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Abstract

We address the problem of optimally coordinating a group of
loosely-coupled autonomous robots with private state infor-
mation, when each robot is self-interested and acts only to
maximize its own personal reward stream. The general solu-
tion we propose makes honest reporting of private informa-
tion a best-response strategy and leads to the system-optimal
outcome in equilibrium, while assuming the existence of a
currency so that payments can be collected. We also provide
a specialized mechanism for the case in which local robot
models are Markov chains, using Gittins allocation indicesto
compute the system-optimal policy in time linear in the num-
ber of robots. The majority of the computation is distributed
amongst the agents, with the coordinator primarily playingan
enforcement role.

Introduction
To begin to address the problem of coordinating the behavior
of individual robots in a group, one must first consider the
circumstances under which that group has come into being,
and the purpose each robot was created to serve. Currently,
physical robots—to the extent that they exist—are almost
always designed to serve very specific functions (e.g., “print
the circuit”, “vacuum the floor”, etc.), and interaction with
other robots is usually limited to purely cooperative settings.
For instance, various rovers on Mars may be programmed to
fulfill different goals, but in the end they are all there to do
the bidding of the same group of scientists back on Earth.

Design of mechanisms for robot coordination has thus,
naturally, focused on finding means of efficient communica-
tion and decision-making, with the assumption that individ-
ual robots are programmed to share information and perform
tasks as the broader system-designer would like.

However, it is not difficult to call to mind current real-
world scenarios involving software robots, or hypothetical
future scenarios involving physical ones, in which a group
of robots have been designed to serve very different pur-
poses. That is, in addition to the typical interdependence
that can exist between individual robots, there may also be
competitionwithin the group, leading to the possibility that
individual robots will be programmed to behave strategically
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to maximize a utility function that is distinct from that of a
broader system-designer (if present).

The problem of optimally coordinating the behavior of
individuals in a group often essentially amounts to efficient
communication (and perhaps determination) of relevant pri-
vate information, so that local decisions can be made in a
way that optimizes some global metric. Markets have been
used throughout modern history to coordinate a wide array
of human interactions: efficient allocation of food, hiringof
labor, construction of municipal infrastructure, etc.

In robotics, markets have been used to minimize com-
munication costs while achieving, e.g., desirable allocation
of tasks to individuals (Zlot & Stentz 2006; Dias & Stentz
2001). But this “efficient communication” property of mar-
kets is actually just one of their key positive attributes. Cer-
tain markets also have the property of being robust against
potential manipulation by self-interested agents; i.e., they
act to align incentives of individuals with overall system-
wide design goals. For example, coordination mechanisms
with well aligned incentives can promote cooperative be-
havior amongst self-interested agents, with agentschoosing
to faithfully implement distributed planning algorithms and
choosingto share truthful information about their local prob-
lem.

In this work we examine the design and application of
truthful coordination mechanisms for multi-robot environ-
ments. We applymechanism designto a multi-agent, se-
quential decision-making scenario, and we use the formal-
ism of Markov decision processes(MDPs) to characterize
agent models of the world. A significant portion of the paper
is devoted to presenting work described in (Cavallo, Parkes,
& Singh 2006), recast and specialized for robot domains.

In the next section we describe the problem we address
in detail, and provide some necessary background in mecha-
nism design and MDPs. We then present an optimal coordi-
nation mechanism for a general setting, and discuss the sig-
nificant computational challenges that can arise. We present
an important special case, that in which agent worlds can
be modeled as Markov chains, for which computation can
be (almost) completely distributed amongst the agents and
optimal solutions are tractable. Finally, we make some con-
cluding remarks.



Related Work
Brafman and Tennenholtz (1996) provide an early moti-
vating scenario for self-interested robots, in the contextof
partially-controlled multi-agent systems. The authors con-
sider a shared warehouse in which different robots, designed
by different designers, need to coordinate on movements
around the warehouse and placement of equipment.

Auction-based coordination mechanisms have been
adopted for the coordination ofcooperativemulti-robot sys-
tems (Berertonet al. 2003; Toveyet al. 2005; Rabideauet
al. 1999; Gerkey & Mataric 2002), adopting the perspective
of using auctions as efficientalgorithmsfor distributed plan-
ning and not for their incentive properties. This use paral-
lels Wellman’s seminal work onmarket-oriented program-
ming (Wellman 1993), in which markets were adopted for
distributed problem solving because of their ability to sus-
tain optimal joint solutions while dealing with distributed
private information. Prices provide concise aggregate sum-
maries of the marginal effect of an agent’s local action on
the rest of the system.

A number of decomposition techniques for planning in
stochastic domains, including methods specialized to multi-
agent planning, are described in the literature (Kushner
& Chen 1974; Boutilier 1999; Guestrin & Gordon 2002).
These methods often work in the linear-programming for-
mulation of the MDP planning problem, and leverage
decomposition methods for large-scale linear programs,
such as Benders and Dantzig-Wolfe decomposition (Lasdon
1970; Bradley, Hax, & Magnanti 1977).

Earlier work on online mechanism design (OMD) has
considered dynamic environments, but with dynamic agent
arrivals and departures, a single global state, and privatein-
formation about agent rewards (Friedman & Parkes 2003;
Parkes & Singh 2003). The persistence of agents coupled
with the need for continued information from agents about
their private state is what distinguishes the problem of co-
ordinated planning from OMD. Dolgov and Durfee (2006)
have studied resource allocation to self-interested agents
with local problems modeled as MDPs, but in their setting
this allocation is static and made in the initial period, and
thus the incentive challenges are the same as those in stan-
dard (static) mechanism design.

Finally, (Parkes & Shneidman 2004) and (Shneidman &
Parkes 2004) describe methods for distributing computa-
tion amongst self-interested agents in non-dynamic environ-
ments, while providing incentives so that agents will choose
to faithfully perform the intended computation.

Set-Up and Background
A motivating story
Imagine a scenario, not too far in the future, in which a group
of gold prospectors discovers that a particular 1-mile stretch
of riverbed has significant gold deposits. At this point in
time extraction of gold from riverbed has become highly
automated via specialized robots. Each prospector owns a
gold-searching robot and sends it to the river, at which point
it acts autonomously until returning back to “the base” with
its bounty. Certain portions of the riverbed are known to

be more gold-laden than others, and robots are essentially
in competition to work in the most desirable sections. To
maintain order, a government enforcement agency seeks to
coordinate the actions of the robot population. Moreover,
the agency sees it as desirable that any chosen coordination
scheme lead to the greatest possible gold harvest, with the
specialisms of each robot matched to fit characteristics of
different extraction tasks. How can these goals be achieved?

The problem we address, formally
We consider a scenario in which a group ofn agents (we use
“agent” and “robot” interchangeably)I = {1, . . . , n} inter-
act with the world in various ways, each extracting reward
at a rate dependent on the nature of its interaction, and each
seeking to maximize its own reward over time.

More precisely, we assume each agenti’s world model
is represented as a Markov Decision Process (MDP)Mi =
<Si, Ai, ri, τi>, where:

• Si is the set of all states of the world as it pertains toi

• Ai is the set of actionsi is capable of executing

• ri : Si×Ai → R≥0 is a function specifying a real-valued
reward for taking a particular action in a particular state

• τi : Si × Ai × Si → [0, 1] is a transition function rep-
resenting the probability that taking a given action in a
given state will bring the world to any other state in the
state space

Notice that there is uncertainty about the world, as rep-
resented in the potentially non-deterministic state transition
function. A simple MDP example is portrayed in Figure 1.
Here, the action space has just a single element (a single-
action MDP is also called aMarkov chain). There are three
states, and transitions are non-deterministic.
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Figure 1: Example of a 3-state, single-action MDP (a
Markov chain) with non-deterministic state transitions. Re-
wards are in bold font and transition probabilities in italics.

We assume an exponentially time-discounted valuation
model in which a reward ofx receivedt steps in the future is
valued atγtx, where0 ≤ γ ≤ 1 is the discount factor. The
goal of each agent is to maximize the expected discounted
sum of rewards it receives over an infinite time-horizon. If
the agent MDPs were completely independent, each agenti
would then seek to execute a policyπ∗

i : Si → Ai such that:

π∗
i ∈ arg max

π
E

[

∞
∑

t=0

γtri(s
t
i, π(st

i))
∣

∣

∣
π
]

(1)



wherest
i is i’s state at timet. Each agenti could determine

π∗
i by, for instance, using value-iteration (see, e.g., Sutton&

Barto 1998) to compute the optimal value functionV ∗
i for

its MDP, from which the optimal action-choice can simply
be read off:

π∗
i (s) ∈ arg max

a∈Ai

E

[

ri(s, a) + γ
∑

s′∈Si

τ(s, a, s′)V ∗
i (s′)

]

,

(2)

However, in a multi-agent setting there may be depen-
dencies that exist between sets of agent behaviors. We con-
sider a loose coupling in which interdependencies exist only
through restrictions on joint actions (c.f. Singh & Cohn
1998). A natural example of joint-action feasibility con-
straints is when there is a shared resource required for ex-
ecution, or when actions are location-dependent and only a
single robot can be present in a given location at once.1

Taking maximization of system reward as our goal, aco-
ordinator would like to enforce a policy that is optimal for
the joint MDP M , which incorporates each of the com-
ponent agent MDPs. Considering joint state spaceS :
S1 × . . . × Sn and action spaceA : A1 × . . . × An, we
can define joint transition functionτ and reward functionr,
whereτ(s, a, s′) is the probability that taking joint actiona
in joint states brings the world to joint states′, andr(s, a)
is the total reward received by all agents whena is executed
in s.2 Assuming agents have a common discount factor, the
coordinator’s task at any timet0 is to determine and execute
the joint policy π∗ that maximizes the discounted infinite
sum of expected total system reward:

π
∗(s) ∈ arg max

π∈Πf

E

h

∞
X

t=t0

X

i∈I

γ
t−t0ri(s

t
i, π(st))

˛

˛

˛
π, s

t0 = s
i

,

for all statess ∈ S, searching across everyπ in Πf , the set of
all feasible joint policies (i.e., those that respect constraints
on the joint actions).

Even when a coordinator capable of enforcing prescrip-
tions for agent behavior is present, significant complications
can arise if agents areself-interested. Agents typically hold
someprivate information, knowledge of which is essential
for optimal planning; for instance, the state that each agent
is in at any point in time may not be publicly observable.3

Thus the problem of coordinating a group of self-interested
agents consists of providing appropriate incentives so that
agents will choose to make truthful reports of local private

1Another kind of interdependency, not considered here, could
be through rewards, in settings in which one agent taking an action
changes the reward to another agent for an action (consider another
robot retrieving the gold before your robot).

2The actions adopted in this joint MDP to model interde-
pendencies could be “macroactions” such as “go to section 1”,
with agents retaining autonomy on the sequence of actions that
are interspersed in between macroactions (Suttonet al. 1999;
Hauskrechtet al. 1998).

3One can similarly consider environments in which state is pub-
lic but the reward functions (valuation information) are private.

information, in addition to the computational challenge of
planning. This is the problem that can be addressed with an
appropriate coordinationmechanism.

Mechanism design for sequential environments

The field of mechanism design is concerned with bringing
about globally-desirable outcomes, despite individuals in a
system acting only to bring about locally-desirable ones.
This requires finding a way to align the interests of each
individual in the group with the welfare of the system as
a whole. A typical way to do this is through transfer pay-
ments, assuming the existence of a currency.4

In a one-shot (i.e., single time-step) setting, a mechanism
will typically consist of making some query to each agent re-
garding its private information, followed by selection of an
outcome and determination of transfer payments according
to the information that is reported. For instance, the basic
Groves mechanism (Groves 1973) chooses the outcome that
is optimal according to the information agents report, and
sets the transfer payment for each agent equal to the value
that all other agents (reportedly) reap from that selected out-
come. The goals of all agents are completely aligned as
each receives total payoff equivalent to the reward reportedly
achieved by the entire group, so agents will report valuation
information truthfully to allow the center to be successfulin
maximizing system reward.

The sequential environment we consider is more complex:
here, at every time-stept an “outcome” decision must be
made (i.e., a joint actionat must be selected) and transfers
may be executed, all of which can potentially depend on the
entire execution history throught. We describe asequential
coordination mechanismΓ = <π, T, µ>. which specifies a
joint execution policyπ, a transfer policyT = T1× . . .×Tn

defining payments made to each agent, and a joint message
spaceµ = µ1 × . . . × µn defining possible modes of com-
munication from agents to coordinator. In the environments
we consider, each agent’s world model is considered com-
mon knowledge,5 but there is private information consisting
of each agent’s local state; thus at every time-step a claim
about each agent’s current state will be solicited by the co-
ordinator.

Each agenti has a strategyσ that maps a historyh of the
agent’s state trajectory and transfer payments, and the cur-
rent statest

i, to a message. That is, at timet agenti executes
a strategyσi(h, st

i) ∈ µi. In our coordination mechanism,
truth revelation (in all states) is aMarkov Perfect Equilib-
rium (MPE) (Maskin & Tirole 2001). The following is an
informal definition.

4This need not be a “real” currency (such as dollars) as long
as it enjoys the important properties of a currency (for instance as
long as it is secure, transferable, and (relatively) stable).

5As discussed in the related paper (Cavallo, Parkes, & Singh
2006), this can be relaxed by including an initial step in which
agents report their models to the center (which they will do truth-
fully in equilibrium), or finessed by distributing computation to
agents.



Definition 1. (Markov Perfect Equilibrium) A strategy
profile (σ∗

1
, . . . , σ∗

n) is an MPE if:
a) (Perfect)no agent can improve its expected utility by de-

viating in any state reachable either on or off the equi-
librium path, given the other agents’ strategies and the
agent’s belief about the other agents’ private state and
local MDP models;

b) (Bayesian updating)each agent updates its beliefs ac-
cording to Bayes’ rule where possible (e.g., while on the
equilibrium path);

c) (Markov) an agent’s strategy is conditioned only on the
local state of the agent, and is history independent.
In our environments Bayesian updating is unimportant

because we bring truthful reporting into an MPE for all
states,whateverthe state, and thus for any private state of
other agents. Moreover, since MPE is ‘perfect’, each agent
can maximize its expected utility by truthful reporting even
when other agents have previously deviated from truthful re-
porting.

We will refer to mechanisms that, like the basic Groves,
achieve equilibrium outcomes that maximize total system
reward assystem-optimal. In a truthful mechanism, agents
report true information in equilibrium. If a mechanism guar-
antees that no agent will be worse off (i.e., obtain negative
net utility) from having participated, it is termedex post in-
dividual rational (IR); if the mechanism achieves this only in
expectation, it isex ante IR. Ex ante IR is a minimal require-
ment for inducing agents to participate in the mechanism.
When the net payment made from the coordinator to the
agents is guaranteed non-negative, a mechanism is termed
ex post budget balanced; when this holds in expectation it is
ex ante budget balanced; when net payments are exactly 0,
a mechanism isstrongly budget balanced.

Coordination in the General Setting
In this section we examine coordination mechanisms that are
applicable to the general setting in which each agent’s local
problem is modeled as an MDP.

The first mechanism we describe is an extension of the
basic Groves mechanism, introduced above, to a sequential,
multi-agent coordination environment. Since agent MDPs
are publicly known, optimal policyπ∗ can be computed; the
challenge is that in order for the execution to be optimal de-
cisions must reflect thetrue joint state at every time period.

Mechanism 1. (Sequential-Groves)

• The planner computes an optimal joint policyπ∗.
• At every time-stept:

1. Each agenti reports to the planner a claim about its
current statêst

i.
2. The planner implements the joint action

at = π∗(ŝt).
3. The planner pays each agenti a transfer:

Ti(ŝ
t) =

∑

j∈I\{i}

rj(ŝ
t
j , a

t
j)

Payments made by the coordinator to the agents are re-
ceived immediately and as “reward”, so an intrinsic reward
of x plus a transfer payment ofy at timet is valued equiva-
lently to a reward ofx + y at t.

Theorem 1. The Sequential-Groves mechanism is truthful,
system-optimal, and ex post IR in Markov Perfect Equilib-
rium when agents have a common discount factor.

Proof Sketch.6 Let νt0
i equal agenti’s expected payoff at

any timet0 going forward, given the set of (known) agent
MDPsM = (M1, . . . , Mn) and current joint statest0 when
all agents are reporting truthfully:

νt0
i (st0 , M) = EM

[

∞
∑

t=t0

{

γt−t0ri(s
t
i, π

∗(st))+

∑

j∈I\{i}

γt−t0rj(s
t
j , π

∗(st))
}

∣

∣

∣
π∗, st0 = s

]

= EM

[

∞
∑

t=t0

∑

j∈I

γt−t0rj(s
t
j , π

∗(st))
∣

∣

∣
π∗, st0 = s

]

This quantity is maximized, for all statesst0 at all times
t0, by agenti reporting its true state when other agents do,
because the joint policy will then maximize the expected
utility to agenti (which is equal to the MDP value achieved
by the joint policy). It is clear that this utility cannot be
made greater by misreportingst

i, for anyt, since the coordi-
nator would then implement a policy that is based on faulty
information, and thus potentially suboptimal.

The mechanism is trivially ex post IR, as each agent re-
ceives non-negative intrinsic reward from the world, and a
grossly positive transfer payment from the coordinator.

In the above, truthfulness and system-optimality follow
from the fact that every agent’s payoff is exactly equal to
the payoff of the entire system. Since the coordinator’s pol-
icy is designed to maximize this quantity, and since its only
challenge in achieving this maximum is having access to ac-
curate state information, agent payoffs are maximized when
they report their current states truthfully.

If budget properties were of no concern, theSequential-
Grovesmechanism would be quite satisfying; however, it
will typically be extremely unrealistic to assume that a bud-
get large enough to execute the specified payments will be
available. Think of the gold-prospecting scenario: the coor-
dinator would be making out massive payments on the order
of n times the total value of the gold in the riverbed.

While the payments inSequential-Groves(“Groves pay-
ments”) are required in order to align the interests of all
agents in the system, the Groves scheme fortunately also al-
lows for imposition of achargeon each agent that can be
used towards balancing the budget; this will do nothing to
weaken the desirable equilibrium incentive properties of a
coordination mechanism so long as the charge computed for
each agenti is completely beyondi’s influence.

The Vickrey Clarke Groves (VCG) mechanism for static
settings specifies the charge for each agenti to be the total

6See (Cavallo, Parkes, & Singh 2006) for full proofs of all the-
orems in this paper (and other related ones).



reward that agents other thani would have receivedif i were
not present (see, e.g., Jackson 2000); VCG thus has the ap-
pealing property that each agent’s net payoff will equal its
marginal contribution to total system welfare. Complica-
tions arise, however, when one tries to directly apply VCG
to a sequential environment, as there are dependencies that
exist between decisions made at one time-step and the space
of possible outcomes that will be possible in future time-
steps. Specifically, to preserve incentive properties we can-
not use reported state information from agenti at any time-
step throughout execution of the mechanism in determining
i’s charge. We propose the following variation on VCG for
sequential coordination problems7:

Mechanism 2. (Sequential-VCG) Identical to the
Sequential-Groves mechanism, except at every timet,
transfer payments are computed as follows:

Ti(ŝ
t) =

∑

j∈I\{i}

rj(ŝ
t
j , a

t
j) − (1 − γ)V ∗

−i(s
0)

Here, V ∗
−i(s

0) is the expected discounted sum of total
value extracted for all agentsexcepti, from time 0 under
the system-optimal policyπ∗, given modelsM . That is,

V
∗
−i(s

0) = EM

h

∞
X

t=0

X

j∈I\{i}

γ
t
rj(s

t
j , π

∗(st))
˛

˛

˛
π
∗
i

Theorem 2. The Sequential-VCG mechanism is truthful,
system-optimal, ex ante IR, and ex ante strong budget-
balanced in Markov Perfect Equilibrium when agents have
a common discount factor.

Proof. Truthfulness and system-optimality hold by truthful-
ness and system-optimality ofSequential-Grovesplus the
fact that each agent’s charges are completely independent
of reports that it makes. The expected payoff for each agent
from time 0 (given modelsM ) is as follows:

ν
0

i (s, M) = EM

h

∞
X

t=0

γ
t
ri(s

t
i, π

∗(ŝt))
˛

˛

˛π
∗
, s

0 = s
i

+ (3)

EM

h

∞
X

t=0

X

j∈I\{i}

γ
t
rj(ŝ

t
j , π

∗(ŝt))
˛

˛

˛π
∗
, s

0 = s
i

− (4)

∞
X

t=0

γ
t(1 − γ)V ∗

−i(s) (5)

= E

h

∞
X

t=0

γ
t
ri(s

t
i, π

∗(ŝt))
˛

˛

˛π
∗
, s

0 = s
i

(6)

The Groves payments (4) and the VCG charges (5) per-
fectly cancel out in expectation when agents report truth-
fully. As a result, net payments from the coordinator to the
agents are 0, yielding ex ante strong budget-balance; total

7The Sequential-VCGmechanism diverges from a direct se-
quential analog of VCG in that charges computed for each agent
i include hypothetical reward thati receives; this leads to stronger
budget balance than would be achieved otherwise, and is possible
here because we assume agent world models are public knowledge.

expected payoff for each agenti is exactly the (non-negative)
intrinsic reward extracted byi under the system-optimal pol-
icy, so the mechanism is ex ante IR.

Realize that the flavor of IR achieved with this mechanism
(and the specialized mechanism presented in the next sec-
tion) is weak, that ofex anteIR. This is the cost that comes
from performing mechanism design in these rich, dynamic
environments where the “charge-back” payments collected
from agents cannot be conditioned on theactual sequence
of visited states.

However, in some domains a stronger form of IR will be
possible. TheSequential-VCGmechanism will actually be
ex ante IR fromany time at which the agent MDPs are in a
joint state (known to the planner) that is independent of any-
thing that’s ever been reported. Consider worlds in which
a certain known-state is guaranteed to be visited repeatedly,
for instance worlds that start in the same state every morn-
ing. In such cases we can provide ex ante IR periodically,
rather than just once—agents will willingly “sign up” for the
mechanism repeatedly, regardless of the interim execution,
every time the known-state is visited.

Similar examples can be provided if periodic “monitor-
ing” is possible, so that the joint state is known for sure from
time to time. In some robot environments this will be partic-
ularly relevant. One can imagine scenarios in which semi-
autonomous robots are sent out in the field daily to perform
some behaviors and make reports about their current loca-
tion, physical state, etc.; sending a human observer out to
verify the legitimacy of their claims may be expensive, but
could be executed, say, once a day in order to realign the
mechanism into ex ante IR for each agent going forward.

An example
We now illustrate why a coordination mechanism may be
necessary, and how the one we propose works. Figure 2 de-
picts a 2-agent scenario, where each agent’s world model
has 3 states and 2 actions, and the initial states areB andE.
We take discount factorγ = 0.9, and consider the coordina-
tion problem that arises when actionsa0 anda2 cannot be
performed simultaneously. We first construct the joint MDP,
as in Figure 3, and then compute the system-optimal policy,
given in Table 1.

TheSequential-VCGmechanismpaysagent1 the reward
agent2 reports having achieved each period, and vice versa.
Under the system-optimal policy, with high probability for
many time-steps from the beginning of execution agent1’s
payment will be 4 and agent2’s payment will be 1. Each pe-
riod the mechanism charges agent1(1−γ)·V ∗

−2
(BE) = 3.8,

and charges agent2(1−γ) ·V ∗
−1

(BE) = 1.1. The payments
and charges cancel out exactly in expectation, leaving each
agent with payoff equal to the intrinsic reward extracted un-
der the system-optimal policy.

Now consider the case where the true joint state isCG.
It is clear that the system-optimal policy executes joint ac-
tion a0a3, as with very high probability reward 5 will be
yielded each period going forward, while alternativea1a2
will yield reward 4 in all periods going forward. But no-
tice thata1a2 would yield greater intrinsic reward for agent2
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Figure 2: MDPs for a 2-agent world, each with 3 states.
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Figure 3: Joint MDP constructed from component MDPs il-
lustrated in Figure 2. Joint stateXY denotes agent1’s MDP
in stateX and agent2’s in stateY ; joint actionaxay denotes
x taken by agent1 andy taken by agent2. Incompatibility of
actionsa0 anda2 is reflected by omission ofa0a2.

state π∗ V ∗ V ∗
−1

V ∗
−2

BE a0a3 49 11 38
CG a0a3 49 11 38
DF a1a2 40 20 20
DG a1a3 31 11 20
CF a1a2 40 20 20

Table 1: Optimal policy for joint MDP, and optimal value
functions, with discount factorγ = 0.9.

than woulda0a3, and if the system were in stateCF then
a1a2 would be the only possibility (sincea0a2 is infeasi-
ble). If we did not make the Groves payments, aligning the
interests of agent2 with that of the system as a whole, agent2
would have incentive to report being in stateF rather than
G when agent1 is in stateC. Thus one can observe even in
this simple example the essential role that the payments play
in enabling realization of an optimal joint plan.

Efficiently solving groups of interdependent MDPs
In Sequential-VCG, we have a coordination mechanism that
achieves system-optimality in equilibrium, while (in expec-
tation) requiring no external budget to implement. The pri-
mary remaining challenge is computational tractability of
determining an optimal policy. We explore in detail one gen-
erally tractable domain (Markov chains) in the next section,
and here briefly describe promising solution methodologies
that have been proposed for problem decomposition with co-

operative agents. There are two important considerations in
applying these methods in our setting with self interest:

a) are the decomposition methods already factored, or can
they be re-factored, to ensure that agents have correct in-
centives to choose to follow them?

b) can the decomposition methods be leveraged to allow for
planning without each agent in turn, in order to enable
computation of payments?

Following Guestrin and Gordon (2002) we can divide
prior work into that onserial decompositionin which one
agent is active at any given time (Kushner & Chen 1974),
andparallel decompositionin which multiple agents can be
active at the same time (Singh & Cohn 1998; Meuleauet al.
1998).

Parallel decomposition is more relevant to multi-robot co-
ordination. Singh and Cohn (1998) consider the same cross-
product representation for the global MDP as we adopt,
and place constraints on joint actions. Admissible estimates
from subproblems are used to accelerate planning, however
their algorithm is not fully factored in that it requires an
explicit representation of the joint state space. Meuleau et
al. (1998) specialize to settings in which the only coupling
is via resource constraints, and are able to find approximate
solutions to large problems through a combination of offline
and online computation. Approximations can pose some
new challenges in the context of self-interested agents, for
instance causing the strong truthful equilibrium properties
to unravel. Future work will need to explore these issues.

More recently, Guestrin and Gordon (2002) describe de-
composition methods based on linear-programming decom-
position techniques, such as those due to Benders and
Dantzig-Wolfe (Lasdon 1970; Bradley, Hax, & Magnanti
1977, see). Dantzig-Wolfe decomposition methods of-
ten have a market interpretation, with complicating con-
straints between subproblems priced by a coordinator and
used to modify local agent problems such that an optimal
joint solution can be constructed (Dantzig & Wolfe 1960;
Dantzig 1963). Indeed, Bererton et al. (2003) have re-
cently provided an auction interpretation of the Dantzig-
Wolfe decomposition for MDPs. None of these methods
are incentive-compatible in our sense, and an important next
step will investigate the integration of these methods into
Sequential-VCGin order to handle self-interest.

Coordination in Markov Chain Settings
We now examine the case in which all local agent models
are Markov chains (i.e., all are MDPs in which just a sin-
gle action per agent is available for every local state), and
in which only one can be activated at a time. In a Markov
chain setting agents do not face an action-selection problem,
but the coordination problem remains as a decision must be
made at every time-step regarding which chain to activate.
This setting is appealing because it allows a tractable coor-
dinated planning algorithm based on index policies.

It is not hard to imagine settings in which robots have
been programmed to behave deterministically given any par-
ticular state of the world; in such cases world models are



Markov chains. Consider, for instance, software robots that
are using a super-computer to perform computational tasks
on behalf of their designers; the way computation should
proceed for any robot’s task is completely known, but a deci-
sion (coordination) regarding which robot should be granted
access to the super-computer must be made at every point in
time. The state of each robot reflects the (non-deterministic)
partial results from the computation performed so far.

We can formalize the specifics of this environment by
positing that each agenti has an MDP with action space
Ai = {ai, anull}, and that any admittable policyπ specifies,
at any timet, a joint actionat in which all but one agent’s
action isanull. For convenience we writeπ(s) = i to de-
note that policyπ activates agenti’s Markov chain when the
world is in joint states. We let r(si) denote the rewardi
receives when its chain is activated in statesi.

Gittins (1974) showed that in this setting (minus the
self-interest) optimal planning is tractable. Specifically,
he showed that one can compute an index (which we will
call theGittins index) independently for each Markov chain
given its current state, such that the optimal policy consists
of always activating the chain with highest index. In this
way the computational complexity of computing an optimal
policy grows only linearly in the number of agents.

Theorem 3. (Gittins & Jones 1974; Gittins 1989)
Given Markov chainsM1, . . . , Mn in states(s1, . . . , sn)
respectively, there exist independent functions
G1(M1, s1), . . . , Gn(Mn, sn) such that the optimal
policyπ∗(s) = arg maxi Gi(Mi, si).

Several methods of computing Gittins indices are known.
For instance, in (Katehakis & Veinott 1987) a special type of
two-action,k-state MDP is formulated for every state in ak-
state Markov chain, the optimal value of which corresponds
to the Gittins index.

Besides computational tractability, the decomposition as-
pect of Gittins’ solution is of particular interest in a multi-
agent setting, as almost all computation can be distributed
amongst the agents. In a robotics setting, if each robot is ca-
pable of computing its Gittins indices, the only coordination
necessary is to determine which index is highest at every
time-step, and to potentially compute and execute transfer
payments to properly align agent incentives.

To compute VCG charges in this setting the coordinator
must determine which Markov chainwould havebeen acti-
vated inn hypothetical worlds, in which each agent is re-
moved in turn. In the world without some agenti, the only
difference in the optimal policy is that wheneveri’s Gittins
index is highest, the Markov chain with second highest in-
dex is chosen instead. We can compute the expected value
achieved by the system in such a world bysimulatingwhat
would have happened. Again, it does not retain the right in-
centive properties to use theactual (real-world) indices to
determine an agent’s marginal effect on the other agents.

Consider simulation of a policy that is optimal in a world
without i, and letXπ∗

−i
be the simulated sample trajectory.

Let r(X, t) denote the system-reward during thetth step
of trajectoryX . We propose the following mechanism for
optimal coordination in Markov chain settings when agents

have computational capacity, wherem sample trajectories8

{X1

π∗

−i
, . . . Xm

π∗

−i
} are maintained for every agenti:

Mechanism 3. (Distributed-Gittins-VCG)

• Each agenti computes and reports a claim to the plan-
ner about Gittins indiceŝGi(Mi, si), ∀si ∈ Si

• At every time-stept:
1. Each agenti reports to the planner a claim about its

current statêst
i.

2. The planner activates Markov chain:

i∗ ∈ arg max
i∈I

{Ĝi(Mi, ŝ
t
i)}

and simulates the next action in each of then · m
sample trajectories.

3. The planner pays each agenti a transfer:

Ti(ŝ
t) =

8

>

>

>

>

<

>

>

>

>

:

−

m
X

k=1

r(Xk
π∗

−i
, t)

m
for i∗

r(ŝt
i∗) −

m
X

k=1

r(Xk
π∗

−j
, t)

m
for j ∈ I \ {i∗}

Theorem 4. The Distributed-Gittins-VCG mechanism is
truthful, system-optimal, ex ante IR, and ex ante weak
budget-balanced in Markov Perfect Equilibrium when
agents have a common discount factor.

Proof Sketch.As in the general setting, each agent receives
Groves payments equal to the total reward received by other
agents (here, only one agent receives reward per time-step).
Agenti’s charge term is again independent ofi’s reports, as
information only from the other agents is used in simulating
sample trajectoryXπ∗

−i
. Agents thus want system-welfare

to be maximized, which brings truthful reporting of both
reward and Gittins index information into equilibrium. In
expectation the charges computed for each agenti will fall
between 0 and the intrinsic reward received byi, as a pol-
icy that is optimal without consideringi cannot be better for
the entire system than one that takes all agents into account.
This yields ex ante IR and weak budget-balance.

In the version ofDistributed-Gittins-VCGwe have pre-
sented, agents compute and communicate Gittins indices up
front, but this is not necessary; the mechanism properties
maintain if we elicit index informationonline. That is, we
can instead ask agents for the index of their current state at
each time-step (along with indices for sample trajectories).
See (Cavallo, Parkes, & Singh 2006) for a full discussion.

Conclusions
In this paper we addressed the problem of coordinating a
group of self-interested robots in a way that yields maximum
total social welfare. We have provided solutions that “dis-
arm” the impact of self-interest on the behavior of robots,

8As m is increased the variance of the samples will decrease,
but anym ≥ 1 will achieve the properties in Theorem 4.



transforming competitive environments into “team games”.
Importantly, the methods we propose do not, in expectation,
require any external budget to implement. The methods are
applicable to a wide array of domains, including current sce-
narios where software robots compete for control of a shared
resource and future scenarios of physical robot coordination
problems where self-interest is a factor.

The specific algorithm used in determination of the
system-optimal joint execution policy is not important to the
incentive properties our proposals achieve, and distributed
algorithms are possible. In the Markov chain setting, we
proposed a Gittins index-based policy computation method
that has several desirable properties. In this mechanism the
system-optimal policy can be computed in time linear in the
number of robots, and the computation is almost completely
distributed amongst the robots themselves.

There are many interesting directions for future work.
We are currently examining mechanisms that have desir-
able equilibrium properties even when the policy followed
is suboptimal; such mechanisms are of interest because they
would work with approximate MDP solutions. In addition,
we are interested in finding a synthesis between known MDP
decomposition methods and our mechanism framework, as
well as developing concise methods for value representation
in resource- and action-constrained settings. It will alsobe
interesting to investigate alternate models of agent coupling,
for instance with interactions through states and rewards.
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