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Abstract. The TAC 2003 supply-chain game presented automated trading agents
with a challenging strategic problem. Embedded within a complex stochastic
environment was a pivotal strategic decision about initial procurement of com-
ponents. Early evidence suggested that the entrant field was headed toward a
self-destructive, mutually unprofitable equilibrium. Our agent, Deep Maize, in-
troduced a preemptive strategy designed to neutralize aggressive procurement,
perturbing the field to a more profitable equilibrium. It worked. Not only did
preemption improve Deep Maize’s profitability, it improved profitability for the
whole field. Whereas it is perhaps counterintuitive that action designed to prevent
others from achieving their goals actually helps them, strategic analysis employ-
ing an empirical game-theoretic methodology verifies and provides insight about
this outcome.

1 Introduction

Like classic computer games, multiagent research competitions [Stone, 2002] present
well-defined problems for testing and comparing AI techniques and systems. The an-
nual Trading Agent Competition (TAC) series provides a forum for research on strategic
market behavior, and has led to several promising concepts and methods for implement-
ing strategies in such domains [Wellman et al., 2003].

The TAC Supply Chain Management (TAC/SCM) scenario [Sadeh et al., 2003] de-
fines a complex six-player game with severely incomplete and imperfect information,
and high-dimensional strategy spaces. Like the real supply-chain environments it is in-
tended to model, the TAC/SCM game presents participants with challenging decision
problems in a context of great strategic uncertainty. This paper is a case study of a
strategic issue that arose in the first TAC/SCM tournament. We present our reasoning
about the issue, and our effort to perturb the environment from an “equilibrium” we
considered undesirable, to another more profitable domain of operation. We recount the
experience as it played out in the competition, and analyze the outcome of this natural-
istic experiment. We then perform a more controlled experimental analysis of the issue,
applying empirical game-theoretic methods to produce compelling results, narrow in
scope but arguably accounting well for strategic interactions.



2 TAC/SCM Game

In the TAC/SCM scenario,1 six agents representing PC (personal computer) assemblers
operate in a common market environment, over a simulated year. The environment con-
stitutes a supply chain, in that agents trade simultaneously in markets for supplies (PC
components) and the market for finished PCs. Agents may assemble for sale 16 dif-
ferent models of PCs, defined by the compatible combinations of the four component
types: CPU, motherboard, memory, and hard disk.

Figure 1 diagrams the basic configuration of the supply chain. The six agents (ar-
rayed vertically in the middle of the figure) procure components from the eight suppliers
on the left, and sell PCs to the entity representing customers, on the right. Trades at both
levels are negotiated through a request-for-quote (RFQ) mechanism, which proceeds in
three steps:

1. Buyer issues RFQs to one or more sellers.
2. Sellers respond to RFQs with offers.
3. Buyers accept or reject offers. An accepted offer becomes an order.

The suppliers and customer implement fixed negotiation policies, defined in the game
specification, and discussed in detail below where applicable.
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Fig. 1. TAC/SCM supply chain.

The game runs for 220 simulated days. On each day, the agent may receive offers
and component delivery notices from suppliers, and RFQs and offer acceptance notifi-
cations from customers. It then must make several decisions:

1. What RFQs to issue to component suppliers.
2. Given offers from suppliers (based on the previous day’s RFQs), which to accept.

1 For complete details of the game rules, see the specification document [Arunachalam et al.,
2003]. This is available at http://www.sics.se/tac, as is much additional information
about TAC/SCM and TAC in general.



3. Given component inventory and factory capacity, what PCs to manufacture.
4. Given inventory of finished PCs, which customer orders to ship.
5. Given RFQs from customers, to which to respond and with what offers.

In the simulation, the agent has 15 seconds to compute and communicate its daily de-
cisions to the game server. At the end of the game, agents are evaluated by total profit,
with any outstanding component or PC inventory valued at zero.

As we describe below, a key stochastic feature of the game environment is level of
demand for PCs. The underlying demand level is defined by an integer parameter �
(called ���

��� in the specification document [Arunachalam et al., 2003, Section 6]).

Each day, the customer issues a set of �� RFQs, where �� is drawn from a Poisson
distribution with mean value defined by the parameter � for that day. Since the order
quantity, PC model, and reserve price are set independently for each customer RFQ, the
number of RFQs serves as a sufficient statistic for the overall demand, which in turn is
a major determinant of the potential profits available to the agents.

The demand parameter � evolves according to a given stochastic process. In each
game instance, an initial value, ��, is drawn uniformly from [80,320]. If �� is the
value of � on day �, then its value on the next day is given by [Arunachalam et al.,
2003, Section 6]:

���� � ���������	
���� ������� (1)

where � is a trend parameter that also evolves stochastically. The initial trend is neutral,
�� � , with subsequent trends updated by a perturbation � � � ������ ����:

���� � �	
���������������� �� � ���� (2)

In a given game, the demand may stay at predominantly high or low levels, or oscillate
back and forth. The probabilistic behavior of � figures importantly in our analysis, as
presented in Section 5.5 below.

3 Deep Maize

The University of Michigan’s entry in TAC-03/SCM is an agent called Deep Maize
[Kiekintveld et al., 2004a,b]. The agent is organized in modular functional units con-
trolling procurement, manufacturing, and sales. Its behavior is based on distributed
feedback control, in that it acts to maintain a reference zone of profitable operation.
To coordinate the distributed modules, Deep Maize employs aggregate price signals,
derived from a market equilibrium analysis and continual Bayesian demand projection.
The design of Deep Maize optimizes for performance in the steady-state, with little
explicit attention to transient or end-game behaviors.

In the present study we focus on one pivotal feature of Deep Maize’s strategy,
described in full detail below. We thus defer specifics of the rest of our agent’s strategy
to our other reports (which in turn do not address the strategic analysis presented here).



4 Day-0 Procurement Strategies

A close examination of the game rules suggests that procurement of components at the
very beginning of the game (day-0 procurement) may be a pivotal strategic issue. This
was indeed borne out by the behavior observed in preliminary rounds of the tournament,
as discussed below. In this section, we explain the reason for expecting day-0 procure-
ment to be so significant, and its ramifications for Deep Maize and other agents.

4.1 Supplier Pricing

In the TAC/SCM market, suppliers set prices for components based on an analysis of
their available capacity. Conceptually, there exist separate prices for each type of com-
ponent, from each supplier. Moreover, these prices vary over time: both the time that
the deal is struck, and time that the component is promised for delivery.

The TAC/SCM component catalog [Arunachalam et al., 2003, Figure 3] associates
every component � with a base price, 	�. The correspondence between price and quan-
tity for component supplies is defined by the suppliers’ pricing formula [Arunachalam
et al., 2003, Section 5.5]. The price offered by a supplier at day � for an order to be
delivered on day �� 
 is

����� 
� � 	� � ���	�
����� 
�

���

� (3)

where ���� denotes the cumulative capacity for � the supplier projects to have available
from the current day through day . The denominator, ���
, represents the nominal ca-
pacity controlled by the supplier over 
 days, not accounting for any capacity committed
to existing orders.

Supplier prices according to Eq. (3) are date-specific, depending on the particular
pattern of capacity commitments in place at the time the supplier evaluates the given
RFQ. A key observation is that component prices are never lower than at the start of the
game (� � �), when ���
� � ���
 and therefore ���
� � ���	�, for all � and 
.2 As the
supplier approaches fully committed capacity (���� � 
� � �), ���� � 
� approaches
	�.

In general, one would expect that procuring components at half their base price
would be profitable, up to the limits of production capacity. Customer reserve prices
range between 0.75 and 1.25 the base price of PCs, defined as the sum of base prices of
components. Therefore, unless there is a significant oversupply, prices for PCs should
easily exceed the component cost, based on day-0 prices.

An agent’s procurement strategy must also take into account the specific TAC/SCM
RFQ process. Each day, agents may submit up to 10 RFQs, ordered by priority, to
each supplier. The suppliers then repeatedly execute the following, until all RFQs are
exhausted: (1) randomly choose an agent, (2) take the highest-priority RFQ remaining

2 As discussed below, this creates a powerful incentive for early procurement, with significant
consequences for game balance. In retrospect, the supplier pricing rule was generally consid-
ered a design flaw in the game, and has been substantially revised for the 2004 TAC/SCM
tournament.



on its list, (3) generate a corresponding offer, if possible. In responding to an RFQ, if the
supplier has sufficient available capacity to meet the requested quantity and due date,
it offers to do so according to its pricing function. If it does not, the supplier instead
offers a partial quantity at the requested date and/or the full quantity at a later date, to
the best of its ability given its existing commitments. In all cases, the supplier quotes
prices based on Eq. (3), and reserves sufficient capacity to meet the quantity and date
offered.

4.2 Implications of Aggressive Day-0 Procurement

From the discussion above, it would appear advantageous to any agent that it attempt to
procure a large number of components on day 0. We call this strategy aggressive day-
0 procurement, or simply aggressive. From each agent’s perspective, the main effect
of being aggressive is on its own component procurement profile. If every agent is
aggressive, however, it can significantly change the character of the game environment.

An aggressive day-0 procurement commits to large component orders before overall
demand over the game horizon is known. This leaves agents with little flexibility to
respond to cases of low demand, except by lowering PC prices to customers. Since
component costs are sunk at the beginning, there is little to keep prices from dropping
below (ex ante) profitable levels.

As more agents procure aggressively, several factors make aggressiveness even
more compelling. The aggressive agents reserve significant fractions of supplier capac-
ity, thus reducing subsequent availability and raising prices, according to their pricing
function (3). A natural response might induce a “race” dynamic, where agents issue
day-0 RFQs in increasingly large chunks, ultimately requesting all components they
expect to be able to use over the entire game horizon. Not only does this exacerbate
the risk of locking in aggregate oversupply, it also produces a less interleaved and more
unbalanced distribution of components, especially at the beginning of the game. This
in turn can prevent many agents from being able to acquire key components needed for
particular PC models until relatively far into the production year.

For all these reasons, the aggressive strategy is appealing to individual agents, yet
potentially quite damaging for the agent pool overall. We considered this situation par-
ticularly bad for our agent, given that it was designed for high performance in the steady
state [Kiekintveld et al., 2004a]. Deep Maize devotes a considerable effort toward de-
veloping accurate demand projections, and thus is quite responsive to actual demand
conditions. If most of the game’s component procurement is up front, we never reach a
steady state, and the ability to respond to demand conditions is much less relevant.

The Deep Maize development team therefore decided not to employ aggressive
day-0 procurement in the preliminary rounds, instead treating it just like any other day.
We did not really expect that others would miss the opportunity, but did not want to
encourage or accelerate it.

5 TAC-03 Tournament

The twenty agents who participated in the TAC-03/SCM tournament are listed in Ta-
ble 1. The table presents average scores from each of three preliminary rounds, mea-



Table 1. TAC-03/SCM tournament participants, and their performance in preliminary rounds.
Results from the qualifying rounds are weighted, seeding rounds are unweighted.

Agent Affiliation Average Profit ($M)
Qualifying Seeding 1 Seeding 2

TacTex U Texas 33.65 32.66 32.97
RedAgent McGill U 15.09 24.57 29.52
Botticelli Brown U 13.88 17.29 28.03
Jackaroo U Western Sydney 14.89 35.55 19.23
WhiteBear Cornell U –3.17 13.57 16.50
PSUTAC Pennsylvania State U –120.0 15.52 15.25
HarTAC Harvard U 12.41 4.19 10.72
UMBCTAC U Maryland Baltimore Cty –13.94 30.16 10.23
Sirish –109.4 –0.17 8.27
Deep Maize U Michigan 1.85 0.45 7.49
TAC-o-matic Uppsala U 0.22 1.79 7.07
RonaX Xonar GmbH –0.92 9.24 4.29
MinneTAC U Minnesota 10.88 6.56 –0.32
Mertacor Aristotle U Thessaloniki 9.29 –0.38 –3.53
zepp Poli Bucharest –24.83 –7.80 –5.46
PackaTAC N Carolina State U –5.11 –25.67 –5.71
Socrates U Essex –48.94 –3.31 –6.84
Argos Bogazici U 3.65 –4.24 –8.43
DummerAgent –8.08 –20.56 —
DAI hard U Tulsa –11.36 –39.05 —

sured in millions of dollars of profit. Results from the semifinal and final rounds are
presented in Section 5.3 below.

Two seeding rounds were held during the periods 7–11 and 14–18 July, 3 with each
agent playing 60 and 66 games, respectively. Two agents were eliminated based on
scores and/or inactivity after Seeding Round 1. The remaining 18 agents advanced to
the semifinals, with assignment to heats based on standing in Seeding Round 2. The
semifinals and finals were held live at IJCAI-03, 11–13 August in Acapulco, Mexico,
each round consisting of nine games in one day. Semifinal 1 heat 1 (S1H1) comprised
agents seeded 1–6 and 16–18, and the 7–15 seeds played in S1H2. The top six teams
from each S1 heat (9 games) proceeded to the second semifinal round. S2H1 comprised
teams ranked 1–3 in S1H1, and those ranked 4–6 in S1H2. The top three in S1H2
played, along with the second three in S1H1, in S2H2. The top three from each of
S2H1 and S2H2 then entered the finals on 13 August. Further details about the TAC-03
tournament are available at http://www.sics.se/tac.

3 An earlier “qualifying” round spanned 16–27 June, but this was mainly for debugging and no
agents were eliminated.



5.1 Evolution of Day-0 Policies in Preliminary Rounds

As we expected, competition entrants noticed the individual advantages of aggressive
day-0 procurement. Early in the qualifying rounds we noticed Jackaroo’s distinct saw-
tooth shaped profits, indicating a steady increase in wealth with large periodic drops
corresponding to large deliveries of supplies. This pattern was the result of large supply
orders placed early in the game (over the first seven days, not just day 0) for delivery at
regular intervals [Zhang et al., 2004].

Based on our subsequent analysis of early game logs,4 we can identify TacTex [Par-
doe and Stone, 2004] as the first to employ an aggressive day-0 strategy in competition.
In their very first qualifying round game, TacTex requested 8000 of each component
from each supplier. Although we have found many agents performed mild day-0 pro-
curement during the qualifying rounds, TacTex was more aggressive, earlier—likely a
factor in their supremacy this first round.

Throughout the first seeding round, more agents began using increasingly aggres-
sive day-0 procurement strategies. In particular we noticed the successful agents Tac-
Tex, Botticelli, RedAgent, UMBCTAC, and Jackaroo ordering very large quantities
on day 0 and very little later in the game. Interestingly, there was no discussion of
the issue on the TAC/SCM message boards, possibly because entrants recognized its
strategic sensitivity. By the second seeding round it was obvious that the majority of
agents were using aggressive strategies. In particular, we verified that all the agents that
placed higher than Deep Maize in the second seeding round (see Table 1) employed
aggressive day-0 procurement.

While observing the increase in aggressiveness, we compiled detailed dossiers de-
scribing the day-0 strategies of other agents. We hoped to use this data to understand
how widespread the use of day-0 procurement had become, and to understand how it
was affecting the dynamics of the game.

5.2 Deep Maize Preemptive Strategy

After much deliberation, we decided that the only way to prevent the disastrous rush
toward all-aggressive equilibrium was to preempt the other agents’ day-0 RFQs. By
requesting an extremely large quantity of a particular component, we would prevent
the supplier from making reasonable offers to subsequent agents, at least in response to
their requests on that day. Our premise was that it would be sufficient to preempt only
day-0 RFQs, since after day 0 prices are not so especially attractive.

The Deep Maize preemptive strategy operates by submitting a large RFQ to each
supplier for each component produced. The preemptive RFQ requests 85000 units—
representing 170 days’ worth of supplier capacity—to be delivered by day 30. See Fig-
ure 2. It is of course impossible for the supplier to actually fulfill this request. Instead,
the supplier will offer us both a partial delivery on day 30 of the components they can
offer by that date (if any), and an earliest-complete offer fulfilling the entire quantity

4 The TAC/SCM game server records all agent actions (e.g., RFQs, manufacturing, bids) along
with supplier and customer behavior, and releases the log files after each game instance is
complete.



(unless the supplier has already committed 50 days of capacity). With these offers,
the supplier reserves necessary capacity. This has the effect of preempting subsequent
RFQs, since we can be sure that the supplier will have committed capacity at least
through day 172. (The extra two days account for negotiation and shipment time.) We
will accept the partial-delivery offer, if any (and thereby reject the earliest-complete),
giving us at most 14000 component units to be delivered on day 30, a large but feasible
number of components to use up by the end of the game.

0 30 172 219

Fig. 2. Deep Maize’s preemptive RFQ.

The TAC/SCM designers anticipated the possibility of preemptive RFQ generation,
(there was much discussion about it in the original design correspondence), and took
steps to inhibit it. The designers instated a reputation mechanism, in which refusing
offers from suppliers reduces the priority of an agent’s RFQs being considered in the
future. Even with this deterrent, we felt our preemptive strategy would be worthwhile.
Since most agents were focusing strongly on day 0, priority for RFQ selection on sub-
sequent days might not turn out to be crucial.

5.3 Tournament Story

Having developed the preemptive strategy, we still faced the question of when to de-
ploy it. Based on our performance in preliminaries, we were reasonably confident that
we could make the top six out of nine in S1H2 without resorting to preemption, and
instead chose to implement a moderate form of aggressive day-0 procurement. As
expected, other agents actually scaled up their day-0 procurement, and consequently,
Deep Maize did not put on a very strong showing in this round. Fortunately, fourth
place was sufficient to advance to the next round.

Table 2 presents results for the top twelve agents after Semifinal 1. Network prob-
lems at the competition venue caused difficulties for agents running locally–Jackaroo
and HarTAC, in particular.5

After the first semifinal closed, the next few hours were filled with a great deal of
hustle as the team activated the preemptive strategy that would be played the next day.
These hours were also filled with anxiety. We had only intuition about the effect of
preemptive strategy on Deep Maize and other agents, but had never had a chance to
test it against other competitors. On the other hand, we could hardly wait to see the

5 The problems did not affect the majority of agents communicating over the Internet from
entrants’ home institutions to the servers in Sweden.

6 The score of HarTAC in Semifinal 2 was adversely affected by one game in which it experi-
enced connectivity problems and lost $364M. Omitting this game would boost their average
profit to $8.46M.



Table 2. Results for twelve agents participating in the second semifinal and final rounds.

Agent Average Profit ($M)
Semifinal 1 Semifinal 2 Final

RedAgent 12.75 (H1) 25.09 (H1) 11.61
Deep Maize 10.51 (H2) 15.28 (H1) 9.47
TacTex 1.85 (H1) –15.54 (H2) 5.02
Botticelli 5.69 (H1) –4.83 (H2) 3.33
PackaTAC 18.31 (H1) 8.70 (H1) –1.68
WhiteBear 5.26 (H1) –9.58 (H2) –3.45
PSUTAC 17.81 (H1) –1.56 (H1) —
TAC-o-matic –1.24 (H2) –13.50 (H1) —
Sirish 15.86 (H2) –20.21 (H2) —
MinneTAC 13.92 (H2) –24.98 (H2) —
UMBCTAC 10.78 (H2) –29.91 (H2) —
HarTAC6 2.59 (H2) –32.95 (H1) —

“unexpected” dramatic change in Deep Maize behavior in the arena with presumably
the three best agents (since we did not place very highly in the first round, we would
play the top three placing agents from the other heat).

In the morning of 12 August, the Deep Maize team stood waiting by the computer
screen as the second round of semifinals began. As day 29 rolled around, everyone
held their breath, releasing it when the first large delivery of components dropped in.
Once we saw distinct manifestations of the preemptive strategy, we began to wonder
how other agents would react. Our suspense did not last long: soon after the game’s
midpoint, a comment emerged in the TAC game chatroom: “why we can’t get hard
disks? How server handle purchase RFQs? is the administrator around!!!?” Apparently,
one agent at least was taking for granted that its day-0 requests would be fulfilled.

At the end of S2H1, Deep Maize came in second behind the eventual tournament
winner, Red Agent [Keller et al., 2004], followed closely by PackaTAC [Dahlgren,
2003]. These agents, it turned out, were relatively resilient to the preemptive strategy,
as they did not excessively rely on day-0 procurement, but adaptively purchased com-
ponents throughout the game.

Although none had anticipated it explicitly, it turned out that most agents playing
in the finals were individually flexible enough to recover from day-0 preemption. By
preempting, it seemed that Deep Maize had leveled the playing field, but RedAgent’s
apparent adaptivity in procurement and sales [Keller et al., 2004] earned it the top spot
in the competition rankings.

5.4 Analysis

Did Deep Maize’s preemption strategy work? We can first examine whether it had
its intended direct effect, namely, to reduce the number of components ordered at the
very beginning of the game. Table 3 presents, for each tournament round, the number
of components ordered on day 1 (based on day-0 RFQs). Each value represents a total



Table 3. Effect of preemption on day 1 component orders and average profits.

S1H1 S1H2 S2H1 S2H2 Finals
(DM?, P?,� ) –,–,9 DM,–,9 DM,P,8 –,–,9 DM,P,16
components 59390 46989 27377 70744 27172
avg profits 2.97 –3.05 7.02 –17.51 4.05

over delivery dates and agents, averaged over the 16 supplier-component pairs. Above
the component numbers we indicate whether Deep Maize played in that round (DM),
whether it employed preemption (P), and the number of games. Note that this data in-
cludes one game in S2H1 and two in the finals in which Deep Maize failed to preempt
due to network problems. It does exclude one anomalous S2H1 game, in which HarTac
experienced connectivity problems, to wildly distorting effect.

From the table, it is clear that the preemptive day-0 strategy had a large effect. The
difference is most dramatic in Semifinal 2, where the heat with Deep Maize preempting
saw an average of 27377 components committed on day 1, as compared to 70744 in the
heat without Deep Maize.

The tournament results also indicate that preemption was successful. The fact that
Deep Maize performed well overall is suggestive, though of course there are many
other elements of Deep Maize contributing to its behavior. Evidence that the preemp-
tive strategy in particular was helpful can be found in the results from Semifinal 1,
where Deep Maize did not preempt and ended up in fourth place. This was sufficient
for advancing in the tournament, but clearly not as creditable as its second place show-
ing in the finals, among the (presumably) top agents in the field.

We can conclude, then, that preemption helped Deep Maize. How did it affect the
rest of the field? Table 3 also suggests a positive relation between preemption and prof-
its averaged over all agents. Again, the contrast is greatest between S2H1 and S2H2. In
the heat without Deep Maize, it appears that competition among aggressive agents led
to an average loss of $17.51M. With Deep Maize preempting in S2H1, profits are a
healthy $7.02M per agent. Preemption was also operative in the finals, and profits there
were also positive. That it is preemption and not Deep Maize per se is supported by
examination of Semifinal 1, in which the heat without our agent appears to be substan-
tially more profitable on average.

Pooling all of these semifinal and final games, we compared average profits for
games with and without preemption. Games with preemption averaged $3.97M in prof-
its, compared to a loss of $4.02M in games without preemption. Given the small dataset
and large variance, this difference is only marginally statistically significant (� � ����.

Drawing inferences from tournament results is complicated by the presence of many
varying and interacting factors. These include details of participating agents, and ran-
dom features of environment, in particular the level of demand. To test the influence
of demand, we measured the overall demand level for each game, ��, defined as the
average number of customer RFQs per day. Figure 3 presents a scatterplot of the tour-
nament games, showing �� and per-agent profits for each. We distinguish the games
with and without preemption, and for each class, fit a line to the points. The linear fit



was quite good for the games with preemption (�� � ����), capturing somewhat less
of the variance for the games without (�� � ����).
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Fig. 3. Profits versus �� in TAC-03 tournament games. The lines represent best fits to data from
games with and without preemption.

As seen in the figure, with or without preemption, demand clearly exhibits a sig-
nificant (� � ���) relation to profits. The relation is attenuated by preemption, and
indeed the revealed trend indicates that preemption is beneficial when demand is low,
and detrimental in the highest-demand games. This is what we would expect, given
that the primary effect of preemption is to inhibit early commitment to large supplies.
Given the apparently important influence of demand, we developed a more elaborate
mechanism to control for demand in our analysis of tournament games as well as our
post-competition experiments.

5.5 Demand Adjustment

Given a sufficient number of random instances, the problem of variance due to stochas-
tic demand would subside, as the sample means for outcomes of interest would converge
to their true expectations. However, for TAC/SCM, sample data is quite expensive, as
each game instance takes approximately one hour. Therefore, datasets from tourna-
ments and even offline experiments will necessarily reflect only limited sampling from
the distribution of demand environments.

To address this issue, we can calibrate a given sample with respect to the known
underlying distribution of demand ( ��). Our approach is closely related to the standard
method of variance reduction by conditioning [Ross, 1997, Section 11.6.2]. Given a
specification for the expectation of some game statistic � as a function of ��, its overall



expectation accounting for demand is given by

���� �

�
��

���� ��� ��� ���� ��� (4)

Although we do not have a closed-form characterization of the density function��� ���,
we do have a specification of the underlying stochastic demand process. From this, we
can generate Monte-Carlo samples of demand trajectories over a simulated game.7 We
then employ a kernel-based density estimation method using Parzen windows [Duda
et al., 2000] to approximate the probability density function for ��. This distribution is
shown in Figure 4. Its mean is 196, with a standard deviation of 77.4. Note that much of
the probability is massed at the extremes of demand, with a skew toward the low end.
The tendency toward the extremes comes from the combination of trend (� ) momentum
and bounding of �. The skew toward the low end comes from the fact that the trend is
multiplicative, so the process tends to transition more rapidly while at the higher levels
of demand.
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Fig. 4. Probability density for average RFQs per day ( ��).

Given this distribution, we define demand-adjusted profit (DAP) as the expected
profit, adjusted for demand. We calculate this by substituting the per-agent profit for
� in Eq. (4). Using this formula requires an estimate for profits as a function of ��,
which we obtain by linear regression from the sample data. The two lines in Figure 3
thus represent our estimates for profits given �� for the two sets of TAC-03 tournament

7 We could also use historical game data, but simulating Eqs. (1) and (2) is much faster. The
200,000 data points we generated for our density estimate would take 22.8 years of game
simulation time to produce.



games. Although the linearity assumption introduces bias, for limited samples this is
compensated by the reduction in variance due to adjusting for ��.

From the linear model of profits given ��, we can obtain a summary comparison of
overall profits with and without preemption. For the TAC-03 games without preemption,
DAP was –$1.41M. Preemption increased DAP to $5.20M. Thus, we find that on av-
erage, Deep Maize’s preemptive strategy improved not only its own profits, but those
of the other agents as well. These results are corroborated by controlled experiments
described below.

6 Game-Theoretic Model

Although the tournament results presented above are illuminating, it is difficult to sup-
port general conclusions due to the many contributing factors and differences among
agents. To isolate the effect of preemption on the key strategic variable (aggressiveness
of day-0 procurement), we developed a stylized game-theoretic model, then calibrated
it using simulation experiments. Our results are summarized here; see the extended
version of this paper [Wellman et al., 2004] for our detailed analysis.

As noted at the outset, TAC/SCM defines a six-player game of incomplete and im-
perfect information, with an enormous space of available strategies. The game is sym-
metric [Gintis, 2000], in that agents have identical action possibilities, and face the same
environmental conditions. In our stylized model, we restrict the agents to two strategies,
differing only in their approach to day-0 procurement. Both are implemented as variants
of Deep Maize. In strategy A (aggressive), the agent requests large quantities of com-
ponents from every supplier on day 0. In strategy B (baseline), the agent treats day 0 just
like any other day, issuing requests according to its usual policy of serving anticipated
demand and maintaining a buffer inventory [Kiekintveld et al., 2004a].

To calibrate our models, we ran 30 or more simulated games for each strategy profile
(i.e., combination of A and B), with and without the presence of an agent playing the
preemptive strategy, P. For each sample, we collected the average profits for the As
and Bs, as well as the demand level, ��. We derive the demand-adjusted payoff (DAP)
for each strategy, using the method described in Section 5.5. Ourfindings are as follows.

Aggressiveness has a negative effect on total profits. We regressed total DAP for each
profile on the number of aggressive agents in that profile. For games without preemp-
tion, the linear relationship was quite strong (� � �����, � � � ����), with each A in
the profile subtracting $20.9M from total profits, on average. With a preemptive agent,
the effect was insignificant (� � ����, �� � ���).

Preemption neutralizes aggressive procurement. In non-preemptive profiles, the raw
difference in average profits between aggressive and baseline agents was on the order of
$10M, as compared to $1M for the preemptive profiles. Moreover, the average variance
across agents for non-preemptive profiles was an order of magnitude larger than the
average variance for preemptive profiles.



The expected behaviors obtain in equilibrium. Our observations about the game’s
propensity to promote aggressive procurement were consistent with the 2003 tourna-
ment results, but does this actually constitute rational behavior? From our empirical
payoff function, we can derive pure-strategy Nash equilibria, providing one way to
answer this question. As seen in Figure 5, the unique pure Nash equilibrium profile
without preemption comprises four As and two Bs. A similar analysis with preemption
reveals three equilibria, with zero, two, or four As, respectively. The differences are
much smaller in this case, and the statistical differences much less significant. This is
consistent with our finding above that preemption neutralizes the difference between A
and B. Without preemption, a predominance of As is expected.

Fig. 5. DAP payoffs for strategy profiles, without preemption. Arrows indicate for each column,
whether an agent in that profile would prefer to stay with that strategy (arrow head), or switch
(arrow tail). Solid black arrows denote statistically significant comparisons.

Symmetric equilibria confirm these findings. For the game without preemption, the
unique symmetric mixed-strategy equilibrium plays strategy A with probability 0.82.
With preemption, there are two equilibria, at probabilities 0.03 and 0.99.

Preemption increases average profits for everybody. Analysis of the mixed-strategy
equilibrium of the game without preemption reveals that the expected payoff (equal for
A and B, by definition) is a loss of $9.59M. With preemption, the two equilibria have
expected payoffs of $5.92M and $7.01M, respectively.

To evaluate the degree to which preemption neutralizes the difference between A
and B, we can identify an �� for each game such that any mixed strategy is a symmetric
�-Nash equilibrium at � � ��. A profile is �-Nash if no agent can improve its payoff by
more than � by deviating from its assigned strategy. For games without preemption, � �

is $10.6M. With preemption, �� is only $0.97M. This provides a bound on how much
it can matter to make the right choice about aggressiveness, given a symmetric set of
other agents.



Preemption obtains in equilibrium. When agents are allowed to choose among all three
strategies (A, B, and P), some will choose to preempt. Among the 28 distinct strategy
profiles, there are four pure-strategy equilibria, which have 1–3 preemptors. We have
also identified a symmetric mixed-strategy equilibrium, in which agents preempt with
probability 0.58.

7 Conclusion

The TAC supply-chain game presented automated trading agents (and their designers)
with a challenging strategic problem. Embedded within a highly-dimensional stochastic
environment was a pivotal strategic decision about initial procurement of components.
Our reading of the game rules and observation of the preliminary rounds suggested
to us that the entrant field was headed toward a self-destructive, mutually unprofitable
equilibrium of chronic oversupply. Our agent, Deep Maize, introduced a preemptive
strategy designed to neutralize aggressive procurement. It worked. Not only did pre-
emption improve Deep Maize’s profitability, it improved profitability for the whole
field. Whereas it is perhaps counterintuitive that actions designed to prevent others from
achieving their goals actually helps them, strategic analysis explains how that can be the
case.

Investigating strategic behavior in the context of a research competition has several
distinct advantages. First, the game is designed by someone other than the investigator,
avoiding the kinds of bias that often doom research projects to success. Second, the
entry pool is uncontrolled, and so we may encounter unanticipated behavior of individ-
ual agents and aggregates. Third, the games are complex, avoiding many of the biases
following from the need to preserve analytical or computational tractability. Fourth,
the environment model is precisely specified and repeatable, thus subject to controlled
experimentation. We have exploited all of these features in our study, in the process
developing a repertoire of methods for empirical game-theoretic analysis, which we
expect to prove useful for a range of problems.

There is no doubt that this form of study also has several limitations, for example in
justifying generalizations beyond the particular environment studied. Nevertheless, we
believe that the methods developed here provide a useful complement to the kinds of
(a priori) stylized modeling most often pursued in game-theoretic analysis, and to the
non-strategic analyses typically applied to simulation environments.
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