eachUi sends the table
T (v; ui) to V , we now describe howV can compute the ta-
bleT (w; v) to pass to its childW (step 2(d)ii of Figure 1).
For each pair(w; v), T (w; v) is set to 1 if and only if there
exists a vector of mixed strategies~u = (u1; : : : ; uk) (called
awitness) for the parents~U = (U1; : : : ; Uk) of V such that

1. T (v; ui) = 1 for all 1 � i � k; and

2. V = v is a best response to~U = ~u;W = w.

Note that there may be more than one witness for
T (w; v) = 1. In addition to computing the valueT (w; v)
on the downstream pass of the algorithm,V will also keep
a list of the witnesses~u for each pair(w; v) for which
T (w; v) = 1 (step 2(d)iiA of Figure 1). These witness lists
will be used on the upstream pass. Again, it is not obvious
how to implement the described computation ofT (w; v)
and the witness lists, since~u is continuous and universally
quantified. For now, we assume this computation can be
done, and describe two specific implementations later.

To see that the semantics of the tables are preserved by the
abstract computation just described, suppose that this com-
putation yieldsT (w; v) = 1 for some pair(w; v), and let~u
be a witness forT (w; v) = 1. The fact thatT (v; ui) = 1
for all i (condition 1 above) ensures by induction that ifV
playsv, there are upstream Nash equilibria in which each
Ui = ui. Furthermore,v is a best response to the local set-
tingsU1 = u1; : : : ; Uk = uk;W = w0 (condition 2 above).

Algorithm TreeNash
Inputs: Graphical game(G;M) in whichG is a tree.
Output: A Nash equilibrium for(G;M).

1. Compute a depth-first ordering of the vertices ofG.

2. (Downstream Pass) For each vertexV in depth-first ordering (starting at the leaves):

(a) Let vertexW be the child ofV (or nil if V is the root).
(b) InitializeT (w; v) to be 0 and the witness list forT (w; v) to be empty for allw;v 2 [0; 1].
(c) If V is a leaf:

i. For allw; v 2 [0; 1], setT (w; v) to be 1 if and only ifV = v is a best response toW = w
(as determined by the local game matrixMV).

(d) Else (V is an internal vertex):

i. Let ~U = (U1; : : : ; Uk) be the parents ofV ; letT (v; ui) be the table passed fromUi to V on
the downstream pass.

ii. For all w; v 2 [0; 1] and all joint mixed strategies~u = (u1; : : : ; uk) for ~U :

A. If V = v is a best response toW = w and ~U = ~u (as determined by the local game
matrix MV), andT (v; ui) = 1 for i = 1; � � � ; k, setT (w; v) to be 1 and add~u to the
witness list forT (w; v).

(e) Pass the tableT (w; v) from V toW .

3. (Upstream Pass) For each vertexV in reverse depth-first ordering (starting at the root):

(a) Let ~U = (U1; : : : ; Uk) be the parents ofV (or the empty list ifV is a leaf); letW be the child of
V (or nil if V is the root), and(w;v) the values passed fromW to V on the upstream pass.

(b) LabelV with the valuev.
(c) (Non-deterministically) Choose any witness~u to T (w; v) = 1.
(d) Fori = 1; : : : ; k, pass(v; ui) from V toUi.

Figure 1: Abstract algorithmTreeNashfor computing Nash equilibria of tree graphical games. The description is incom-
plete, as it is not clear how to finitely represent the tablesT (�; �), or how to finitely implement step 2(d)ii. In Section 5, we
show how to implement a modified version of the algorithm that computes approximate equilibria in polynomial time. In
Section 6, we implement a modified version that computes exact equilibria in exponential time.

Therefore, we are in equilibrium upstream fromV . On the
other hand, ifT (w; v) = 0 it is easy to see there can be no
equilibrium in whichW = w; V = v. Note that the exis-
tence of a Nash equilibrium guarantees thatT (w; v) = 1
for at least one(w; v) pair.

The downstream pass of the algorithm terminates at the
rootZ, which receives tablesT (z; yi) from each parentYi.
Z simply computes a one-dimensional tableT (z) such that
T (z) = 1 if and only if for some witness~y, T (z; yi) = 1
for all i, andz is a best response to~y.

The upstream pass begins byZ choosing anyz for which
T (z) = 1, choosing any witness(y1; : : : ; yk) to T (z) =
1, and then passing bothz andyi to each parentYi. The
interpretation is thatZ will play z, and is instructingYi to
playyi. Inductively, if a vertexV receives a valuev to play
from its downstream neighborW , and the valuew thatW
will play, then it must be thatT (w; v) = 1. SoV chooses
a witness~u to T (w; v) = 1, and passes each parentUi
their valueui as well asv (step 3 of Figure 1). Note that
the semantics ofT (w; v) = 1 ensure thatV = v is a best
response to~U = ~u;W = w.

We have left the choices of each witness in the upstream

pass non-deterministic to emphasize that the tables and wit-
ness lists computed representall the Nash equilibria. Of
course, a random equilibrium can be chosen by making
these choices random. We discuss the selection of equi-
libria with desired global properties in Section 7.

Theorem 1 Algorithm TreeNash computes a Nash equi-
librium for the tree game(G;M). Furthermore, the tables
and witness lists computed by the algorithm represent all
Nash equilibria of(G;M).

5 APPROXIMATION ALGORITHM

In this section, we describe an instantiation of the miss-
ing details of algorithmTreeNashthat yields a polynomial-
time algorithm for computingapproximateNash equilibria
for the tree game(G;M). The approximation can be made
arbitrarily precise with greater computational effort.

Rather than playing an arbitrary mixed strategy in[0; 1],
each player will be constrained to play adiscretizedmixed
strategy that is a multiple of� , for some� to be determined
by the analysis. Thus, playeri playsqi 2 f0; �; 2�; : : : ; 1g,
and the joint strategy~q falls on the discretized� -grid

f0; �; 2�; : : : ; 1gn. In algorithmTreeNash, this will allow
each tableT (v; u) (passed from vertexU to childV) to be
represented in discretized form as well: only the1=�2 en-
tries corresponding to the� -grid choices forU andV are
stored, and all computations of best responses in the algo-
rithm are modified to be approximate best responses. We
return to the details of the approximate algorithm after es-
tablishing an appropriate value for the grid resolution� .

To determine an appropriate choice of� (which in turn will
determine the computational efficiency of the approxima-
tion algorithm), we first bound the loss in payoff to any
player caused by moving from an arbitrary joint strategy~p
to the nearest strategy on the� -grid.

Fix any mixed strategy~p for (G;M) and any player index
i, and letjNG(i)j = k. We may write the expected payoff
to i under~p as:

Mi(~p) =
X

~x2f0;1gk

0
@ kY
j=1

�j(xj)

1
AMi(~x); (1)

where we simply define�j(xj) = (pj)1�xj (1 � pj)xj .
Note that�j(xj) 2 [0; 1] always.

We will need the following preliminary lemma.

Lemma 2 Let ~p; ~q 2 [0; 1]k satisfyjpi � qij � � for all
1 � i � k. Then provided� � 2=(k log2(k=2)),�����

kY
i=1

pi �

kY
i=1

qi

����� � (2k log k)�:

Proof: By induction onk. Assume without loss of gen-
erality thatk is a power of 2. The lemma clearly holds for
k = 2. Now by induction:

kY
i=1

qi =

0
@k=2Y

i=1

qi

1
A
0
@ kY
i=(k=2)+1

qi

1
A

�

0
@k=2Y

i=1

pi + k(log(k=2))�

1
A�

0
@ kY

i=(k=2)+1

pi + k(log(k=2))�

1
A

�

kY

i=1

pi

!
+ 2k(log(k=2))� +

(k(log(k=2))�)2

=

kY

i=1

pi

!
+ 2k(log k � 1)� +

(k(log(k=2))�)2:

The lemma holds if�2k�+(k(log(k=2))�)2 � 0. Solving
for � yields� � 2=(k log2(k=2)).

Lemma 3 Let the mixed strategies~p; ~q for (G;M) satisfy
jpi�qij � � for all i. Then provided� � 2=(k log2(k=2)),

jMi(~p)�Mi(~q)j � 2k+1(k log(k))�:

Proof: Applying Lemma 2 to each term of Equation (1)
yields

jMi(~p) �Mi(~q)j

�
X

~x2f0;1gk

������
kY

j=1

�j(xj)�
kY

j=1

�j(xj)

������ jMi(~x)j

�
X

~x2f0;1gk

(2k log(k))� � 2k+1(k log(k))�

where �j(xj) = (pj)1�xj (1 � pj)xj , �j(xj) =
(qj)

1�xj (1� qj)
xj , and we have usedjMi(~x)j � 1.

Lemma 3 bounds the loss suffered by any player in mov-
ing to the nearest joint strategy on the� -grid. However,
we must still prove that Nash equilibria are approximately
preserved:

Lemma 4 Let ~p be a Nash equilibrium for(G;M), and
let ~q be the nearest (inL1 metric) mixed strategy on the
� -grid. Then provided� � 2=(k log2(k=2)), ~q is a
2k+2(k log(k))� -Nash equilibrium for(G;M).

Proof: Let ri be a best response for playeri to ~q. We now
bound the differenceMi(~q[i : ri]) �Mi(~q) � 0, which is
accomplished by maximizingMi(~q[i : ri]) and minimizing
Mi(~q). By Lemma 3, we have

jMi(~q[i : ri])�Mi(~p[i : ri])j � 2k+1(k log(k))�:

Since~p is an equilibrium,Mi(~p) �Mi(~p[i : ri]). Thus,

Mi(~q[i : ri]) � Mi(~p) + 2k+1(k log(k))�:

On the other hand, again by Lemma 3,

Mi(~q) �Mi(~p) � 2k+1(k log(k))�:

Thus,Mi(~q[i : ri])�Mi(~q) � 2k+2(k log(k))� .

Let us now choose� to satisfy2k+2(k log(k))� � � and
� � 2=(k log2(k=2)) (which is the condition required by
Lemma 3), or

� � min(�=(2k+2(k log(k))); 2=(k log2(k=2))):

Lemma 4 finally establishes that by restricting play to the
� -grid, we are ensured the existence of an�-Nash equilib-
rium. The important point is that� needs to be exponen-
tially small only in thelocal neighborhoodsizek, not the
total number of playersn.

It is now straightforward to describe the details of our ap-
proximate algorithmApproximateTreeNash. This algo-
rithm is identical to algorithmTreeNashwith the following
exceptions:

Figure 2:An example game, and the tables computed by the downstream pass of algorithmApproximateTreeNash. Each vertex in
the tree is a player with two actions. Although we omit the exact payoff matrices, intuitively each “M” player maximizes its payoff by
matching its child’s action, while each “O” player maximizes its payoff by choosing the opposite action of its child. The relative payoff
for matching or unmatching is modulated by the parent values, and also varies from player to player within each vertex type. The grid
figures next to each edge are a visual representation of the actual tables computed in the downstream pass of the algorithm, with the
settings� = 0:01 and� = 0:05; 1s are drawn as black and 0s as gray. Approximate Nash equilibria for the game are computed from the
tables by the upstream pass of the algorithm. One example of a pure equilibrium is(0; 1; 1; 0; 0; 1; 0; 0); the tables represent a multitude
of mixed equilibria as well.

� The algorithm now takes an additional input�.

� For any vertexU with child V , the tableT (u; v) will
contain only entries foru andv multiples of� .

� All computations of best responses in algorithm
TreeNashbecome computations of�-best responses
in algorithmApproximateTreeNash.

Lemma 3 establishes that there will be such an approximate
best response on the� -grid, while Lemma 4 ensures that the
overall computation results in an�-Nash equilibrium. For
the running time analysis, we simply note that each table
has(1=�)2 entries, and that the computation is dominated
by the downstream calculation of the tables (Step 2(d)ii of
algorithmTreeNash). This requires ranging over all table
entries for allk parents, a computation of order((1=�)2)k.

Theorem 5 For any� > 0, let

� � min(�=(2k+2(k log(k))); 2=(k log2(k=2))):

ThenApproximateTreeNashcomputes an�-Nash equilib-
rium for the tree game(G;M). Furthermore, forevery
exact Nash equilibrium, the tables and witness lists com-
puted by the algorithm contain an�-Nash equilibrium that
is within � of this exact equilibrium (inL1 norm). The run-
ning time of the algorithm is polynomial in1=�, n and2k,
and thus polynomial in the size of(G;M).

See Figure 2 for an example of the behavior of algorithm
ApproximateTreeNash.

6 EXACT ALGORITHM

In this section, we describe an implementation of the miss-
ing details of algorithmTreeNash that computes exact,
rather than approximate, equilibria. In the worst case, the
algorithm may run in time exponential in the number of
vertices. We remind the reader that even this result is
nontrivial, since there are no finite-time algorithms known
for computing exact Nash equilibria in general-sum, multi-
party games.

As before, let~U = U1; : : : ; Uk be the parents ofV , andW
the child. We assume for induction that each tableT (v; ui)
passed fromUi to V on the downstream pass can be repre-
sented in a particular way—namely, that the set of(v; ui)
pairs whereT (v; ui) = 1 is a finite union of axis-parallel
rectangles (or line segments or points, degenerately) in the
unit square. We formalize this representation by assuming
eachT (v; ui) is given by an ordered list called thev-list,

0 = v1 � v2 � � � � � vm�1 � vm = 1;

defining intervals of the mixed strategyv. For eachv-
interval[v`; v`+1] (1 � ` � m), there is a subset of[0; 1]

Ii;`1 [� � � [Ii;`t

where eachI`j � [0; 1] is an interval of[0; 1], and these
intervals are disjoint without loss of generality. By taking
the maximum, we can assume without loss of generality
that the number of setst in the union associated with any
v-interval is the same. The interpretation of this represen-
tation is thatT (v; ui) = 1 if and only if v 2 [v`; v`+1]

impliesui 2 Ii;`1 [� � �[Ii;`t . We think of each[v`; v`+1] as
defining a horizontal strip ofT (v; ui), while the associated
unionIi;`1 [� � � [Ii;`t defines vertical bars where the table
is 1 within this strip.

We can assume that the tablesT (v; ui) share a common
v-list, by simply letting this commonv-list be the merging
of the k separatev-lists. Applying algorithmTreeNash
to this representation, we now must address the following
question for the computation ofT (w; v) in the downstream
pass. Fix av-interval[v`; v`+1]. Fix any choice ofk indices
j1; : : : ; jk 2 f1; : : : ; tg. As we allow~u = (u1; : : : ; uk) to
range across the rectangular regionI1;`ji

� � � � � Ik;`jk
, what

is the setW of values ofw for which somev 2 [v`; v`+1]
is a best response to~u andw?

Assumingv` 6= 0 andv`+1 6= 1 (which is the more dif-
ficult case), a value in[v`; v`+1] can be a best response
to ~u andw only if the payoff forV = 0 is identical to
the payoff forV = 1, in which caseany value in [0; 1]
(and thus any value in[v`; v`+1]) is a best response. Thus,
T (w; v) will be 1 across the regionW � [v`; v`+1], and
the union of all such subsets ofw � v across allm � 1
choices of thev-interval[v`; v`+1], and alltk choices of the
indicesj1; : : : ; jk 2 f1; : : : ; tg, completely defines where
T (w; v) = 1. We now prove that for any fixed choice of
v-interval and indices, the setW is actually a union of at
most two intervals ofw, allowing us to maintain the induc-
tive hypothesis of finite union-of-rectangle representations.

Lemma 6 Let V be a player in anyk + 2-player game
against opponentsU1; : : : ; Uk and W . Let MV (v; ~u; w)
denote the expected payoff toV under the mixed strategies
V = v, ~U = ~u, andW = w, and define�(~u;w) =
MV (0; ~u; w) �MV (1; ~u; w). Let I1; : : : ; Ik each be con-
tinuous intervals in[0; 1], and let

W = fw 2 [0; 1] : 9~u 2 I1 � � � � � Ik �(~u;w) = 0g :

ThenW is either empty, a continuous interval in[0; 1], or
the union of two continuous intervals in[0; 1].

Proof: We begin by writing

�(~u;w) =X
~x2f0;1gk;y2f0;1g

(MV (0; ~x; y)�MV (1; ~x; y)) �

w1�y(1� w)y

kY
i=1

(ui)
1�xi(1� ui)

xi

!
:

Note that for anyui, �(~u;w) is a linear function ofui, as
each term of the sum above includes only eitherui or1�ui.

Since�(~u;w) is a linear function ofui, it is a monotonic
function ofui; we will use this property shortly.

Now by the continuity of�(~u;w) in w,w 2 W if and only
if w 2 W� \W�, where

W� = fw 2 [0; 1] : 9~u 2 I1 � � � � � Ik �(~u;w) � 0g

and

W� = fw 2 [0; 1] : 9~u 2 I1 � � � � � Ik �(~u;w) � 0g :

First considerW�, as the argument forW� is symmetric.
Now w 2 W� if and only ifmax~u2I1�����Ikf�(~u;w)g �
0. But since�(~u;w) is a monotonic function of each
ui, this maximum occurs at one of the2k extremal points
(vertices) of the regionI1 � � � � � Ik. In other words,
if we let Ij = [`j; rj] and define the extremal setE =
f`1; r1g � � � � � f`k; rkg, we have

W� =
[
~u2E

fw : �(~u;w) � 0g:

For any fixed~u, the setfw : �(~u;w) � 0g is of the form
[0; x] or [x; 1] by linearity, and soW� (andW� as well) is
either empty, an interval, or the union of two intervals. The
same statement holds forW =W�\W�. Note that by the
above arguments,W can be computed in time exponential
in k by exhaustive search over the extremal setE.

Lemma 6 proves that any fixed choice of one rectangular
region (where the table is 1) from eachT (v; ui) leads to at
most 2 rectangular regions whereT (w; v) is 1. It is also
easy to show that the tables at the leaves have at most 3
rectangular regions. From this it is straightforward to show
by induction that for any vertexu in the tree with childv,
the number of rectangular regions whereT (v; u) = 1 is at
most2au3bu, whereau andbu are the number of internal
vertices and leaves, respectively, in the subtree rooted atu.
This is a finite bound (which is at most3n at the root of the
entire tree) on the number of rectangular regions required
to represent any table in algorithmTreeNash. We thus have
given an implementation of the downstream pass—except
for the maintainence of the witness lists. Recall that in the
approximation algorithm, we proved nothing special about
the structure of witnesses, but the witness lists were finite
(due to the discretization of mixed strategies). Here these
lists may be infinite, and thus cannot be maintained explic-
itly on the downstream pass. However, it is not difficult to
see that witnesses can easily be generated dynamically on
the upstream pass (according to a chosen deterministic rule,
randomly, non-deterministically, or with some additional
bookkeeping, uniformly at random from the set of all equi-
libria). This is because given(w; v) such thatT (w; v) = 1,
a witness is simply any~u such thatT (v; ui) = 1 for all i.

AlgorithmExactTreeNashis simply the abstract algorithm
TreeNashwith the tables represented by unions of rectan-
gles (and the associated implementations of computations

Figure 3: Example of a table produced by the exact algorithm.
The table is the one generated for vertex 6 in Figure 2. Black
cells indicate where the exact table is 1, while dark gray cells
indicate where the approximate table is 1 for comparison. We see
that the non-rectangular regions in Figure 2 are the result of the
approximation scheme.

described in this section), and witnesses computed on the
upstream pass. We thus have:

Theorem 7 Algorithm ExactTreeNashcomputes a Nash
equilibrium for the tree game(G;M). Furthermore, the
tables computed by the algorithm represent all Nash equi-
libria of (G;M). The algorithm runs in time exponential
in the number of vertices ofG.

To provide a feel for the tables produced by the exact al-
gorithm, Figure 3 shows the exact table for vertex 6 in the
graph game in Figure 2.

7 EXTENSIONS

We have developed a number of extensions and generaliza-
tions of the results presented here. We describe some of
them briefly, leaving details for the long version of this pa-
per. At this writing, we have verified these extensions only
for the approximation algorithm, and are working on the
generalizations for the exact algorithm.

Multiple Actions . For ease of exposition, our approxima-
tion algorithm was presented for tree games in which play-
ers have only two actions available to them. By letting the
tablesT (w; v) computed in the downstream pass of this
algorithm be of the size necessary to represent the cross-
product of the action spaces available toV andW , we can
recover the same result (Theorem 5) for the multiple-action
case. The computational cost in the multiple-action case is
exponential in the number of actions, but so is the size of
the local game matrices (and hence the size of the repre-
sentation of the tree game).

Vertex Merging for Sparse Graphs. The extension to
multiple actions also permits the use of our approxima-
tion algorithm on arbitrary graphs. This is analogous to the

use of the polytree algorithm on sparse, non-tree-structured
Bayes nets. As in that case, the main step is the merging of
vertices (whose action set will now be the product action
space for the merged players) to convert arbitrary graphs
into trees. To handle the merged vertices, we must en-
sure that the merged players are playing approximate best
responses to each other, in addition to the upstream and
downstream neighbors. With this additional bit of com-
plexity (again proportional to the size of the representation
of the final tree) we recover our result (Theorem 5).

As with the polytree algorithm, running time will scale ex-
ponentially with the largest number of merged players, so
it is vital to minimize this cluster size. How best to accom-
plish this we leave to future work.

Special Equilibria. The approximation algorithm has the
property that it finds an approximate Nash equilibrium for
every exact Nash equilibrium. The potential multiplicity
of Nash equilibria has led to a long line of research in-
vestigating Nash equilibria satisfying particular properties.
By appropriately augmenting the tables computed in the
downstream pass of our algorithm, it is possible to identify
Nash equilibria that (approximately) maximize the follow-
ing measures in the same time bounds:

� Player Optimum: Expected reward to a chosen player.

� Social Optimum: Total expected reward, summed over
all players.

� Welfare Optimum: Expected reward to the player
whose expected reward is smallest.

Equilibria with any of these properties are known to be NP-
hard to find in the exact case, even in games with just two
players (Gilboa and Zemel 1989).

References
I. Gilboa and E. Zemel. Nash and correlated equilibria: some

complexity considerations.Games and Economic Behavior, 1:
80–93, 1989.

Daphne Koller and Brian Milch. Multi-agent influence diagrams
for representing and solving games. Submitted, 2001.

Pierfrancesco La Mura. Game networks. InProceedings of
the 16th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 335–342, 2000.

M. Littman, M. Kearns, and S. Singh. 2001. In preparation.

Richard D. McKelvey and Andrew McLennan. Computation of
equilibria in finite games. InHandbook of Computational Eco-
nomics, volume I, pages 87–142. 1996.

J. F. Nash. Non-cooperative games.Annals of Mathematics, 54:
286–295, 1951.

Guillermo Owen.Game Theory. Academic Press, UK, 1995.

