
Improving Predictive State Representations via Gradient Descent

Nan Jiang and Alex Kulesza and Satinder Singh
nanjiang@umich.edu, kulesza@gmail.com, baveja@umich.edu

Computer Science & Engineering
University of Michigan

Abstract
Predictive state representations (PSRs) model dynam-
ical systems using appropriately chosen predictions
about future observations as a representation of the cur-
rent state. In contrast to the hidden states posited by
HMMs or RNNs, PSR states are directly observable in
the training data; this gives rise to a moment-matching
spectral algorithm for learning PSRs that is computa-
tionally efficient and statistically consistent when the
model complexity matches that of the true system gen-
erating the data. In practice, however, model mismatch
is inevitable and while spectral learning remains appeal-
ingly fast and simple it may fail to find optimal models.
To address this problem, we investigate the use of gra-
dient methods for improving spectrally-learned PSRs.
We show that only a small amount of additional gra-
dient optimization can lead to significant performance
gains, and moreover that initializing gradient methods
with the spectral learning solution yields better models
in significantly less time than starting from scratch.

Introduction
Many approaches have been developed for learning models
of discrete-time, finite-observation dynamical systems from
data, each with its own advantages and disadvantages. For
example, fixed-history approaches (e.g., ARMA; Box, Jenk-
ins, and Reinsel 2011) are efficient in sample complexity
and have statistically consistent learning algorithms, but are
severely limited in scope. Latent-variable approaches (e.g.,
HMMs and other graphical models) are powerful in scope
but require slow, iterative optimization algorithms subject
to local minima (Wu 1983). Recurrent neural networks are
powerful in scope but their learning algorithms (though al-
ready useful (Hochreiter and Schmidhuber 1997)) need fur-
ther theoretical analysis and development (this is the sub-
ject of much current effort). And recently developed spec-
tral learning approaches for predictive state representations
(PSRs) are powerful in scope as well as statistically con-
sistent (Boots, Siddiqi, and Gordon 2010), but, although
they are well-understood in idealized settings where model
complexity precisely matches the data, in the more realis-
tic model mismatch (low rank) setting their behavior can be
unpredictable (Kulesza, Rao, and Singh 2014).

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

It is this last challenge that we address in this paper: We
use gradient descent with contrastive divergence (Hinton
2002) to take a spectrally-learned low-rank PSR and itera-
tively adapt its parameters to maximize data likelihood. This
allows us to combine the speed of spectral learning, used
to obtain an initial model, with the reliable improvements
in test performance obtained by hill-climbing on likelihood.
We present experiments showing that this combination can
yield significantly better results than spectral learning alone,
while requiring only a small amount of additional computa-
tion. We also show that spectral initialization allows the gra-
dient phase to find a better solution with significantly less
computation compared to a naive initialization.

Background: Predictive State Representations
Our goal is to model dynamical systems producing obser-
vations from a finite set O at discrete time steps. For any
observation sequence x ∈ O∗, Pr(x) denotes the probabil-
ity that the system produces x in the first |x| time steps af-
ter starting from a reference condition.1 Note that the func-
tion Pr(·) completely specifies the system. A test or history
is an observation sequence in O∗ that has been selected to
capture information about the future or past, respectively.
Given a set of tests T and a set of histories H, PT ,H is
the |T | × |H| matrix indexed by elements in T and H with
[PT ,H]t,h = Pr(ht), where ht is the concatenation of h and
t. Sets T and H are called core if the rank of PT ,H is max-
imal over all such sets. In general, core T and H may not
exist, but in many cases of interest they do and can even be
explicitly identified (Singh, James, and Rudary 2004).

Instead of the finite histories, latent variables, or recur-
rent network states used by the approaches described in the
previous section, a PSR represents state as a vector of pre-
dictions about observable futures. More precisely, a PSR of
rank k represents state using vectors in Rk, and is parame-
terized by a triple B = (b∗, {Bo}, b∞), where b∗ ∈ Rk is
a reference condition state vector, Bo ∈ Rk×k is an update
matrix for each o ∈ O, and b∞ ∈ Rk is a normalization

1We assume the system has a reference condition from which
we can sample observation sequences. This could be the reset state
(in applications with the ability to reset the system), or the long-
term stationary distribution of the system, in which case samples
can be approximately drawn from a single long trajectory.

vector. Let b(h) denote the PSR state after observing history
h from the reference condition (so b(ε) = b∗, where ε is the
empty string); the update rule after observing o is given by

b(ho) =
Bob(h)

b>∞Bob(h)
. (1)

From state b(h), the probability of observing the sequence
x1x2 . . . xl in the next l time steps is predicted by

b>∞Bxl
· · ·Bx2Bx1b(h) , (2)

and, in particular, the PSR approximates the system dynam-
ics function Pr(·) as

PrB(x1x2 · · ·xl) = b>∞Bxl
· · ·Bx2Bx1b∗ . (3)

The goal of learning is to choose parameters B so that
PrB ≈ Pr.

Suppose that Tc andHc are core sets of tests and histories,
so that they achieve the maximum rank d over all PT ,H; such
a d is the linear dimension of the system. Let oT denote the
set {ot | t ∈ T }, and letUc ∈ R|Tc|×d be a matrix containing
the left singular vectors of the matrix PTc,Hc . Boots, Siddiqi,
and Gordon (2010) showed that if the PSR parameters are
chosen to be

b∗ = U>c PTc,{ε}

Bo = U>c PoTc,Hc

(
U>PTc,Hc

)+ ∀o ∈ O (4)

b>∞ = P{ε},Hc

(
U>c PTc,Hc

)+
,

where A+ is the pseudoinverse of A, then PrB = Pr. That
is, a system of linear dimension d can be modeled exactly
by a rank d PSR, and one such PSR is recovered by the
spectral learning algorithm in Equation (4). Note that this
algorithm is statistically consistent: if the P -statistics are es-
timated from data, then the derived parameters converge to
an exact PSR as the amount of data goes to infinity.

Practical Limitations
Despite the appealing properties of the spectral learning al-
gorithm for PSRs, implementing it requires knowing the lin-
ear dimension d in advance as well as identifying core sets
Tc and Hc. This kind of prior knowledge is unrealistic for
most applications; moreover, the true linear dimension d is
likely to be much too large for both computational and sta-
tistical reasons. Thus in practice we cannot implement Equa-
tion (4) as written.

A natural alternative is low-rank spectral learning, where
Equation (4) is modified so that U ∈ R|T |×k contains only
the k principal left singular vectors of PT ,H for some hyper-
parameter k < d and for some choice of T andH (we spec-
ify this below in our empirical work). However, Kulesza,
Rao, and Singh (2014) showed that this widely-used algo-
rithm can have surprisingly bad results. Kulesza, Jiang, and
Singh (2015) proved that the problems can be avoided, but
needed T andH of unbounded size to do so. Thus even low-
rank learning may not give predictable results in practice.

Finally, even if the algorithm can be implemented in such
a way that statistical consistency applies, the rate at which

the learned model approaches the truth may nevertheless be
quite slow. The bound of Hsu, Kakade, and Zhang (2012),
for instance, depends on the smallest nonzero singular value
of PT ,H as 1/σ4

min. Thus, for finite training sets, spectrally
learned models can be far from optimal. (Intuitively, since
the algorithm depends only on summary statistics of the
data, it cannot be expected to match the statistical efficiency
of optimization-style learning.)

For all of these reasons, our goal is to find effective ways
of improving the real-world performance of spectral learn-
ing for PSRs. The solution we offer in this paper is to use
spectral learning to initialize a gradient descent procedure
that seeks to maximize the data likelihood. In doing so we
aim to combine the speed of spectral learning with the power
of likelihood optimization.

Closely Related Work
Shaban et al. (2015) recently proposed using an exterior
point method to refine spectrally learned models in order to
mitigate the practical limitations on spectral learning. While
our work shares a similar motivation, there are some impor-
tant differences.

First, the optimization objective in Shaban et al. is the
reconstruction error on a matrix of summary statistics (see
their Equation (11)), while our optimization objective is the
data likelihood; the latter is generally more informative and
statistically consistent, while the former is primarily a con-
venient surrogate measure. (Balle, Quattoni, and Carreras
(2012) also reformulated spectral learning as an optimiza-
tion problem using an objective that only depends on sum-
mary statistics, and is thus distinguished from our work in a
similar way.)

Second, the algorithm proposed by Shaban et al. works
uses spectral learning to recover latent variable models that
satisfy normalization constraints (e.g., in HMMs the tran-
sition and the emission probabilities for each state must be
non-negative and sum to 1). Hence, an important part of their
optimization procedure is ensuring that their models have
valid parameters. (Alternatively, one could project an invalid
latent variable model onto the valid parameter space and run
EM (Chaganty and Liang 2013; Zhang et al. 2014), but Sha-
ban et al. showed that this is usually less effective.) Such
a constrained optimization approach cannot be straightfor-
wardly extended to refine PSR models since the constraints
required to ensure the validity of PSR parameters are diffi-
cult to state in closed and finite form (Wolfe 2010). Instead,
we allow our models to produce invalid predictions and sim-
ply rectify and normalize them afterwards. This allows us to
apply contrastive divergence to obtain the gradient with re-
spect to an unconstrained likelihood objective, leading to an
algorithm that is much simpler in implementation.

Third, the spectral learning procedure used by Shaban et
al. to learn an HMM requires the number of observations to
be at least as large as the number of states in the HMM. This
is a severe constraint on its applicability. Our algorithm, pre-
sented next, does not have this constraint. In our empirical
work below, we illustrate the resulting generality by an ap-
plication to a large-rank low-observation text character pre-

diction problem. We also compare our algorithm to Shaban
et al. in a setting where both apply.

New Algorithm
Given a PSR model B = (b∗, {Bo}, b∞), we develop a gra-
dient procedure that optimizes the training log loss over the
PSR parameters. We first define the log loss, where the pre-
dictions made by the PSR are rectified and normalized. Next,
we introduce contrastive divergence to deal with the normal-
ization factor, and reduce the problem to the gradient calcu-
lation for unnormalized probabilities. Finally, we derive the
gradient.

Objective function
Recall that the probability of a sequence of observations
x = x1x2 . . . xl as predicted by a PSR B is PrB(x) =

b>∞Bxl
· · ·Bx1

b∗. Let D be a training dataset comprising
sequences of observations of length l; then the naive defini-
tion of log loss on D is

− 1

|D|
∑
x∈D

log(PrB(x)) . (5)

However, this objective has a serious issue: since PrB(x) can
be negative and unnormalized in general, optimizing Equa-
tion (5) can result in degenerate models, such as those pre-
dicting very large probabilities for all of Ol simultaneously.
Therefore, we rectify and normalize the predictions PrB(x)
in Equation (5). In particular, we use absolute value as the
rectifying function; the objective function becomes:

logloss(D;B) = − 1

|D|
∑
x∈D

log
|PrB(x)|∑

x′∈Ol |PrB(x′)|
. (6)

For the remainder of this section, we are interested in ob-
taining the (stochastic) gradient of Equation (6) with respect
to B. The major challenge is the normalization factor, which
requires summing an exponential (in l) number of terms. We
deal with this using contrastive divergence.

Contrastive Divergence
Hinton (2002) proposed Contrastive Divergence (CD) as a
solution to the problems posed by expensive normalization
factors; CD gives an unbiased estimate of∇B logloss(D;B)
as

−∇B log |PrB(x)|+∇B log |PrB(y)| , (7)

where x is sampled from the dataset D and y is asequence
of the same length sampled from the current model B.

While sampling x is straightforward, sampling y can be
tricky—a naive solution requires calculating all of the prob-
abilities predicted by B, which is as expensive as com-
puting the normalizer in the first place. Instead, CD uses
Markov Chain Monte-Carlo (MCMC) to sample y, build-
ing a Markov chain whose stationary distribution is the tar-
get distribution (Andrieu et al. 2003). Using MCMC avoids
calculation of the normalization factor, since the algorithm
only requires probability ratios between pairs of points in
the sample space. While, in theory, Markov chain transitions

need to be simulated for many rounds so that they approx-
imately reach the stationary distribution, for the purpose of
CD it is frequently observed that a few rounds (or even a sin-
gle round) of MCMC, starting from x, is often good enough
(Hinton 2002).

In our setting, we use the following Markov chain for
sampling y: starting with x, we uniformly randomly pick
a position i ∈ {1, . . . , l}, and then replace xi with an
observation sampled from the distribution p with p(o) ∝
|PrB(x1 . . . xi−1oxi+1 . . . xl)|. For problems with manage-
able observation spaces, the distribution p can be computed
exactly by computing |PrB(x1 . . . xi−1oxi+1 . . . xl)| using
Equation (3) and normalizing the distribution. Otherwise
standard techniques such as rejection sampling can be ap-
plied to sample from p.

Next, we derive the formula for calculating
∇B log |PrB(x)|.

Gradient Calculation
By the chain rule,

∇B log |PrB(x)| = sign(PrB(x))

|PrB(x)|
∇BPrB(x)

=
1

PrB(x)
∇BPrB(x) . (8)

For b∞ and b∗, PrB(x) takes a linear form, so the gradient
is:

∂PrB(x)

∂b∞
= Bxl

· · ·Bx1
b∗ , (9)

∂PrB(x)

∂b∗
= (b>∞Bxl

· · ·Bx1
)> . (10)

For each o ∈ X , the gradient with respect to Bo can be de-
rived as follows: Let B′ be the same as B, except that we
increase the ij entry of Bo by δ. To represent the parame-
ters of B′ in matrix form, let J ij denote the matrix with a 1
at ij and 0 everywhere else; then the component of B′ that
corresponds to Bo can be written as Bo+ δJ ij , and we have

PrB′(x)− PrB(x)

= b>∞(Bxl
+ δJ ijI(xl = o)) · · · (Bxl

+ δJ ijI(x1 = o))b∗

− b>∞Bxl
· · ·Bx1

b∗

= δ
∑
t:xt=o

b>∞Bxl
. . . Bxt+1

J ijBxt−1
. . . Bx1

b∗ + o(δ) ,

where o(δ) absorbs higher order terms. Then,

∂PrB(x)

∂[Bo]ij
= lim
δ→0

PrB′(x)− PrB(x)

δ
(11)

=
∑
t:xt=o

b>∞Bxl
. . . Bxt+1

J ijBxt−1
. . . Bx1

b∗ .

We can simplify this further, noting that the terms in the sum
take the form of α>t J

ijβt, where αt = (b>∞Bxl
. . . Bxt+1

)>

Algorithm 1 Stochastic Gradient Descent with Contrastive Divergence for Predictive State Representations.

Input: dataset D, learning rate η, initial model B = (b∗, {Bo}, b∞).
t := 1.
while stopping criterion is not reached do

Sample x uniformly from D. Let l := |x|.
Sample i uniformly from {1, 2, . . . , l}.
Sample o according to p(o) = |PrB(x1...xi−1oxi+1...xl)|∑

o′∈O |PrB(x1...xi−1o′xi+1...xl)| .
y := x1 . . . xi−1oxi+1 . . . xl.
Compute ∆ = −∇B log |PrB(x)|+∇B log |PrB(y)| using Equation (8) and Equation (9), (10), (13).
B := B − η(t)∆.
t := t+ 1.

Output: B

and βt = Bxt−1
. . . Bx1

b∗. We have:

∂PrB(x)

∂[Bo]ij
=

∑
t:xt=o

α>t J
ijβt =

∑
t:xt=o

[αt]i[βt]j

=
∑
t:xt=o

[αtβ
>
t]ij . (12)

Finally, the matrix form of the gradient is:

∂PrB(x)

∂Bo
=
∑
t:xt=o

αtβ
>
t . (13)

Note that this form is not only notationally simpler, but also
enables fast computation of the gradient, since {αt} and
{βt} are cumulative vector-matrix products of the RHS of
Equation (3) from left to right and right to left, respectively.
Thus they can be computed by a linear scan from both di-
rections, making the computational complexity linear in se-
quence length as opposed to quadratic. By plugging Equa-
tion (9), (10), (13), and (8) into Equation (7), we are able
to compute the stochastic gradient of the objective function.
Algorithm 1 summarizes the complete procedure.

Experiments: Synthetic HMMs Data
We first show on synthetic domains that our proposed gra-
dient procedure can improve the model, and that spectral
learning provides a useful initialization.

Domain Specification We generate data using randomly
generated ring-topology HMMs with 100 states and 10 ob-
servations. Each state has at most 2 possible observations,
chosen randomly. The transition matrix follows a ring topol-
ogy, where each state can only transition to its two neigh-
bors or to itself. All non-zero entries of the transition ma-
trix, the emission matrix, and the initial state distribution
are picked uniformly randomly from [0, 1] and then normal-
ized. From each HMM, we sample multiple observation se-
quences starting from the initial distribution with length 10,
and split them into training and test datasets. The objective
in this domain is to predict the probability of these length-10
sequences (cf. Equation 6).

Initialization We compare two different initializations:
(1) Spectral initialization: the model is initialized via spec-
tral learning with the system-dynamics matrix estimated
from training data. All length-one and length-two strings are
used as tests/histories, and model rank is set to 10. (2) Ran-
dom initialization: the model is initialized by first generating
a random HMM with the number of states equal to the rank
of the desired PSR, and then converting the HMM to a PSR
using the procedure described by Jaeger (2000). The param-
eters of the HMM are generated as for the ring domain, ex-
cept that there are no predetermined zero entries.

Gradient Descent We apply Algorithm 1 with a standard
momentum term to accelerate gradient descent as follows:

ν := µν + η(t)∆ ,

B := B − ν ,
where ∆ is the stochastic gradient with respect to the PSR-
parameter B (as derived in the Gradient Calculation section),
ν is initialized to 0 and µ is a hyperparameter of the algo-
rithm, set to 0.9 throughout this paper. We use a constant
learning rate of η = 10−6. To prevent the model param-
eters from experiencing sudden changes due to occasional
stochastic gradients with a large magnitude, we rescale the
stochastic gradient term ∆ to guarantee that ‖∆‖∞ ≤ 10.

Results The left panel of Figure 1 shows the training and
test curves for data sets with 10,000 trajectories. Our gra-
dient descent algorithm is able to improve the loss of both
randomly and spectrally initialized models. Furthermore, the
gap between their asymptotic performance shows that opti-
mizing with the initialization provided by spectral learning
leads to improved prediction performance relative to opti-
mizing with a random initialization.

Comparison to Shaban et al. (2015) In the first compar-
ison, we use the same experimental settings as Shaban et al.
(2015) (referred to as “their” in the rest of this section): the
domains are random unstructured HMMs with 10 states and
20 observations. (Recall that they need the number of obser-
vations to be greater than the number of states.) The training
data contains 5000 sample trajectories of length 3, and the
test data contains 2000 sample trajectories of length 3. The

updates / 10000

0 50 100 150 200

L
o

g
 l
o

s
s

19.5

20

20.5

21

21.5

22
Ring Topology

Random (training)

Random (test)

Spectral (training)

Spectral (test)

model rank

2 4 6 8 10

lo
g
 l
o
s
s

8.93

8.94

8.95

8.96

8.97

8.98
Unstructured

no optimization

Shaban et al.

our algorithm

model rank

2 4 6 8 10

lo
g
 l
o
s
s

7.6

7.8

8

8.2

8.4
Ring Topology

no optimization

Shaban et al.

our algorithm

Figure 1: Results on synthetic HMMs. Left: Learning curves corresponding to random/spectral initialization and training/test
loss, averaged over 100 runs (error bars are shown for the test curves), in which the HMM, the data, and the random initialization
are all resampled. Middle and Right: Comparison to Shaban et al.’s algorithm. Log-loss of the models are plotted against model
ranks, averaged over 500 runs. “No Optimization” refers to using the initial model obtained via spectral learning with no further
optimization, and the other two curves correspond to the labeled algorithms that optimize the initial models. Middle: Results
on unstructured HMMs with 10 states, 20 observations (the HMMs used by Shaban et al. (2015)). Right: Results on HMMs
with 10 states, 20 observations, a ring topology in transitions, and a restriction of 4 possible observations for each state.

initial model is the HMM learned by spectral learning for
latent variable models. We then apply their method to refine
the HMM, with the hyperparameters λ1 = λ2 = 0.001 (set
by cross-validation). To ensure a fair comparison, we start
with the same initial model, converting the initial HMM to
a PSR and applying our Algorithm 1 to refine it, with learn-
ing rate η(t) = 10−7/(1 + t/20000) and momentum 0.9,
running for 5× 105 updates.

The results are shown on the middle panel of Figure 1,
where both algorithms achieve similar performance. Note
that the loss curve after optimization is nearly flat, imply-
ing that random unstructured HMMs can be modeled nearly
equally well by models of low rank and high rank.

The second comparison changes only how the HMMs that
generate the data are created: we add a ring topology to
the state transitions, and restrict the emission probabilities
so that each state has 4 possible observations (chosen ran-
domly). The results are shown in the right panel of Figure 1,
where the two algorithms achieve similar performance when
the model is near full rank, but our algorithm outperforms
theirs in the more interesting low rank region.

Experiments: Wikipedia Data

We investigate the effectiveness of our gradient proce-
dure on a character-level language modeling problem us-
ing Wikipedia data (Sutskever, Martens, and Hinton 2011)
formed by concatenating Wikipedia articles in random or-
der, where each character is treated as an observation. Note
that while the number of observations here is 86, the number
of underlying states is unknown but presumably much larger
than 86, making this domain outside the scope of Shaban et
al. (2015). We take 1GB of text as training data for learn-
ing our PSR models, and use a separate 120MB for testing.
The performance is measured in bits per character (bpc), the

lower the better.2

The model is initialized by spectral learning and then
improved by Algorithm 1. Using the complete 1GB train-
ing sequence for gradient descent is computationally in-
feasible, and so we use much shorter subsequences taken
from random initial positions in the training set and hav-
ing fixed length (a parameter of the algorithm). If the length
is too short, the substrings cannot capture interesting long-
term temporal dependencies. (As an extreme example, if the
length is one, then we can only learn the frequency distri-
bution of individual characters.) On the other hand, if the
length is too long, computing the gradient is expensive and
makes the algorithm slow. In practice, we found that a length
between 10 and 20 is sufficient for the Wikipedia data.

We first show the results of a small-scale experiment with
model rank 20. Spectral initialization uses all length-one and
length-two sequences as tests/histories, and random initial-
ization is done as in the synthetic experiments. For the gra-
dient procedure, we sample short sequences of length 10
from the training data to compute stochastic gradients, and
the learning rate and momentum parameters are set to 10−6

and 0.9, respectively. The left panel of Figure 2 shows how
test bpc decreases as updates are made to the model parame-
ters. Note that while asymptotically the 2 curves reach sim-
ilar performance levels, random initialization requires about
2 × 107 updates, whereas spectral initialization achieves
most of the improvement within the first 5×105 updates—2
orders of magnitude faster. The overhead of spectral initial-
ization is relatively small, as all the parameters are computed
in closed form.

2Given a sequence of characters x1:l and any function f(·|·)
that predicts the probability of the next observation based on
past observations, bpc is defined as− 1

l

∑l
i=1 log2 f(xi|x1:(i−1)).

For more evaluation details see Sutskever, Martens, and Hin-
ton; Kulesza, Jiang, and Singh (2011; 2015).

0 500 1000 1500 2000 2500
3.4

3.5

3.6

3.7

updates / 10000

B
it
s
 p

e
r

c
h

a
ra

c
te

r
Rank 20 model

Spectral init

Random init

0 50 100 150 200
2

3

4

5

6

7

#updates / 1000

B
it
s
 p

e
r

c
h

a
ra

c
te

r

Rank 1000 model

Random init

Spectral init

0 200 400 600
2.44

2.45

2.46

2.47

2.48

2.49

updates / 1000

B
it
s
 p

e
r

c
h

a
ra

c
te

r

Rank 1000 model, spectral init

Joint objective

Conditional objective

Figure 2: Results on Wikipedia data. Left: Test bpc of rank 20 models with spectral and random initializations. The initial bpc
of the random model is 6.5 and is not shown in the range of the figure. Middle: Test bpc of rank 1000 models with spectral and
random initializations respectively. Right: A zoomed-in look at the spectrally initialized models in the middle panel; the two
curves correspond to optimizing for the joint objective (Equation (6)) and conditional objective (Equation (14)) respectively.

Next, we show results of a larger-scale experiment with
model rank 1000. For spectral initialization, the most com-
monly occurring 9383 strings with length at most 11 are
used as tests/histories, and the summary statistics matrices
(e.g., PT ,H and PoT ,H) are whitened before SVD is applied
(Cohen et al. 2013). For the gradient procedure, we sam-
ple short sequences of length 20 and compute the stochastic
gradient ∆ in mini-batches of size 10. The learning rate and
momentum parameters are set to 10−7 and 0.9, respectively.
The middle panel of Figure 2 compares the two different
ways of initializing the model. Random initialization shows
significant improvements at the beginning, but slows down
at bpc > 3.5, which is still far from the bpc that spectral
learning starts with (∼ 2.5). While the spectrally initialized
model does not improve as dramatically in absolute terms,
zooming in (see the right panel of Figure 2, solid line) it is
clear that the gradient procedure does in fact make signifi-
cant improvements to the initial spectral model.

Finally, inspired by the fact that in the Wikipedia experi-
ment we predict the next observation conditioned on all pre-
vious observations (instead of predicting entire small-length
observation sequences as in the synthetic data experiments
thus far) we examine the performance of optimization using
the following log loss on conditional predictions (instead of
the unconditional log loss of Equation 6 used thus far):

− 1

|D|
∑
x∈D

log
|PrB(x)|∑

o∈O |PrB(x1:(l−1)o)|
. (14)

To use this new objective function, the only change needed
in Algorithm 1 is to flip the last observation instead of choos-
ing a random position when we sample y. The right panel
of Figure 2 compares the two objectives; the new objective
leads to slightly faster descent speed.

Conclusion
We proposed a gradient-based algorithm with respect to a
data likelihood objective for refining PSR models obtained

by spectral learning. Since no closed-form constraints are
known to guarantee model validity, existing approaches for
refining latent variable models via constrained optimiza-
tion cannot be straightforwardly applied to PSRs. Instead,
we rectified and normalized the predictions and used Con-
trastive Divergence to estimate stochastic gradients with-
out calculating the normalization factor. Experiments show
that our algorithm can effectively improve both randomly
and spectrally initialized models, but that the latter usually
achieves better asymptotic performance and converges to the
local optimum much faster. In future work we hope to under-
stand why second order methods are not straightforwardly
applicable to this setting (see Appendix), and to see if they
can be adapted in some way to speed up the optimization
process.

Acknowledgement
This work was supported by NSF grant IIS 1319365. Any
opinions, findings, conclusions, or recommendations ex-
pressed here are those of the authors and do not necessarily
reflect the views of the sponsors. We thank Amirreza Sha-
ban and Byron Boots for generously sharing their code and
answering questions regarding their method.

Appendix: On Second Order Methods
When optimizing over complex models, second order meth-
ods are sometimes used to accelerate gradient descent
(Sutskever, Martens, and Hinton 2011). The basic idea fol-
lows from Newton’s method, which suggests descending in
the direction ofH−1∇ instead of∇, whereH is the Hessian.
When the number of model parameters is large, it is unreal-
istic to compute H exactly since the computer may not have
enough memory even to store it, and many approximate al-
gorithms have been proposed to work under limited memory
(Liu and Nocedal 1989; Schraudolph, Yu, and Günter 2007).

Following this line of research, we sought to apply these
techniques to PSRs. However, a surprising observation sug-

gests that any straightforward application of second order
methods may not work here: when calculating H−1∇ ex-
actly using a small portion of the Wikipedia data on a rank
20 model, we found numerically that H−1∇ = −B. This
phenomenon appears regardless of whether the model is
computed using spectral learning or generated randomly,
and we conjecture that H−1∇ = −B holds in general. If
this is true it means that moving in the Newton direction sim-
ply rescales the PSR parameters, which makes no change to
the normalized model predictions. While we do not have a
proof for the general case, we can show that this holds in a
minimal setting.
Proposition 1. When |O| = 2 and data are length-1 se-
quences, for PSR model B with rank 1 and all positive pa-
rameters, HB = −∇.

Proof. Without loss of generality, let O = {0, 1}. When the
rank of PSR is 1, b∗ and b∞ only scale all the predictions
with the same constant, hence the only relevant parameters
are B0 and B1 (which are scalars in this case). For conve-
nience let x = B0 and y = B1, so B = [x y]> and the pre-
diction rule is PrB(0) = x/(x+y) and PrB(1) = y/(x+y).
Suppose the relative frequency of 0 in the data is p, so the
objective function is

logloss(D;B) = −p log
x

x+ y
− (1− p) log

y

x+ y
.

The gradient and the Hessian are

∇ = [1/(x+ y)− p/x 1/(x+ y)− (1− p)/y]
>
,

H =

[
p/x2 − 1/(x+ y)2 −1/(x+ y)2

−1/(x+ y)2 (1− p)/y2 − 1/(x+ y)2

]
.

By multiplying H and B together, the result follows.

It may still be possible to apply second order methods to
PSRs by introducing some constraints on model parameters
(e.g., bounded norm), but we leave the investigation of such
possibilities to future work.

References
Andrieu, C.; De Freitas, N.; Doucet, A.; and Jordan, M. I.
2003. An introduction to MCMC for machine learning. Ma-
chine learning 50(1-2):5–43.
Balle, B.; Quattoni, A.; and Carreras, X. 2012. Local Loss
Optimization in Operator Models: A New Insight into Spec-
tral Learning. In Proceedings of the 29th International Con-
ference on Machine Learning, 1879–1886.
Boots, B.; Siddiqi, S. M.; and Gordon, G. J. 2010. Closing
the learning-planning loop with predictive state representa-
tions. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, 1369–1370.
Box, G. E.; Jenkins, G. M.; and Reinsel, G. C. 2011. Time
Series Analysis: Forecasting and Control, volume 734. John
Wiley & Sons.
Chaganty, A. T., and Liang, P. 2013. Spectral Experts for
Estimating Mixtures of Linear Regressions. In Proceedings
of the 30th International Conference on Machine Learning,
1040–1048.

Cohen, S. B.; Stratos, K.; Collins, M.; Foster, D. P.; and
Ungar, L. 2013. Experiments with Spectral Learning of
Latent-Variable PCFGs. In Proceedings of Conference of
the North American Chapter of the Association for Compu-
tational Linguistics - Human Language Technologies, 148–
157.
Hinton, G. 2002. Training products of experts by minimiz-
ing contrastive divergence. Neural computation 14(8):1771–
1800.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Hsu, D.; Kakade, S. M.; and Zhang, T. 2012. A spectral
algorithm for learning hidden Markov models. Journal of
Computer and System Sciences 78(5):1460–1480.
Jaeger, H. 2000. Observable Operator Models for Discrete
Stochastic Time Series. Neural Computation 12(6):1371–
1398.
Kulesza, A.; Jiang, N.; and Singh, S. 2015. Low-Rank
Spectral Learning with Weighted Loss Functions. In Pro-
ceedings of the 18th International Conference on Artificial
Intelligence and Statistics, 517–525.
Kulesza, A.; Rao, N. R.; and Singh, S. 2014. Low-Rank
Spectral Learning. In Proceedings of the 17th International
Conference on Artificial Intelligence and Statistics, 522–
530.
Liu, D. C., and Nocedal, J. 1989. On the limited memory
BFGS method for large scale optimization. Mathematical
programming 45(1-3):503–528.
Schraudolph, N. N.; Yu, J.; and Günter, S. 2007. A stochas-
tic quasi-Newton method for online convex optimization. In
Proceedings of the 11th International Conference on Artifi-
cial Intelligence and Statistics, 436–443.
Shaban, A.; Farajtabar, M.; Xie, B.; Song, L.; and Boots, B.
2015. Learning Latent Variable Models by Improving Spec-
tral Solutions with Exterior Point Methods. In Proceedings
of the 31st Conference on Uncertainty in Artificial Intelli-
gence, 792–801.
Singh, S.; James, M. R.; and Rudary, M. R. 2004. Predictive
state representations: A new theory for modeling dynamical
systems. In Proceedings of the 20th Conference on Uncer-
tainty in artificial intelligence, 512–519. AUAI Press.
Sutskever, I.; Martens, J.; and Hinton, G. E. 2011. Gener-
ating text with recurrent neural networks. In Proceedings
of the 28th International Conference on Machine Learning,
1017–1024.
Wolfe, B. 2010. Valid Parameters for Predictive State Rep-
resentations. In International Symposium on Artificial Intel-
ligence and Mathematics.
Wu, C. 1983. On the convergence properties of the EM
algorithm. The Annals of Statistics 11(1):95–103.
Zhang, Y.; Chen, X.; Zhou, D.; and Jordan, M. I. 2014.
Spectral methods meet EM: A provably optimal algorithm
for crowdsourcing. In Advances in Neural Information Pro-
cessing Systems, 1260–1268.

