
Constraint Satisfaction Algorithms for Graphical Games

Vishal Soni, Satinder Singh, and Michael P. Wellman
University of Michigan, Computer Science & Engineering

2260 Hayward St, Ann Arbor, MI 48109-2121, USA
{soniv,baveja,wellman}@umich.edu

ABSTRACT
We formulate the problem of computing equilibria in multi-
player games represented by arbitrary undirected graphs
as a constraint satisfaction problem and present two algo-
rithms. The first is PureProp: an algorithm for comput-
ing approximate Nash equilibria in complete information
one-shot games and approximate Bayes-Nash equilibria in
one-shot games of incomplete information. PureProp unifies
existing message-passing based algorithms for solving these
classes of games. We also address repeated graphical games,
and present a second algorithm, PureProp-R, for computing
approximate Nash equilibria in these games.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]; F.2 [Analysis of Algorithms]

General Terms
Algorithms, Economics, Theory

Keywords
graphical games, constraint satisfaction

1. INTRODUCTION
Graphical models for representing games were introduced

by Kearns et al. [3] to capture locality of interactions among
players in a static game. Under this model, nodes repre-
sent players and (undirected) edges represent interactions
between players. A missing edge between two nodes im-
plies that the payoffs of the respective players do not di-
rectly depend on the other’s action. The central idea is
to view the game as being composed of several interacting
local games and to exploit this locality by iteratively com-
puting local equilibria and patching them together to obtain
global equilibria efficiently. Games with sparsely connected
graphs arise quite commonly in various settings, for example

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

those with network topologies based on computer connectiv-
ity, social networks, business relationships, ad hoc networks
of mobile devices, etc.

The original work by Kearns et al. [3] considered acyclic
graphical games of complete information and presented a
message-passing algorithm (hereafter, the KLS algorithm)
for computing approximate Nash equilibria (NE) efficiently.
Ortiz and Kearns [6] later presented the NashProp algo-
rithm, which extended the KLS algorithm to arbitrary graph
structures in complete information games. In other recent
work, Vickrey and Koller [10] reformulated the problem of
finding approximate equilibria in games of complete infor-
mation as a constraint satisfaction problem (CSP) and de-
rived a generalization of the KLS algorithm as a constraint
satisfaction algorithm. Singh et al. [8] considered acyclic
games of incomplete information and presented a message-
passing algorithm to compute approximate Bayes-Nash equi-
libria (BNE) efficiently. In games of incomplete information,
the payoff to a player depends not only on the actions of the
other players but also on its own private type. Agents have
to choose actions without explicit knowledge of the private
types of other players. Thus, a BNE strategy has to be an
equilibrium with respect to the known distribution over the
types of the other players.

In this paper, we (1) define a new constraint satisfaction
formulation of the problem of finding approximate equilib-
ria in graphical games, (2) derive a constraint satisfaction
algorithm, PureProp(ε), from the application of straight-
forward CSP techniques, (3) show that PureProp(ε) uni-
fies all of the above mentioned special-purpose results on
graphical games and extends them to incomplete informa-
tion games and repeated games with arbitrary graph struc-
tures, and (4) demonstrate the generality of our CSP formu-
lation by deriving an algorithm, PureProp-R(ε), that com-
putes ε-NE in repeated graphical games under the average
payoff criterion.

Both PureProp(ε) and PureProp-R(ε) accept an approx-
imation parameter ε as an input argument and compute
pure-strategy ε-equilibria in their respective games. (Here-
after, we drop ε from the names for ease of exposition.) In
each case, we show how to induce a restricted game solvable
by the corresponding algorithm from all the classes of games
described above. The construction of the induced game is
such that a pure-strategy ε-NE always exists, and further-
more, the equilibria found are ε-equilibria in the original
game.

We describe one-shot games and the corresponding Pure-
Prop algorithm first, then describe repeated games and the

corresponding PureProp-R algorithm, and finally conclude
with some illustrative empirical results.

2. ONE-SHOT GAMES

2.1 Complete Information Games
A complete information game G = 〈I,A,U〉 is specified

by a set of players I, a set of actions A = ×i∈IAi where Ai

is the set of actions of player i, and a set of payoff functions
U = ×iui where ui : A → < for every player i ∈ I. Players
have complete information in the sense that they have full
knowledge of the payoff functions of the other players. Any
action a of player i is also referred to as a pure strategy,
whereas a mixed strategy σi : Ai → [0, 1] with

P
a∈Ai

σi(a) =
1 is a probability distribution over the pure strategies of i.
A strategy profile σ = 〈σ1 · · ·σI〉 is a strategy assignment to
each player. The expected payoff to i under profile σ is

ui(σ) =
X
a∈A

ui(a)
Y
j∈I

σj(aj). (1)

We use the symbol −i to refer to the set of all players other
than i. Similarly, the symbols a−i and σ−i refer to a pure
strategy profile and mixed strategy profile over −i.

A mixed strategy profile σ∗ is a Nash equilibrium if, for
all players i,

ui(σ
∗
−i, σ

∗
i) ≥ ui(σ

∗
−i, σi),∀σi.

The implication here is that no player can benefit in expec-
tation by deviating unilaterally from a Nash equilibrium.
An ε-Nash equilibrium is a mixed strategy profile σ∗ such
that for any player i,

ui(σ
∗
−i, σ

∗
i) + ε ≥ ui(σ

∗
−i, σ

′
i),∀σ′i.

Thus, no player can gain more than ε in expectation by
unilateral deviation from an ε-Nash equilibrium.

2.2 Incomplete Information Games
In games of incomplete information, each player’s payoff

function is defined ui : A × Ti → <, where Ti is the type
space of i. Thus, the payoff is a function of not only the
action profile but also of a realized type ti ∈ Ti of player
i. For games with discrete types, the type of each player is
assumed to be chosen independently from some commonly
known distribution over a finite set of types Ti = 〈T 1

i · · ·T k
i 〉.

For games with continuous types, types are assumed to be
chosen independently from a known density over a finite
range Ti = [T l

i , T
u
i] of types. Players have incomplete infor-

mation in that they do not have knowledge of the realized
types of other players. However, players do know the distri-
butions (or densities) from which the types of other players
are drawn.

For each player i, a mixed strategy σi : Ai × Ti → [0, 1]
specifies a probability distribution over the actions of i for
each type ti such that ∀ti ∈ Ti,

P
a∈Ai

σ(ai|ti) = 1 for all
i ∈ I. The expected payoff to player i when its revealed
type is ti under a strategy profile σ is

ui(σ−i, σi|ti) =
X
t−i

Pr(t−i)ui(σ−i, σi|t−i, ti), (2)

where

ui(σ−i, σi|t−i, ti) =
X
a∈A

σi(ai|ti)σ−i(a−i|t−i)ui(a|ti).

A strategy profile σ∗ is a Nash equilibrium of the incom-
plete information game (also called a Bayes Nash equilibrium
or BNE for short) if for every player i and every type ti ∈ Ti,

ui(σ
∗
−i, σ

∗
i |ti) ≥ ui(σ

∗
−i, σ

′
i|ti),∀σ′i(·|ti).

Thus for each of its types, no player can benefit in expecta-
tion by unilateral deviation from its type-contingent mixed
strategy. A profile σ∗ is an ε-BNE if for every one of their
types, players do not gain more than ε by unilateral devia-
tion from their type contingent mixed strategy, that is, for
all players i and every type ti ∈ Ti,

ui(σ
∗
−i, σ

∗
i |ti) + ε ≥ ui(σ

∗
−i, σ

′
i|ti),∀σ′i(·|ti).

Note that for continuous types, the summations and type
probabilities in the above equations will be replaced by in-
tegrals and type densities.

Complete information games are incomplete information
games with just one type per player. It is well known that
exact (ε = 0) mixed strategy NE and BNE always exist in
games of complete and incomplete information.

2.3 Graphical models for Games
In contrast to the representations of games described above,

an n player graphical game has nodes representing players
and edges representing direct interaction between players.
The payoff function of each node is defined as a function of
the actions of its neighbors. The neighbors of i are denoted
N i (this includes i) andN i

−i denotes the setN i−{i} (i.e. all
the neighbors of i excluding i). Let k be the largest number
of neighbors of any node in the graph.

It is important to note that this is a representational de-
parture and doesn’t change the underlying game - a graph-
ical game will have the same equilibria as the underlying
game. Any normal form game can be trivially converted
into a graphical game by representing it as a fully connected
graph. If the connectivity of the graph is sparse, i.e n >> k,
the graphical representation leads to a substantially more
compact representation of the game than the usual normal-
form (matrix) representation. The locality of the game also
reduces the computation required to determine the expected
rewards in equations 1 and 2 because only the neighbors of
players have to be considered in the summations.

(a) Ring (b) Grid (c) Tree (d) Chordal

Figure 1: Example graph topologies.

Figure 1 illustrates a few graph topologies that capture
different types of locality between players. In our experi-
ments, we examine the effect these topologies have on the
run-time of our algorithms.

We now describe the PureProp algorithm, for solving com-
plete and incomplete information one-shot games, and the
PureProp-R algorithm for solving infinitely repeated games.
We start with PureProp.

2.4 PureProp
In Section 2.4.1 describe how to convert the problem of

finding pure strategy ε-NE in games of complete information
with a finite number of actions into a constraint satisfaction
problem (the game-CSP). We then present our algorithm for
solving game-CSPs (in Section 2.4.2). Finally, in Section 2.5
we show how to use our algorithm to compute approximate
mixed-strategy equilibria in general complete and incom-
plete information one-shot graphical games.

2.4.1 Game-CSP
A CSP problem is defined by a set of variables, the domain

of each variable (i.e. the values each variable can assume),
and a set of constraints between variables. Each constraint
involves some subset of variables and defines allowable com-
binations of values for that subset. A game-CSP consists of
a set of variables V such that each variable corresponds to
a player in the underlying game. The domain Di of each
variable i is a the set of all strategy profiles of the player’s
local neighborhood. The game-CSP imposes two types of
constraints over domain values:

• Unary Constraints. These constraints are defined
over the strategy profiles in the domain of every player.
A profile σ in the domain of i is said to satisfy the
unary constraint if

ui(σN i
−i

, σi) + ε ≥ ui(σN i
−i

, σ′i),∀σ′i

That is, i’s strategy is an ε-best response to the strat-
egy profile σN i

−i
of its neighbors (recall that ε is an

input argument to PureProp).

• Binary Constraints. These constraints are defined
over pairs of profiles in the domain of neighboring play-
ers. Let i and j be neighbors. A profile σ ∈ Di satisfies
the binary constraint with another profile ρ ∈ Dj if
both σ and ρ assign the same strategy to the common
neighbors of i and j.

CSPs are often visualized using a constraint graph which
places an undirected edge between any two nodes that have
a constraint between them. Thus, the constraint graph of
the game-CSP for a graphical game will have exactly the
same edges as the graphical game itself.

A solution to the game-CSP is an assignment of profiles to
each variable such that none of the constraints are violated.
If there is no such assignment of profiles to variables the
game-CSP has no solution.

The approach of formulating a graphical game as a CSP
has also been examined by Vickrey and Koller [10]. In that
work, each player in the game is a variable in the CSP and
the domain of each variable is the strategy space of the cor-
responding player. Constraints over variables ensure that
no player can benefit from deviating from a strategy profile
of its neighborhood. This approach transforms the problem
into a CSP with non-binary constraints. One of the moti-
vations behind our formulation, however, is to unify graph-
ical game algorithms from the literature [3, 6, 8]. It turns
out that our game-CSP is what is known as the dual trans-
form [2] of the CSP presented by Vickrey and Koller [10]. A
dual transform of a CSP with non-binary constraints is an
equivalent CSP with binary constraints.

The following theorem follows from the construction of
the game-CSP above.

Theorem 1 Any solution to the game-CSP for a graphical
game of complete information is an ε-Nash equilibrium of the
underlying game. Also, all pure-strategy ε-Nash equilibria of
a complete information game with a finite number of actions
are solutions to the game-CSP generated by the game.

2.4.2 Solving the game-CSP
Once we have the game-CSP, it is possible to perform a

backtracking search like algorithm to find a globally con-
sistent solution. However, there are numerous search tech-
niques for CSPs that take advantage of the graph structure
and that use general purpose heuristics to improve search
performance. The algorithm we provide here utilizes some
of these techniques.

The PureProp algorithm takes in an input argument ε and
returns an ε-NE of the game. It proceeds in three consecu-
tive phases:

1. Node consistency: This phase considers each vari-
able in turn and removes the profiles from its domain
that violate the unary constraint for that variable. The
end result is that for any profile σN i in the domain of
i, the strategy σi is an ε-best response to σN i

−i
. The

complexity of this step, while exponential in the size
of the local neighborhood, is linear in the total num-
ber of players. If the connectivity of the graph is of
order k, this step runs in O(ndk) where d is the max-
imum number of actions any player has. We denote
the domain of i post arc consistency as D0.

2. Arc Consistency: Each undirected edge in the con-
straint graph of the CSP is treated as two directed arcs
in this phase. So for an edge between neighbors i and
j, there is an arc [i, j] as well as an arc [j, i]. Given
current domains Di and Dj , the arc [i, j] is said to
be arc-consistent if for every profile in the domain of
i there is some profile in the domain of j with which
the binary constraint is satisfied. We denote the do-
main of i post arc consistency as D∗. The goal of the
arc consistency algorithm is to return domains for the
variables such that all arcs are arc-consistent.

While there are a number of algorithms for arc consis-
tency in the CSP literature, we implemented the AC-3
algorithm as presented in [7]. This algorithm main-
tains a queue of arcs to be examined (initialized to
contain all the arcs in the graph) and at each step ex-
amines the arc at the head of the queue. For every
arc [i, j] examined AC-3 reduces the domain of node
i so that [i, j] is arc-consistent. If the domain of i is
reduced then all incoming arcs to i are inserted into
the queue. The algorithm stops either when every arc
is arc-consistent (the queue is empty) or when the do-
main of some node is empty. We denote the domains
returned by AC-3 as D∗.

If the domain of any node is empty at any step in
either of the above two phases, the game-CSP has no
solution. The next Lemma shows that all pure strategy
ε-NE in the underlying game are present in D∗.

Lemma 2 Let σ be a global profile. Then, for all
players i, σN i ∈ D∗

i if and only if σ is an ε-NE in the
underlying game.

Proof In the forward direction, if for all i σi,N i
−i
∈

D∗
i , node consistency implies that ui(σi, σN i

−i
) + ε ≥

ui(σ
′
i, σN i

−i
),∀σ′i Thus σ must be an ε-NE.

In the reverse direction, if σ is an ε-NE, then for all
i ∈ I,

ui(σi, σ−i) + ε ≥ ui(σ
′
i, σ−i),∀σ′i

⇒ σi,N i
−i
∈ Do

i

Also, for any two neighbors i and j, σi,N i
−i

and σ
j,N j

−j

satisfy the binary constraint for i and j in the CSP.
Thus σi,N i

−i
∈ D∗

i . �

3. Value Propagation This phase executes a standard
backtracking search over the variable domains (post
node and arc consistency) in the constraint graph.
Following the “minimum values remaining” heuristic,
nodes are visited in ascending order of their domain
size. At any stage of the search, a node i picks from its
domain a profile σ that is consistent with the current
action assignments of i and its neighbors. If any of i’s
neighbors have not been assigned an action, i instructs
them to play an action according to σ. If i is not able
to find such a profile, the algorithm backtracks. It
is known that backtracking search is a complete algo-
rithm that in the worst-case amounts to an exhaustive
search over variable domains. The algorithm can stop
after finding the first solution or can be extended to
find all solutions to the game-CSP.

Treating the conversion to the game-CSP as part of Pure-
Prop the following result holds:

Theorem 3 PureProp(ε) computes (all) pure-strategy ε-
NE in complete information games with a finite number of
actions.

Proof The result is directly implied by Theorem 1, Lemma 2,
and the completeness of the value propagation phase. �

2.5 Computing mixed strategy approximate equi-
libria

So far we have shown that PureProp is able to find pure
strategy ε-NE in complete information games. While this
seems limited in applicability, we show next how PureProp
can be used to solve classes of complete and incomplete in-
formation games for approximate mixed-strategy equilibria.
In each case, the space of strategies is infinite and hence
PureProp cannot be directly applied. We thus have to con-
struct a new reduced game with a finite strategy space such
that (a) all pure-strategy ε-NE in the reduced game are
ε-equilibria in the original game, and (b) at least one ε-
equilibrium of the original game is a pure-strategy ε-NE of
the reduced game. We refer to such a reduced game as an
ε-induced game.

In each case, we construct the ε-induced game by restrict-
ing a player’s action probabilities to multiples of a discretiza-
tion parameter τ . The result is a finite set of τ discretized
strategies that can be used as pure actions of the ε-induced
game.

We consider two classes of incomplete information games:
games with a discrete type space, and games with a continu-
ous type space. Note that since complete information games
are a special case of incomplete information games with one
type per player, the construction of the ε-induced game for
discrete types presented below can be applied directly to
complete information games.

2.5.1 Discrete Types
In such games, a strategy is a mapping from the discrete

type space to probability distributions over actions. Recall
that k is the maximum number of neighbors of any node in
the graph and d is the maximum number of actions available
to any player in the game.

Theorem 4 For arbitrary graphical games of incomplete
information with discrete types, PureProp applied to the ε-
induced game defined above with discretization parameter
τ ≤ ε

dk(4k log k)
will converge to an ε-BNE of the game.

Proof (Sketch) Singh et al.([8]) show that for any ε, there
is a τ ≤ ε

dk(4k log k)
such that if the mixed strategy space

for every type restricted to multiples of τ , there exists an ε-
BNE in the τ -discretized strategy space. Thus the number of

pure actions in the resulting ε-induced game is of O
h `

1
τ

´md
i

where m is the number of discrete types. PureProp applied
to the ε-induced game is thus guaranteed to converge to an
ε-BNE of the original game. �

2.5.2 Continuous types
In games with continuous types, it is reasonable to require

that types have some structured effects on players’ payoffs.
Otherwise just representing the effect of types exactly can
lead to unbounded game descriptions. Quite naturally, the
desire is to identify common effects that can be exploited for
computational efficiency. Singh et al. [8] considered a class of
games with continuous types that have what is called the sin-
gle crossing point property (examples of such games include
certain kinds of first price auctions, all-pay auctions, noisy
signaling games, oligopoly games, etc. [1], [5], [9]) — such
games have the interesting property that there exist BNE
that are monotone threshold pure strategies. In a threshold
pure strategy each type is mapped to a pure action and fur-
thermore each action is played in at most one contiguous re-
gion of the continuous type interval. The points in the type
interval at which the strategies switch to new actions thus
constitute thresholds. In monotone threshold pure strate-
gies there is an ordering over actions such that the actions
appear in that order in the strategy of all players. Even
though distributions over the pure actions don’t need to be
considered in such games, the number of strategies in such
games is infinite because of the continuous types.

Theorem 5 For graphical games of incomplete informa-
tion with continuous types that satisfy the single crossing
point property, PureProp applied to the ε-induced game de-
fined above with discretization parameter τ ≤ ε

4dkρt
will con-

verge to an ε-BNE of the original game.

Proof Singh et al. [8] showed that for any ε, there exists
a τ = ε

4dkρt
, where ρt is the maximum probability density

over type space, such that there exists a τ -discretized strat-
egy that is an ε-BNE. A τ -discretized strategy only allows
thresholds at the τ intervals in type space. There will be

O
h“

1
τ

”di
many τ -discretized strategies and these will be

the pure actions of the ε-induced game. As before, the ex-
istence of an ε-BNE in the τ -discretized strategies of the
original game will guarantee the existence of an ε-NE in the
ε-induced game. PureProp applied to the ε-induced game
with the τ -discretized strategies as actions will find ε- BNE
in the original game. �

2.5.3 Extension and Connection with other algorithms
PureProp extends the results of Singh etal. [8] on tree-

games to general graphical games without requiring any
changes in the discretization parameters. The ability to
compute approximate equilibria in the above classes of in-
complete information games with arbitrary graph structure
is one of the contributions of this work.

Furthermore, PureProp also unifies all the previous results
on graphical games mentioned in the introduction; for lack of
space we only briefly discuss this aspect. For tree structured
games of incomplete information, it can be shown that with
an appropriate ordering of variables during arc-consistency
and value assignment, PureProp applied to the ε-induced
games implements the algorithm of [8]. The discretization
technique employed for discrete type games can be applied
here to obtain an ε-induced game solvable by PureProp for
ε-NE. This is the same discretization scheme as that used by
the algorithms of Ortiz and Kearns [6] and Kearns etal. [3].
Thus, the resulting algorithm implements the NashProp al-
gorithm of [6] for arbitrary graphs, and, with an appropri-
ate variable ordering heuristic, the algorithm of [3] for tree
structured games.

3. REPEATED GAMES
We have shown how formulating a one-shot graphical game

as a CSP allows us to effectively solve the game by apply-
ing standard constraint satisfaction algorithms. We now
demonstrate the generality of this approach by extending the
CSP formulation to graphical repeated games. Specifically,
we consider infinitely repeated complete information graph-
ical games under the average payoff criterion. We present
PureProp-R, a relatively straightforward algorithm result-
ing from our CSP formulation, for computing ε-equilibria in
these games.

An infinitely repeated game is one in which the same stage
game G = 〈I,A,U〉 is played at every time step. Players
simultaneously pick an action at every round, and at the
end of every period all players observe the realized action
profile. A player’s strategy is a probability distribution over
it’s actions for every stage of the game, and is in general
a function of the history of interactions. Players seek to
maximize their expected average future payoff. Under the
average payoff criterion, a Nash Equilibrium is a strategy
profile in which no player can improve their average expected
future payoff by unilateral deviation.

We use σi to denote a probability distribution over player
i’s actions, and σNi

−i
to denote a probability distribution

over the actions of i’s neighbors. We use ui(σNi
−i

, σi) to

denote the stage payoff to i when i plays according to σi

and its neighbors play according to σNi
−i

. Following Littman

and Stone [4], let αN i
−i

denote the profile of i’s neighborhood

that minimizes i’s expected payoff (the attack profile) in any

stage of the game, i.e.

αN i
−i

= arg min
σNi

−i

max
ai

ui(ai, σN i
−i

)

Let δi denote the strategy that i should play to maximize
its expected stage payoff (its defend strategy), i.e.

δi = arg max
σi

min
aNi

−i

ui(σi, aN i
−i

)

The expected stage payoff that i can guarantee itself by
playing its defend strategy, i.e. its minmax payoff is:

νi =
X

aNi
−i
∈ANi

−i

Y
j∈N i

−i

αj(aj)
X

ai∈Ai

δi(ai)ui(ai, aN i
−i

),

where by abuse of notation αj(aj) denotes the probability
of i’s neighbor j taking action a under the strategy profile
αN i

−i
. This is the lowest payoff that player i’s opponents

can restrict i to in any stage of the game.
A payoff profile u(σ) is said to be enforceable if for ev-

ery player i, ui(σ) ≥ νi, and is further said to be feasible
if it lies in the convex hull of pure strategy profiles. The
“folk theorem” for repeated games tells us that any stage
payoff profile that is enforceable and feasible is the payoff
of a NE of the repeated game. Indeed, the folk theorem
gives us a prescriptive way to establish a feasible and en-
forceable profile as an equilibrium as follows: every player
plays according to a fixed feasible and enforceable profile at
every stage of the game. In the event of unilateral deviation
by any player, the other players punish it by restricting the
deviating player to its minmax payoff. These punishments
strategies are off-equilibrium strategies and need to be de-
fined so as to disincentivize deviation. For the approximate
setting, a profile is an ε-Nash equilibrium of the repeated
game if no player can expect to gain more than ε by uni-
lateral deviation (again assuming punishment by the other
players after a first deviation).

We present PureProp-R as an algorithm to compute pure
strategy feasible and enforceable profiles of the stage game.
We will then show how with an appropriate discretization
of the mixed strategy space, PureProp-R applied to the dis-
cretized game will return a profile that with the appropriate
off-equilibrium punishment strategy can be established as
an ε-NE of the original undiscretized repeated game.

Below, let the symbols α′, δ′, and ν′ denote the attack
strategies, defend strategies, and minmax payoffs computed
over the pure strategy space.

3.1 The game-CSP for repeated games
As before, the game-CSP is defined by a constraint net-

work over a of a set of nodes V with each node representing
a player in the game. The domain Di of each player i is the
set of pure strategy profiles over the nodes in i’s neighbor-
hood. The game-CSP imposes two types of constraints over
domain values:

• Unary Constraints. A profile σ in the domain of
i satisfies the unary constraint if ui(σi, σN i

−i
) > ν′i

where ν′i denotes i’s minmax payoff computed over the
pure strategy profiles in its domain.

• Binary Constraints. As for the game-CSP for one-
shot games, these constraints are defined over pairs of
profiles in the domain of neighboring players. Let i and

j be neighbors. A profile σ ∈ Di satisfies the binary
constraint with another profile ρ ∈ Dj if both σ and ρ
assign the same strategy to the common neighbors of
i and j.

Theorem 6 follows by construction of the game-CSP above:

Theorem 6 Any solution to the game-CSP for a repeated
graphical game is a feasible and enforceable pure strategy
profile of the stage game. Also, all pure-strategy feasible and
enforceable profiles of a stage game with a finite number of
actions are solutions to the corresponding game-CSP.

3.2 Solving the game-CSP
As before, the algorithm proceeds in three consecutive

phases:

• Node Consistency Every player first computes the
attack strategy of its neighborhood (α′), its defend
strategy (δ′), and its minmax payoff (ν′) over the pure
strategy profiles in its domain. To achieve node con-
sistency, a player retains all the profiles in its domain
that satisfy the unary constraint. The complexity of
this step is O(ndk) where d is the maximum number
of actions of any player and k is the size of the largest
neighborhood. We use D0 to denote the domain of
player i after node consistency.

• Arc Consistency and Value Propagation Both
phases execute in the same manner as in PureProp.
Since these steps do not depend on the actual con-
straints defining the graph or on the type of equilib-
rium, the same algorithm can be used to find a globally
consistent profile. We use D∗ to denote the domain of
player i after arc consistency.

The next Lemma shows that all pure strategy feasible and
enforceable profiles in the game are present in D∗.

Lemma 7 Let σ be a global profile. Then, for all players
i ∈ I, σi,N i

−i
∈ D∗(i) if and only if σ is a feasible and

enforceable pure strategy profile of the stage game.

Proof In the forward direction, if for all i ∈ I σi,N i
−i

,∈
D∗

i , then node consistency implies that ui(σi, σN i
−i

) ≥ ν′i.

Thus σ must be a feasible and enforceable pure strategy.
In the reverse direction, if σ is a feasible and enforceable

profile, then for all i ∈ I,

ui(σi,N i
−i

) ≥ ν′i ⇒ σi,N i
−i
∈ D0

i

Also, for any neighbors i and j, σi,N i
−i

and σ
j,N j

−j
satisfy the

binary constraint for i and j in the CSP. Thus σi,N i
−i
∈ D∗

i .

�

The output of the value propagation step will thus be a
feasible and enforceable strategy profile of the stage game.

3.3 Computing mixed strategy ε-NE
Since PureProp-R solves for pure strategy profiles, we

need to reduce the repeated game into a game solvable by
PureProp-R. Given an ε, we show next how to derive a dis-
cretization parameter τ so that a profile returned by PureProp-
R in the τ -discretized game can be established as an ε-NE
of the underlying game.

Lemma 8 (from KLS) Let Ai ∈ [0, 1] for all i. Let σ
and ρ satisfy |σi − ρi| < τ for all i ∈ I, and let τ ≤
2/(k log2(k/2)). Then |

Qk
i=1 σi−

Qk
i=1 ρi| ≤ (2klogk)τ where

k is the size of the largest neighborhood.

Lemma 9 Let ρ and ρ′ be profiles such that for all players
i and actions ai ∈ Ai, |ρj(aj)− ρ′j(aj)| ≤ τ . Then,˛̨

ui(ρ)− ui(ρ
′)

˛̨
≤ dk(2k log k)τ

provided τ ≤ 2/(k log2(k/2))

Proof ˛̨
ui(ρ)− ui(ρ

′)
˛̨

=
X
a∈A

˛̨
ρ(a)− ρ′(a)

˛̨
ui(a)

Let d be the maximum number of actions of any player.
From Lemma 8 it follows that˛̨
ui(ρ)− ui(ρ

′)
˛̨
≤

X
a∈A

ui(a)(2k log k)τ ≤ dk(2k log k)τ

where we have assumed that the payoff function is bounded
in absolute value by 1. �

For every player i, PureProp-R computes the minmax
profile 〈δ′i, α′N i

−i
〉 over the discretized strategy space. Let

γi be an arbitrary strategy of i that maximizes its reward
against α′N i

−i
. We now bound the difference ui(γi, α

′
N i
−i

)−
ui(δ

′
i, α

′
N i
−i

). Here, ui(γi, α
′
N i
−i

) is the payoff the neighbors

of i can hold i to when they play the computed attack strat-
egy α′N i

−i
.

Lemma 10 Let 〈δ′i, α′N i
−i
〉 be a defend strategy of i and the

attack profile of its neighborhood in the τ -discretized strategy
space. Let γi = arg maxσi ui(σi, α

′
N i
−i

). Then, provided τ ≤
2/(k log2(k/2)),

ui(γi, α
′
N i
−i

)− ui(δ
′
i, α

′
N i
−i

) ≤ dk(2k log k)τ

Proof Let σi be an arbitrary (not restricted to discretized)
strategy of player i. Let σ′i be any corresponding τ -discretized
strategy. Then from Lemma 9 it follows that˛̨̨

ui(σi, α
′
N i
−i

)− ui(σ
′
i, α

′
N i
−i

)
˛̨̨

≤ dk(2k log k)τ.

Since the above equation holds for arbitrary strategy σi,˛̨̨̨
˛max

σi

ui(σi, α
′
N i
−i

)−max
σ′i

ui(σ
′
i, α

′
N i
−i

)

˛̨̨̨
˛ ≤ dk(2k log k)τ

⇒ ui(γi, α
′
N i
−i

)− ui(δ
′
i, α

′
N i
−i

) ≤ dk(2k log k)τ

�

In any profile σ returned by PureProp-R, ui(σ) ≥ ui(δ
′
i, α

′
N i
−i

)

for all i. We show next that such a profile an be established
as an ε-NE of the repeated game where ε = dk(2k log k)τ .

Theorem 11 For arbitrary repeated graphical games un-
der the average payoff criterion, PureProp-R applied to the
ε-induced game derived using a discretization parameter τ =

ε
dk2k log k

will return a profile that can be established as an

ε-NE of the repeated game.

Proof Let ε = dk(2k log k)τ . Let ν′i = ui(δ
′
i, α

′
N i
−i

) be

the minmax payoff to i computed over discretized strategy
profiles. Let σ be a profile returned by PureProp-R, i.e.
ui(σ) > ν′i for all i. From Lemma 10, ν′i + ε is the lowest
payoff N i

−i can restrict it to by playing their attack profile
α′N i

−i
. We consider two possibilities for the payoff to i:

Case 1: For all i, ui(σ) > ν′i + ε. Let pi be the largest
payoff player i receives for deviating from this profile. The
neighbors of i can punish i for this deviation by restricting
i to ν′i + ε. Let n be the number of rounds of the game for
which i is punished. Player i will not gain anything from
deviating if

ui(σi, σN i
−i

) ≥ pi + n(ν′i + ε)

n + 1

Thus, the punishment strategy of the neighbors of i is to
play their attack profile against i for ≥ n rounds.

Case 2: For some player i, ui(σ) ∈ [ν′i, ν
′
i + ε]. Define the

punishment strategy as one in which N i
−i play their attack

profile for all rounds following defection (known as a grim
strategy). Then, the expected future payoff to i is

lim
n→∞

pi + n(ν′i + ε)

n + 1

which goes to ν′i+ε as n →∞. Thus the maximum expected
gain to i from deviating is ≤ ε.

A profile σ returned by PureProp-R is thus an ε-NE of
the repeated game as follows: in every stage of the game,
every player plays according to σ. If a player deviates, its
neighbors punish it according to the punishment strategies
described above. In this manner, no player will gain more
than ε in expectation by deviating from σ. �

4. EXPERIMENTAL RESULTS
For our experiments, we evaluated PureProp on the party

game with threshold pure strategies described in [8], and
PureProp-R on the repeated prisoners dilemma game.

In the party game, players have been invited to a party
and must decide whether to attend or not (so two actions).
Each player has a social-network of players it is acquainted
with and these constitute its neighbors in the graphical game.
A player’s reward for attending is an additive function of its
like/dislike for its attending acquaintances. Each player also
incurs a private cost associated with attending the party
which has an additive effect on its reward. In the corre-
sponding graph game, nodes represent players while edges
connect a player to its social network.

We used the τ -discretization idea described above to con-
struct an ε-induced game and then used PureProp to com-
pute approximate equilibria in party games for the follow-
ing neighborhood topologies (see Figure 1): (a) ring, (b)
grid, (c) acyclic with a branching factor of 2 (i.e. each node
has 3 neighbors), (d) chordal (10% of edges are chords), (e)
chordal (20% of edges are chords). For each topology, we
varied the number of players and measured the effect on the

run-time1 of various phases of our algorithm.

0 50 100 1500

1000

2000

3000

4000

5000

6000

7000

8000
Runtimes to compute a Single Equilibrium

Number of nodes

Ru
nt

im
e

(m
s)

Ring
Tree
Chordal−10%
Chordal−20%

(a)

0 50 100 1500

2000

4000

6000

8000

10000

Number of nodes

Ru
nt

im
e

(m
s)

Acyclic Topology (tree)(b)

0 20 40 60 80 1000

2000

4000

6000

8000

10000

12000

14000

Number of nodes

Ru
nt

im
e

(m
s)

Ring Topology(c)

0 50 100 1500

5

10

15 x 105

Number of nodes

Ru
nt

im
e

(m
s)

Grid Topology(d)

0 20 40 60 80 100 1200

1

2

3

4

5 x 105

Number of nodes

Ru
nt

im
e

(m
s)

Chordal Topology; 10% chords(e)

0 20 40 60 80 1000

1

2

3

4

5

6 x 105

Number of nodes

Ru
nt

im
e

(m
s)

Chordal Topology; 20% chords

Single equilirium
All equilibria, node + arc consistency
All equilibria, node consistency

(f)

Figure 2: Party Game Results. (a) Scaling with number

of players. (b) – (f) Run-time analysis of the PureProp

algorithm on the following topologies : acyclic (tree),

ring, grid, chordal (10%), and chordal (20%). In (b) –

(f), solid lines indicate the time to compute a single ε-

BNE, dashed-dot lines indicate the time to compute all

ε-BNE, and dashed lines indicate the time to compute

all ε-BNE when the arc consistency step is skipped.

Figure 2(a) compares the run-time of the algorithm on
various topologies as a function of the number of players. We
observe that regardless of topology, the run-time to compute
a single ε-BNE scales linearly with the number of nodes.
Additionally, we see that run-time is strongly affected by
the sizes of local neighborhoods. For instance, computation
is quickest for ring topologies. For the two chordal graphs,
we observe that the graph with fewer chords, and hence
fewer cycles, results in faster run-times.

Each plot in Figures 2(b - f) shows three curves that indi-
cate (1) the time to compute a single ε-BNE, (2) the time to
compute all ε-BNE, and (3) the time to compute all ε-BNE
when the arc consistency phase is skipped, that is, node
consistency is immediately followed by value assignment.

In Figure 2(b), we see that for acyclic graphs, the time re-
quired for all three computations is pretty much the same,
suggesting that most of the work is done by the node con-
sistency step and very little by arc consistency and value

1We measured run-time for all our experiments on a ma-
chine with a 2.80GHz Intel(R) Pentium(R) CPU and 1GB
of RAM.

propagation – this is exactly the behavior we would expect
since the number of backtracking steps during value prop-
agation will be minimal. In Figure 2(c), we notice that for
ring topologies, circumventing arc consistency results in a
big performance hit. This serves to demonstrate the effec-
tiveness of the arc consistency step in reducing domain sizes.
In Figure 2(d), however, it is interesting to note that for the
grid topology, arc consistency does not prove very beneficial
for graphs with fewer than 100 nodes. We speculate that
the reason for this is the high degree of connectivity in this
graph. For smaller graphs, this would cause the node consis-
tency phase to eliminate a considerable number of profiles.
However, as the ratio of node connectivity to graph size de-
creases, so does the effectiveness of node consistency. At the
same time, the benefits of arc consistency start to become
apparent. In Figures 2(e) and 2(f) we observe similar ef-
fects, and note again that the algorithm generally ran faster
on graphs with fewer chords due to the presence of fewer
cycles.

Next we illustrate the performance of PureProp-R on a
simple repeated prisoners’ dilemma game, in which each
player has two actions: whether to cooperate with its neigh-
bors or to defect by testifying to the police against its neigh-
bors in the graph. Each player gets a payoff of +1 for each
of its cooperating neighbors, and a payoff of −1 for each
of its defecting neighbors. A player also gets a payoff of 0
for cooperating and a payoff of +1 for defecting. The total
payoff to a player is thus the sum of these quantities. We
discretized the mixed strategy space using the technique de-
scribed in the previous section and applied PureProp-R to
the resulting game. Figure 3 illustrates the effect of number
of players and graph topology on PureProp-R. Once again,
we observe that algorithm run-time scales linearly with the
number of players regardless of topology.

Thus, we see that both PureProp and PureProp-R are
able to exploit locality of interaction in their respective classes
of games for compuational benefit.

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500
Time to compute a single profile

Number of Players

T
im

e
(m

s)

Ring

Tree
Chordal−10

Chordal−20

Figure 3: Repeated prisoner’s dilemma results. This

graph shows the time taken by PureProp-R to find a

single feasible and ε-enforceable profile. In the repeated

setting too, the complexity is roughly linear in the num-

ber of players and is more strongly affected by graph

density.

5. CONCLUSION
We have formulated the problem of finding approximate

equilibria in graphical games as a constraint satisfaction
problem. Our resulting algorithm, PureProp, unifies sev-
eral of the previous results on graphical games and extends
then to incomplete information games with arbitrary graph
structure. We have also shown that the approach of for-
mulating a graphical game as a CSP is not just limited to
one-shot games by deriving a new constraint satisfaction al-
gorithm, PureProp-R, for infinitely repeated games under
the average payoff criterion. Empirically, we have verified
our claim that the complexity of our algorithms, while an
exponential function of the size of the neighborhoods in the
graph, is linear in the total number of players in the game.

6. ACKNOWLEDGEMENTS
Vishal Soni and Satinder Singh were supported by the

NSF under Grant Number CCF-0432027 and by a grant
from DARPAs IPTO program. Michael Wellman was sup-
ported by NSF grant IIS-0205435, and by the STIET pro-
gram under NSF IGERT grant 0114368. Any opinions, find-
ings, and conclusions or recommenda-tions expressed in this
material are those of the authors and do not necessarily re-
flect the views of the NSF or DARPA.

7. REFERENCES
[1] S. Athey. Single crossing properties and the existence

of pure strategy equilibria in games of incomplete
information. Econometrica, 69:861–869, 2001.

[2] R. Dechter and J. Pearl. Tree clustering schemes for
constraint processing. In Seventh National Conference
on Artificial Intelligence (AAAI-88), pages 37–42,
1988.

[3] M. Kearns, M. Littman, and S. Singh. Graphical
models for game theory. In Proceedings of the 17th
Annual Conference on Uncertainty in Artificial
Intelligence (UAI-01), pages 253–260, San Francisco,
CA, 2001. Morgan Kaufmann Publishers.

[4] M. L. Littman and P. Stone. A polynomial-time Nash
equilibrium algorithm for repeated games. Decision
Support Systems, 39:55–66, 2005.

[5] P. Milgrom and C. Shannon. Monotone comparative
statics. Econometrica, 62:157–180, 1994.

[6] L. E. Ortiz and M. Kearns. Nash propagation for
loopy graphical games. In S. T. S. Becker and
K. Obermayer, editors, Advances in Neural
Information Processing Systems 15, pages 793–800.
MIT Press, Cambridge, MA, 2003.

[7] S. Russel and P. Norvig. Artificial Intelligence - A
Modern Approach. Prentice Hall, 2003.

[8] S. Singh, V. Soni, and M. Wellman. Computing
approximate bayes nash equilibria in tree-games of
incomplete information. In ACM Conference on
Electronic Commerce, 2004.

[9] D. Topkis. Supermodularity and Complementarity.
Princeton University Press, 2002.

[10] D. Vickrey and D. Koller. Multi-agent algorithms for
solving graphical games. In Eighteenth national
conference on Artificial intelligence, pages 345–351.
American Association for Artificial Intelligence, 2002.

