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Abstract

Predictive state representations (PSRs) use predictions of a set of tests to
represent the state of controlled dynamical systems. One reason why this
representation is exciting as an alternative to partially observable Markov
decision processes (POMDPS) is that PSR models of dynamical systems
may be much more compact than POMDP models. Work on PSRs to date
has focused otinear PSRs, which have not allowed for compression
relative to POMDPs. We introduce a new notion of tests which allows
us to define a new type of PSR that is nonlinear in general and allows
for exponential compression in some deterministic dynamical systems.
These new tests, callegltests are related to the tests used by Rivest
and Schapire [1] in their work with the diversity representation, but our
PSR avoids some of the pitfalls of their representation—in particular, its
potential to be exponentially larger than the equivalent POMDP.

1 Introduction

A predictive state representation, or PSR, captures the state of a controlled dynamical sys-
tem not as a memory of past observations (as do history-window approaches), nor as a dis-
tribution over hidden states (as do partially observable Markov decision process or POMDP
approaches), but as predictions for a set of tests that can be done on the system. A test is
a sequence of action-observation pairs and the prediction for a test is the probability of
the test-observations happening if the test-actions are executed. Littman et al. [2] showed
that PSRs are as flexible a representation as POMDPs and are a more powerful represen-
tation than fixed-length history-window approaches. PSRs are potentially significant for
two main reasons: 1) they are expressed entirely in terms of observable quantities and this
may allow the development of methods for learning PSR models from observation data
that behave and scale better than do existing methods for learning POMDP models from
observation data, and 2) they may be much more compact than POMDP representations. It
is the latter potential advantage that we focus on in this paper.

All PSRs studied to date have been linear, in the sense that the probability of any sequence
of k observations given a sequencekadctions can be expressed as a linear function of the
predictions of a core set of tests. We introduce a new type of tesé-tast and present

the first nonlinear PSR that can be applied to a general class of dynamical systems. In



particular, in the first such result for PSRs we show that there exist controlled dynamical
systems whose PSR representation is exponentially smaller than the size of its POMDP
representation.

To arrive at this result, we briefly review PSRs, introduce e-tests and an algorithm to gen-
erate a core set of e-tests given a POMDP, show that a representation built using e-tests is
a PSR and that it can be exponentially smaller than the equivalent POMDP, and conclude
with example problems and a look at future work in this area.

2 Models of Dynamical Systems

A model of a controlled dynamical system defines a probability distribution over sequences
of observations one would get for any sequence of actions one could execute in the system.
Equivalently, given any history of interaction with the dynamical system so far, a model
defines the distribution over sequences of future observations for all sequences of future
actions. The state of such a model must be a sufficient statistic of the observed history; that
is, it must encode all the information conveyed by the history.

POMDPs [3, 4] and PSRs [2] both model controlled dynamical systems. In POMDPs, a
belief state is used to encode historical information; in PSRs, probabilities of particular
future outcomes are used. Here we describe both models and relate them to one another.

POMDPs A POMDP model is defined by a tupl&, A4, O, T, O, by), whereS, A, and

O are, respectively, sets of (unobservable) hypothetical underlying-system states, actions
that can be taken, and observations that may be issued by the s§stemset of matrices

of dimension|S| x [S|, one for eactu € A, such thatl}; is the probability that the next

state isj given that the current state isand actiona is taken. O is a set of|S| x |S|
diagonal matrices, one for each action-observation pair, suctfhats the probability of
observingo after arriving in state by taking actiorz. Finally, b, is the initial belief state,

a|S| x 1 vector whosé*" element is the probability of the system starting in state

The belief state at histork is b(S|h) = [prob(1|h) prob(2|h) ... prob(|S||h)], where

prob(ilh) is the probability of the unobserved state beirgf historyh. After taking an

actiona in history h and observing, the belief state can be updated as follows:
bT(S|h)T*O°

T _ ; Lot ,
b* (S|hao) = (ST 0T g, (1)) is the|S| x 1 vector consisting of all’s)

PSRs Littman et al. [2] (inspired by the work of Rivest and Schapire [1] and Jaeger [5])
introduced PSRs to represent the state of a controlled dynamical system using predictions
of the outcomes of tests. They define a teas a sequence of actions and observations

t = alola?o? - - - a¥oF; we shall call this type of testsequence tesor s-testin short. An

s-test succeeds iff, when the sequence of actidn$ - - - o is executed, the system issues

the observation sequenatn? - - - o*. The predictiorp(¢|h) is the probability that the s-test

t succeeds from observed histdryof lengthn w.l.0.g.); that is

p(t|h) = prob(op,41 =o', ..., 0pn1k = 0k|h, Unp1 =0, ... Gnyp = ak) Q)
wherea; ando; denote the action taken and the observation, respectively, ai.timehe
rest of this paper, we will abbreviate expressions like the right-hand side of Equation 1 by
prob(o'o? - - - oF|hata? - - - a¥).
A set of s-tests) = {q1¢2...q|p(} is said to be aore set if it constitutes a PSR, i.e.,
if its vector of predictionsp(Q|h) = [p(q1|h) p(g2|h) ... plgq)lh)], is a sufficient

statistic for any history,. Equivalently, ifQ is a core set, then for any s-tésthere exists
a function f; such thatp(t|h) = fi(p(Q|h)) for all h. The prediction vectop(Q|h) in



PSR models corresponds to belief stgig|~) in POMDP models. The PSRs discussed by
Littman et al. [2] ardinear PSRs in the sense that for any s-tesf; is a linear function of
the predictions of the core s-tests; equivalently, the following equation

Vs-testg 3 a weight vectotu,, s.t. p(t|h) = p (Q|h)w, 2)

defines what it means fap to constitute a linear PSR. Upon taking actiom history h
and observing, the prediction vector can be updated as follows:

p(aoqi|h) _ faotIi (p(th)> _ pT(Q|h)ma0qz'

- - T (3)
plaolh) — fao(p(QIR))  pT(Qlh)mao
where the final right-hand side is only valid for linear PSRs. Thus a linear PSR model is
specified byl) and by the weight vectors in the above equatiog,, for all a € A,0 €
0,q € QU ¢ (whereg is the null string). It is pertinent to ask what sort of dynamical
systems can be modeled by a PSR and how many core tests are required to model a system.
In fact, Littman et al. [2] answered these questions with the following result:

p(gilhao) =

Lemma 1 (Littman et al. [2])For any dynamical system that can be represented by a finite
POMDP model, there exists a linear PSR model of §i2¢) (o more than the siz&f|) of
the POMDP model.

Littman et al. prove this result by providing an algorithm for constructing a linear PSR
model from a POMDP model. The algorithm they present depends on the insight that
s-tests are differentiated by theiutcome vectorsAn outcome vectow(t) for an s-test

t = a'o'a®0®...a"o" is a|S| x 1 vector; thei® component of the vector is the
probability of ¢ succeeding given that the system is in the hidden state., u(t) =

T 0'e' 79° 0" . ‘T“"O“koklm. Consider the matriX/ whose rows correspond to

the states iS5 and whose columns are the outcome vectors for all possible s-test§ Let
denote the set of s-tests associated with the maximal set of linearly independent columns
of U; clearly|@| < |S]. Littman et al. showed th&p is a core set for a linear PSR model

by the following logic. LetU(Q) denote the submatrix consisting of the columndjof
corresponding to the s-testsQ. Clearly, for any s-test, u(t) = U (Q)w, for some vector

of weightsw;. Thereforep(t|h) = b7 (S|h)u(t) = bT(S|h)U(Q)w; = p(Q|h)w; which

is exactly the requirement for a linear PSR (cf. Equation 2).

We conjecture that the number of states in the minimal POMDP model of a dynamical
system also puts a lower bound on the number of core s-tests in a linear PSR model of such
a system. Though we have no proof of this result yet, empirical evidence backs up this
claim: Neither the systems in the original formulation [2] of PSRs nor the many sample
systems that Singh et al. [6] use to test a learning algorithm for PSRs deviate in size from
the equivalent minimal POMDPs.

We will reuse the concept of linear independence of outcome vectors with a new type of
test to derive a PSR that is nonlinear in general. This is the first nonlinear PSR that can be
used to represent a general class of problems. In addition, this type of PSR in some cases
requires a number of core tests that is exponentially smaller than the number of states in
the minimal POMDP.

3 A new notion of tests

In order to formulate a PSR that requires fewer core tests, we look to a new kind of test—
the end test, oe-testin short. An e-test is defined by a sequence of actions and a single
ending observation. An e-test= a'a?---aFo* succeeds if, after the sequence of ac-
tionsa'a?- - - aF is executedp” is observed. This type of test is inspired by Rivest and
Schapire’s [1] notion of tests in their work on modelidgterministicdynamical systems.



done — false i — 0; L — {}
do until done
done « true
N « generate all one-action extensions of lengtlsts inL
for each te N
if w(t) is linearly independent df (L) then
L «— L U/{t}; done «— false
end for
t—1+1
end do
Qv — L

Figure 1: Our search algorithm to find the core e-tests given the outcome vectors.

3.1 PSRs with e-tests

Just as Littman et al. considered the problem of constructing s-test-based PSRs from
POMDP models, here we consider how to construct a e-test-based PSR, or EPSR, from
a POMDP model and will derive properties of EPSRs from the resulting construction.

The|S| x 1 outcome vector for an e-test= a'a?...a*o" is
w(e) =TT ... T 0" 1,4,. (4)

Note that we are usings to denote outcome vectors for e-tests afgdto denote outcome
vectors for s-tests. Consider the matkixwhose rows correspond t® whose columns

are the outcome vectors for all possible e-tests.(QQgtdenote the set of e-tests associated
with the maximal set of linearly independent columns of mdifixlearly|Qv | < |S|. The

hope is that the s&py is a core set for an EPSRmodel of the dynamical system represented
by the POMDP model. But before we consider this hope, lets consider how we would find
Qv given a POMDP model.

We can compute the outcome vector for any e-test from the POMDP parameters using
Equation 4. So we could compute the column¥aine by one and check to see how many
linearly independent columns we find. If we ever fii&] linearly independent columns,

we know we can stop, because we won't find any more. Howevé®iff < |S|, then

how would we know when to stop? In Figure 1, we present a search algorithm that finds
the setQy in polynomial time. Our algorithm is adapted from Littman et al.’s algorithm
for finding core s-tests. The algorithm starts with all e-tests of length one and maintains a
setL of currently known linearly independent e-tests. At each iteration it searches for new
linearly independent e-tests among all one-action extensions of the e-tests it addad to

the last iteration and stops when an iteration does not add to tlie set

Lemma 2 The search algorithm of Figure 1 computes the@g¢tin time polynomial in
the size of the POMDP.

Proof Computing the outcome vector for an e-test using Equation 4 is polynomial in the
number of states and the length of the e-test. There cannot be morgSthatests in the

setL maintained by the search algorithm algorithm and only one-action extensions of the
e-tests inL, U O are ever considered. Each extension length considered must add an e-test
else the algorithm stops, and so the maximal length of each e-t€st is upper bounded

by the number of states. Therefore, our algorithm retd@nsin polynomial time. a

Next we show that the prediction of any e-test can be computed linearly from the prediction
vector for the e-tests i)y .



Lemma 3 For any historyh and any e-test, the predictiorp(e|h) is some linear function
of prediction vectop(Qv |h), i.e.,p(e|lh) = p(Qv|h)w. for some weight vectar,.

Proof LetV(Qy) be the submatrix o¥ containing the columns corresponding@e .
By the definition ofQy, for any e-test, v(e) = V(Qv)we, for some weight vectow..
Furthermore, for any history, p(e|h) = b(S|h)v(e) = b(S|h)V (Qv)we = p(Qv|h)we.

(|

Note that Lemma 3 does not imply th@4, constitutes a PSR, let alone a linear PSR, for
the definition of a PSR requires that the prediction ofsaléstsbe computable from the
core test predictions.

Next we turn to the crucial question: do@s- constitute a PSR?

Theorem 1 If V(Qv ), defined as above with respect to some POMDP model of a dynam-
ical system, is a square matrix, i.e., the number of e-tesgiris the number of states)|
(in that POMDP model), the®®y, constitutes dinear EPSR for that dynamical system.

Proof  For any historyh, p* (Qv|h) = bT(S|h)V(Qv). If V(Qyv) is square then it is
invertible because by construction it has full rank, and hence for any histéfy(S|h) =
pT(Qv|h)V Qv ). For any s-test = a'o'a?0? - - - a¥oF,

pLth) = USRI 0% 0 7% 0% ... 79" 09" " 14 (by first-principles definition)
P (QuImV Q)T 0 T 0 T 0 1s = pT (Qu [h)uw

for some weight vectow;. Thus,Qy constitutes a linear EPSR as per the definition in
Equation 2. |

We note that the produ(i'falOalvo1 ..t at ot 15 appears often in association with an
stestt = a'o!---a*o¥, and abbreviate the produeft). We similarly definez(e) =

T4 Ta? .. T 07" " 14 for the e-test = a'a? - - - aFo".

Staying with the linear EPSR case for now, we can definepatate functiorfor p(Qv |h)
as follows: (remembering th&t(Qv ) is invertible for this case)
placei|h) _ b(SIWNT*0™2(es) _ p(QvIh)V " (Qv)z(aoe:) _ p(Qu|h)mace,
p(aolh) P(Q[h)mao p(Qv|h)mao p(Q\(/|;L)mao
5

where we used the fact that the testin the denominator is an e-test. (The form of the
linear EPSR update equation is identical to the form of the update in linear PSRs with
s-tests given in Equation 3). Thus, a linear EPSR model is definéghbgnd the set of
weight vectorsimg,. foralla € A,0 € O, e € {Qv U ¢}, used in Equation 5.

p(e;lhao) =

Now, let us turn to the case when the number of e-testg,inis less thanS|, i.e., when
V(Qv) is not a square matrix.

Lemma 4 In general, if the number of e-tests @y is less than|S|, thenQy is not
guaranteed to be a linear EPSR.

Proof (Sketch) To prove this lemma, we must only find an example of a dynamical
system that is an EPSR but not a linear EPSR. In Section 4.3 we prefsdyitt iegister as

an example of such a problem. We show in that section that the state space2§izais

the number of s-tests in the core set of a linear s-test-based PSR modeld4§,disbthe
number of e-tests iYy is only £ + 1. Note that this means that the rank of tfienatrix

for s-tests i2* while the rank of thd” matrix for e-tests ig + 1. This must mean thady

is not a linear EPSR. We skip these details for lack of space. |



Lemma 4 leaves open the possibility that@ | < |S| then@Qy constitutes a nonlinear
EPSR. We were unable, thus far, to evaluate this possibility for general POMDPs but we
did obtain an interesting and positive answer, presented in the next section, for the class of
deterministic POMDPs.

4 A Nonlinear PSR for Deterministic Dynamical Systems

In deterministic dynamical systems, the predictions of both e-tests and s-tests are binary
and it is this basic fact that allows us to prove the following result.

Theorem 2 For deterministic dynamical systems the set of e-t@stss always an EPSR
and in general it is a nonlinear EPSR.

Proof  For an arbitrary s-test= a'0'a0? - - - a¥o*, and some arbitrary history that is
realizable (i.e.p(h) = 1), we have

prob(o*o? - - of|hata? - a¥) =
= prob(ol|ha1)prob(o2|ha1a2) .- ~p7“0b(ok|lm1a2 . -a’f)

= (pT(QV‘h)walol)(pT(QV|h)wa101a202) Tt (pT(QV|h)walol---akok) = fi(p(Qvlh))
where we used the result of Lemma 3 that regardless of the si2¢ pthe predictions for
all e-tests for any history are linear functions gf(Q+ |k). This shows that for determin-
istic dynamical systems),, regardless of its size, constitutes at least a nonlinear EBSR.

Update Function: Since predictions are binary in deterministic EPSRa&p|h) must be 1
if o is observed after taking acti@nin history h:
p(eilhao) = p(aoe;|h)/p(aolh) = p(aei|h) = p(Qv |h)mae,
where the second equality from the left comes about becauseh) = 1 and, because
o must happen whea is executedp(aoe;|h) = p(ae;|h), and the last equality used the
fact thatae; is just some other e-test and so from Lemma 3 must be a linear function of

p(Qv|h). Itis rather interesting that even though the EPSR formed thr@ugls nonlinear
(as seen in Theorem 2), the update function is in fact linear.

4.1 Diversity and e-tests

Rivest and Schapire’s [1] diversity representation, the inspiration for e-tests, applies only
to deterministic systems and can be explained using the binary outcome Matefined

at the beginning of Section 3.1. Diversity also uses the predictions of a set of e-tests as its
representation of state; it uses as many e-tests as there are distinct columns in the matrix
V. Clearly, at most there can #°! distinct columns and they show that there have to

be at leastog,(|S|) distinct columns and that these bounds are tight. Thus the size of
the diversity representation can be exponentially smaller or exponentially bigger than the
size of a POMDP representation. While we use the same notion of tests as the diversity
representation, our use of linear independence of outcome vectors instead of equivalence
classes based on equality of outcome vectors allows us to use e-tests on stochastic systems.

Next we show through an example that EPSR models in deterministic dynamic systems
can lead to exponential compression over POMDP models in some cases while avoiding
the exponential blowup possible in Rivest and Schapire’s [1] diversity representation.

4.2 EPSRs can be Exponentially Smaller than Diversity

This first example shows a case in which the size of the EPSR representation is exponen-
tially smaller than the size of the diversity representation. The hit register (see Figure 2a)
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k bits (value bits) k bits
A~ hit
0 1 0 1 1 1

Figure 2: The two example systems. a) Hhbit hit register. There ark value bits and the
special hit bit. The value of the hit bit determines the observationkand actions alter

the value of the bits; this is fully described in Section 4.2. b) THst rotate register. The
value of the leftmost bit is observed; this bit can be flipped, and the register can be rotated
either to the right or to the left. This is described in greater detail in Section 4.3.

is a k-bit register (these are thalue bitg with an additional specidiit bit. There are

2k 1 1 states in the POMDP describing this system—one state in which the hit bit is 1
and2F states in which the hit bit is 0 and the value bits take on different combinations of
values. There ark + 2 actions: a flip actiorF; for each value bit that inverts bit if the

hit bit is not set, a set actiofi;, that sets the hit bit if all the value bits are 0, and a clear
actionC}, that clears the hit bit. There are two observatio@®s; if the hit bit is set and

O,, otherwise. Rivest and Schapire [1] present a similar problem (their version h@g no

action). The diversity representation requir:éSZQk) equivalence classes and thus tests,
whereas an EPSR has oi#§f + 1 core e-tests (see Table 1 for the core e-tests and update
function whenk = 2).

Table 1: Core e-tests and update functions for the 2-bit hit register problem.

update function for action
test F Fy Sh Ch
F10n p(F10n) p(F104) p(ShOn) 0
ShOn P(F1510n) p(F2510n) P(ShOn) P(ShOn)
F15,0n p(SrOn) p(F2F1Sh0n) | p(ShOn) —p(F10n)+ | p(F1ShOR) —
p(FIShOh) p(FIOh)
F25,0, | p(F2F151,0n) p(SnOn) p(ShOn) —p(F10n) + | p(F25,0n) —
p(F251,0n) p(F10p)
FyF1ShOp | p(F2SKOn) p(F1SkOn) | p(ShOn) —p(F10n) + | p(F2F1S10OR)—
p(F2F1.5,0n) p(F10n)

Lemma5 For deterministic dynamical systems, the size of the EPSR representation is
always upper-bounded by tmeinimum of the size of the diversity representation and the
size of the POMDP representation.

Proof The size of the EPSR representatifipy | is upper bounded bjS| by construction

of Qy. The number of e-tests used by diversity representation is the number of distinct
columns in the binary” matrix of Section 3.1, while the number of e-tests used by the
EPSR representation is the number of linearly independent columiis i€learly the

latter is upper-bounded by the former. As a quick example, consider the case of 2-bit
binary vectors: There arkdistinct vectors but onl linearly independent ones. |



Table 2: Core e-tests and update function for the 4 bit rotate register problem.

update function for action
test R L F
FO:1 | p(FO1) +p(FFO1) — p(RO1) | p(FO1) +p(FFO1) — p(LO1) | p(FFOx)
RO p(RRO1) p(FFOn) p(RO1)
LO; p(FFOn) p(RRO1) p(LOY)
FFO, p(RO1) p(LO1) p(F'01)
RRO1 p(LO1) p(ROl) p(RROl)

4.3 EPSRs can be Exponentially Smaller than POMDPs and the Original PSRs

This second example shows a case in which the EPSR representation uses exponentially
fewer tests than the number of states in the POMDP representation as well as the original
linear PSR representation. The rotate register illustrated in Figure Zblé ahift-register.

There are two observation®; is observed if the leftmost bit isandO, is observed when

the leftmost bit is0. The three actions ar&, which shifts the register one place to the
right with wraparound,, which does the opposite, arfd, which flips the leftmost bit.

This problem is also presented by Rivest and Schapire as an example of a system whose
diversity is exponentially smaller than the number of states in the minimal POMDP, which

is 2%, This is also the number of core s-tests in the equivalent linear PSR (we computed
these2” s-tests but do not report them here). The diversiBkisHowever, the EPSR that
models this system has only+ 1 core e-tests. The tests and update function for the 4-bit
rotate register are shown in Table 2.

5 Conclusions and Future Work

In this paper we have used a new type of test, the e-test, to specify a nonlinear PSR for
deterministic controlled dynamical systems. This is the first nonlinear PSR for any general
class of systems. We proved that in some deterministic systems our new PSR models are
exponentially smaller than both the original PSR models as well as POMDP models. Sim-
ilarly, compared to the size of Rivest & Schapire’s diversity representation (the inspiration
for the notion of e-tests) we proved that our PSR models are never bigger but sometimes
exponentially smaller. This work has primarily been an attempt to understand the repre-
sentational implications of using e-tests; as future work, we will explore the computational
implications of switching to e-tests.
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