
Using Homomorphisms to Transfer Options across Continuous Reinforcement
Learning Domains

Vishal Soni and Satinder Singh
Computer Science and Engineering
University of Michigan, Ann Arbor
{soniv, baveja}@umich.edu

Abstract

We examine the problem of Transfer in Reinforcement
Learning and present a method to utilize knowledge ac-
quired in one Markov Decision Process (MDP) to boot-
strap learning in a more complex but related MDP. We
build on work in model minimization in Reinforcement
Learning to define relationships between state-action
pairs of the two MDPs. Our main contribution in this
work is to provide a way to compactly represent such
mappings using relationships between state variables in
the two domains. We use these functions to transfer a
learned policy in the first domain into an option in the
new domain, and apply intra-option learning methods to
bootstrap learning in the new domain. We first evaluate
our approach in the well known Blocksworld domain.
We then demonstrate that our approach to transfer is vi-
able in a complex domain with a continuous state space
by evaluating it in the Robosoccer Keepaway domain.

Introduction
Transfer learning involves taking knowledge acquired in one
domain, the source domain, and utilizing it in a new but pos-
sibly similar domain, the target domain. In this paper, we
examine transfer learning in the context of Markov Decision
Processes (MDPs). Specifically, we consider transfer sce-
narios in which the agent first learns a policy in one MDP
and then applies that knowledge towards learning in a more
complex (in the size of the state and action space) MDP. The
potential benefit we seek is that the transferred knowledge
will help bootstrap the learning process in the target domain.

We build on the framework of MDP Homomor-
phisms (Ravindran & Barto 2002). Homomorphisms are an
abstraction framework that allow us to define transforma-
tions between MDPs based on their transition dynamics and
reward functions. Any homomorphism between two MDPs
allows us to take a policy from one MDP and transfer it to
the other. So far, the use of Homomorphisms for transfer
learning in MDPs is limited because (a) Homomorphisms
require a strict correspondence in rewards between the tar-
get and source MDPs, (b) Homomorphisms are difficult to
learn (Ravindran & Barto 2003), and (c) Homomorphisms

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

are hard to specify as prior knowledge, especially in do-
mains with continuous state spaces.

In this paper, our main contribution is a way to compactly
represent a set of transformations between the target and
source MDPs by defining relationships between their state
variables, thus allowing us to easily specify such transfor-
mations. We also show that by not requiring rewards in the
target and source domains to correspond exactly, we are able
to generate a larger set of potentially useful transformations.

We evaluate our approach in two test domains - the
Blocksworld domain and the Robosoccer Keepaway do-
main. The Blocksworld domain consists of a set of differ-
ently shaped blocks. The task of the learner is to take the
blocks from some initial configuration and rearrange them
into some final configuration. Our transfer task in this do-
main is to take a policy for rearranging a certain number of
blocks and apply it towards rearranging a larger number of
blocks. The Keepaway domain is a fairly complex domain
with a continuous state space and consists of a team of keep-
ers who endeavor to keep a ball away from a team of takers
for as long as possible. Our transfer task in this domain is
to take a policy to play three-versus-two Keepaway (three
keepers and two takers) and to use it to bootstrap learning in
four-versus-three Keepaway (four keepers and three takers).

Before describing our contribution, we provide back-
ground on the three components of this work: Markov De-
cision Processes, Options, and Homomorphisms.

Preliminaries
Markov Decision Processes
A Markov Decision Process (MDP) is a tuple of 〈S, A, P,R〉
where S is the set of states, A is the set of actions, P is
the transition probability function with P (s, a, s′) being the
probability of transitioning from state s to state s′ under ac-
tion a. R is the reward function with R(s, a) denoting the
reward for performing action a in state s. The notation A(s)
refers to a set of admissible actions in state s.

A policy π : S, A → [0, 1] defines the behavior of an
agent in its environment. The value of a policy π in any
state s, denoted V π(s), is the expected return when starting
in state s and following the policy π thereafter. The solution
to an MDP is an optimal policy π∗ such that for all s ∈ S,
V π∗

(s) ≥ V π(s) for any policy π. Reinforcement Learning

provides several algorithms which approximate the optimal
value function in an MDP.

Often when dealing with large or continuous state spaces,
an MDP is represented in a structured form in terms of its
state variables. In such representations, called factored rep-
resentations (e.g. Guestrin et al. (2003)), the state space S
is defined by a set of k state variables. A state s ∈ S is is
a unique assignment s = {s1, · · · , sk} to each of these state
variables. The set of permissible values for any state variable
is known as its domain. Transition probabilities and rewards
are then also represented in a factored form in terms of state
variables.

Options
At a very high level, an option (Sutton, Precup, & Singh
1999) can be thought of as a sub-routine, or skill, that the
agent can invoke in certain states. Unlike primitive actions
that last for one time step, an option can span multiple time
steps. We use options to represent the agent’s transferred
knowledge in the target MDP.

An option in an MDP M = 〈S, A, P,R〉 is defined by
the tuple O = 〈I, πO, β〉 where I ⊆ S is the set of states
in which the option can be invoked. The policy πO speci-
fies the option’s behavior while the option is being executed,
and β specifies a set of termination conditions that indicate
when the option terminates. A primitive action a ∈ A can
be thought of as a special case of an option that lasts for
exactly one time step and whose availability is defined by
the availability of a. A set of options O can thus contain
multi-step options as well as primitive actions defined as
one-step options. Finally, whereas previously we defined
policies over state-action pairs, we can now define policies
over state-option pairs, i.e. π : S ×O → [0, 1].

While it may seem that having to learn a policy over op-
tions in addition to primitive actions can negatively effect
learning complexity, this needn’t be the case. If the option
policies are Markov and if we have access to the option pol-
icy, we can employ powerful learning methods called Intra-
option learning (Sutton, Precup, & Singh 1998) that allow
us to update the value of an option while behaving accord-
ing to another option. These methods can thus be applied
to learn simultaneously about many options from the same
experience and can greatly speed up the learning process.

Homomorphisms
Formally, a Morphism of a structured system is some trans-
formation of the system that preserves its structure. MDP
Homomorphisms are an approach to abstraction in MDPs
and are part of a class of algorithms known as model mini-
mization (Dean & Givan 1997) methods for MDPs.

In general, model minimization techniques divide the
state space of an MDP into disjoint subsets, or blocks, of
states and define a new reduced MDP over these blocks. A
partition B of states S is a collection of blocks bi ⊆ S such
that ∪ibi = S. The block-action transition probabilities are
given by a function T where T (b, a,b′) is the probability
that when action a is taken in any state s ∈ b, the next state

Source Domain

Target Domain

Goal

Start
π

Goal

Start

Figure 1: A simple example of transfer in Blocksworld
where a policy learned in the source domain (above) cannot
be transferred to attain the goal in the target domain (below)
and, as such, no homomorphism exists between the two do-
mains. However, if we relax the homomorphism constraint
on rewards, the policy π in the source can be transferred to
attain a useful subgoal (below middle) in the target.

is in b′. That is, for all b,b′ ∈ B and for all s ∈ b,

T (b, a,b′) =
∑
t∈b′

Pr(s, a, t)

Therefore, for any action a, all states s ∈ b have the same
probability of transitioning into the block b′.

A homomorphism between a target MDP M and a source
MDP M ′ is a function h that maps block-action pairs in M
to state-action pairs in M ′ such that (a) block-action transi-
tion probabilities in M are equal to the corresponding state-
action transition probabilities in M ′, and (b) the reward as-
sociated with all the states in a particular block in M is the
same as the reward associated with the corresponding state
in M ′.

The function h is written in a modular form as a tuple of
surjections h = 〈f, gs|s ∈ S〉 where f : S → S′ maps
states in each block in M to a unique state in M ′, and gs :
As → A′

f(s) maps admissible actions in state s to admissible
actions in state f(s).

Transfer Learning with Homomorphisms
Homomorphisms provide an ideal framework for transfer
from a less complex MDP to a more complex one. Ravin-
dran & Barto (2002) show that given a stochastic policy π′

in a source MDP M ′, a homomorphism h = 〈f, gs|s ∈ S〉
from target M to source M ′ can be used to induce a stochas-
tic policy π in the target MDP M . Let g−1

s (a′) ⊆ As denote
the set of target actions that map to the same source action
a′ ∈ A′

f(s). Then for any s ∈ S and a ∈ g−1
s (a′),

π(s, a) =
π′(f(s), a′)
| g−1

s (a′) |
That is, the probability of taking action a in target state s
is the probability of taking action a′ in the source state s′

normalized by the number of actions that map to a′ in state
s.

In fact, if π′ is optimal in M ′, Ravindran & Barto (2002)
show that the induced policy π is optimal in M .

Initialize ~θ arbitrarily
Repeat (for each episode):

~e = ~0
s, o← initial state, option of episode
a← πo(s)
For all options o′ ∈ O(s):
Fs,o′ ← set of features present in s, o′

Repeat (for each step of the episode):
update eligibility trace
∀o′ ∈ O(s) s.t. πo′(s) = a,
∀i ∈ Fs,o′ : e(i)← e(i) + 1

Q(s, o)←
∑

i∈Fs,o
θ(i)

Take action a, observe reward r, next state s′

update q values
For all options o′ ∈ O(s′):
Fs′,o′ ← set of features present in s′, o′

Q(s′, o′)←
∑

i∈Fs′,o′
θ(i)

o∗ ← arg maxo′ Q(s′, o′)
For all options o′ ∈ O(s′):

q ← Q(s′, o′)(1− βo′(s)) + Q(s′, o∗)βo′(s)
δ ← r −Q(s, o′) + γq
~k = ~e
∀i ∈ Fs,o′ : k(i)← δk(i)

~θ ← ~θ + α~k

decay eligibility trace
For all options o′ ∈ O(s′):
Fs′,o′ ← set of features present in s′, o′

Q(s′, o′)←
∑

i∈Fs′,o′
θ(i)

o∗ ← arg maxo′ Q(s′, o′)
~e← γλ~e
With probability 1− ε

o = o∗

else
o← random option in O(s′)
if πo(s′) 6= πo∗(s′)

~e← ~0
s← s′, a← πo(s′)

until s is terminal

Figure 2: Intra-option Q-learning with function approxima-
tion to learn policy over options as well as primitive actions.

Homomorphisms can also be used to induce options onto
the target MDP. In their work on relativised options, Ravin-
dran & Barto (2003) show that given an option O′ =
〈I ′, πO′

, β′〉 in a source MDP M ′, a homomorphism h from
target M to source M ′ induces an option O = 〈I, πO, β〉 in
the following manner:
• The initiation set of the option O is the set of states s ∈

f−1(s′), ∀s′ ∈ I ′

• The option policy is a policy πO induced by the homo-

morphism h given the option policy πO′
(analogous to

the manner described above)

• The termination condition in any state s ∈ S is β(s) =
β′(f(s)), i.e. defined by the termination condition of the
source option.

Since discovering Homomorphisms is NP-hard (Ravindran
& Barto 2003), current approaches to learning with Homo-
morphisms involve supplying the agent with a set of candi-
date transformations and a policy learned in the source MDP.
The agent then learns the best homomorphism to apply in
any state of the target MDP.

Generalizing Transfer Over Target Reward
Functions
From a transfer perspective, a limitation of using Homomor-
phisms is that the rewards in the target and source MDPs
have to correspond, i.e. the target states that correspond to
the reward state in the source MDP must also have the same
reward associated with them.

For the kinds of problems motivating this work, we expect
that rather than being directly applicable to accomplishing
the task specified in the target MDP, the transferred knowl-
edge may provide a useful way of behaving as a step to-
wards accomplishing the target task. Figure 1 provides an
illustration of this in the Blocksworld domain. To extricate
ourselves from these reward structure constraints, we par-
tition the state-action space of the target MDP based solely
on transition probabilities (and ignore the reward constraint).
We are thus not constrained to having an exact mapping be-
tween reward functions in the two domains. The more simi-
lar the reward functions are, however, the more useful some
subset of induced options will be in optimizing the target
reward.

Of course, we do not know which of these options will be
useful in the target MDP. In our experiments, we examine
whether our learning algorithm (Figure 2) can quickly learn
to exploit the more useful options (and hence benefit from
similarities in reward structures of the two MDPs) while ig-
noring the less useful ones.

Generating Candidate transformations
As mentioned earlier, approaches to learning with Homo-
morphisms involve supplying the agent with a set of candi-
date transformations, which involves specifying a set of tu-
ples 〈f, gs〉. However, in continuous domains it can be hard,
or even impossible, to supply the function f between states
in the target and source domains.

Instead, we map state variables in the target domain to
state variables in the source domain. We consider factored
MDPs and provide the agent with a tuple 〈X, gs〉, where X
is a surjection that maps state variables in the target domain
to state variables in the source domain. We now show that
the tuple 〈X, gs〉 can used to generate a set of transforma-
tions 〈f, gs〉. The benefit is that in continuous domains, if
the state can be factored into a finite set of state variables,
the variable mapping function X will be easier to specify
than the state mapping function f .

g−1

g−1

1

2

3

s2

1

2s1

Target state

Source state: S2

Source state: S1

1
2Pass to Keeper 2

Pass to Keeper 3

Pass to Keeper 2

Pass to Keeper 2

Figure 3: A simple example of transfer from the source do-
main, 2v1 Keepaway (right) to the target domain, 3v1 Keep-
away (left). The state variable mapping, X , maps the vari-
ables distance to keeper 2 and distance to keeper 3 in the tar-
get domain to the variable distance to keeper 2 in the source
domain. This figure shows the resulting state mapping for a
particular target state. The solid arrows indicate the actions
available to the keeper with the ball (concentric circle). The
taker, ’T’, can intercept one of those passes. Dotted lines
represent the action mapping function gs. So an action Pass
to 2 from the top right state will map to Pass to 3 in the target
state.

Of course, since the function gs is provided, we have only
generate a set of functions f in order to generate a set of
candidate transformations.

Formally, define X to be a surjection that maps variables
in the target MDP M to variables in the source MDP M ′, i.e.
X : V → {V ′ ∪ ν}, where ν is “dummy” variable. By al-
lowing some variables in V to map to a dummy variable, we
can define a partial mapping between state variables. That is,
we are not restricted to mapping every single target variable
to some source variable.

Any one to one mapping between variables in the target
M and the source M ′ will give us a single function f . Since
X is a many to one mapping from variables in the target
to variables in the source, any projection of this mapping
onto a one-to-one mapping between state variables will gen-
erate a function f . Since multiple such projections are pos-
sible, multiple state mapping functions f can be generated.
The function X thus represents multiple f functions and the
tuple 〈X, gs〉 represents a set of candidate transformations.
Figure 3 demonstrates this for a simple Keepaway problem.

The advantage for continuous state spaces is that we do
not have to store a set of candidate transformations. We only
need store the tuple 〈X, gs〉, which is easier to do if have a
finite number of actions and state variables.

Note that more generally, we can provide a set of sur-
jections X ∈ X with each element in the set representing
multiple f functions.

Learning Algorithm Since we do not explicitly store can-
didate transformations, it is not possible to explicitly induce
options. However, given an 〈X, gs〉, we can implicitly rep-
resent an option Oi as the tuple 〈i, gs, π

′〉 where i represents

the ith state mapping function fi, and π′ is a policy in the
source. The option Oi can be defined in terms of its initia-
tion set, policy, and termination condition as follows:
• The initiation set of Oi is all the states in which the ith

transformation is possible.
• Let g−1

s (a′) ⊆ As denote the set of target actions that map
to the same source action a′ ∈ A′

f(s). If π′ is the policy in
the source MDP M ′, then for any s ∈ S and a ∈ g−1

s (a′)
the option policy πOi is given by

πOi(s, a) =
π′(fi(s), a′)
| g−1

s (a′) |
where fi is the ith state mapping function under X .

• The option terminates in all the states in which the ith

transformation is not possible, or when the source policy
π′ terminates.
The algorithm present in Figure 2 employs Q-learning

with CMAC function approximation (Sutton & Barto 1998)
and intra-option learning to learn a value function over these
implicit options, effectively learning which transformation
to pick in any given state.

Experiments
We now present an evaluation of our approach on the
Blocksworld and the Robosoccer Keepaway domains.

Blocksworld consists of a set of distinctly labeled ob-
jects that can either be stacked on each other or placed on
a table. The task of the agent is to take the objects from
an initial configuration and rearrange them to arrive at the
goal configuration. The agent can only move one object
at a time, and at most one object can reside on top of an-
other. An object can be moved to any object that is clear
(i.e. has no other object on top of it) or to the table. In
a world with N objects, the state is determined by a set
of binary state variables - an “on” value for binary vari-
able ioj indicates that object i is over object j. An action
aij , i ∈ [1, N], j ∈ {[1, N] ∪ table}, i 6= j, moves object i
on top of object j. The action aij is available in all states in
which both i and j are clear (the table is always clear).

An object i can have one of three different shapes which
determines the probability with which it can be successfully
placed on top of another object. So taking action aij will
result in object i residing on top of object j with some prob-
ability pij , and falling on the table with probability 1− pij .
Finally, we introduce some noise in the system such that the
transition dynamics of any two objects of the same shape
differ by some ε, i.e. if objects i and k have the same shape,
pij = pkj ± ε. Similarly, pji = pjk ± ε.

In all of our tests the target domain was the 7-Blocksworld
domain which contained 7 objects of different sizes. We
used four source domains, the domains from which a policy
was transferred. There were 3-Blocksworld, 4-Blocksworld,
5-Blocksworld, and 6-Blocksworld. We defined a set of
inter-domain variable mapping functions X by mapping
state variables between domains based on the shapes of the
objects they represent. So a binary target variable ioj maps
to a source variable zox if i and z, and j and x have the same

5 10 15 20 25
102

103

104

105

106

107

108

Transfer in 7 Blocksworld
Source policies: layout blocks

Number of Episodes

Ep
is

od
e

le
ng

th

Transfer from 3 Blocksworld

Transfer from 4 Blocksworld

Transfer from 5 Blocksworld

Transfer from 6 Blocksworld

No Transfer

(a)

5 10 15 20 25
102

103

104

105

106

107

108

Transfer in 7 Blocksworld
Source policies: reverse blocks

Number of Episodes

Ep
is

od
e

le
ng

th

Transfer from 3 Blocksworld

Transfer from 4 Blocksworld

Transfer from 5 Blocksworld

Transfer from 6 Blocksworld

No Transfer

(b)

Figure 4: Results of transfer to 7-Blocksworld from 3,4,5,
and 6 Blocksworlds. In (a) the tasks in the source domains
were to lay the objects out flat on the table. In (b) tasks all
the other Blocksworld were also to reverse the objects. Each
plot line represents results averaged over thirty runs.

shape. Note that this mapping represents a set of the vari-
able mapping functions defined in the previous section. The
probabilities of stacking a block of a particular shape on an-
other block were randomly generated in the range [0.6, 0.9].

In all our experiments, the start state in all domains was
one in which objects were stacked in order of their label.
So block-1 was over block-2, and so on. The goal state for
the target domain (7-Blocksworld) was to stack the blocks in
reverse order of their label. We learned two different policies
in each source domain and evaluated how well these policies
transferred to achieving the goal in the target domain.

In Figure 4(a), the goal state for all the source domains
was a configuration in which objects were laid out flat on
the table. These policies were then used to bootstrap learn-
ing in the 7-Blocksworld. While the tasks in source and
target domains are different, we expect to see some bene-
fit from transfer since laying out objects flat on the table
is most likely en-route to assembling them in reverse or-

der. As we would expect, the most benefit comes from the
policy that was transferred from 6-Blocksworld. However,
it is interesting to see that the policies transferred from 3-
Blocksworld and 4-Blocksworld caused the learner to per-
form worse than the from-scratch learner (no transfer). It
seems that the policies transferred from 3-Blocksworld and
4-Blocksworld are too distracting. One possible explanation
for this is that these policies are available in a lot more states
than 6-Blocksworld or 5-Blocksworld. It may be the case
that in many of those states, attempting to lay objects out on
the table is not a useful course of actions.

In Figure 4(b), the goal state for all the source domains
was to reverse the ordering of the objects (just like in the tar-
get domain). We see that when the policies from the source
domains are transferred to 7-Blocksworld, they have a posi-
tive impact on learning performance. This is expected since
the reward structures in the source and target domains are
very similar. Comparing 4(a) to 4(b), we see that the learn-
ing algorithm is able to extract greater benefit from the trans-
ferred policies when the reward structures in the source and
target domains are more similar.

Keepaway is a sub-problem of the Robosoccer domain in
which one team, the Keepers, endeavors to keep possession
of a ball and the opponents, the takers, attempt to gain pos-
session of the ball. Whenever a taker acquires the ball, or
when the ball exits the playing field, an episode terminates
and a new one begins. A game is characterized by the size of
the playing field, the number of keepers and the number of
takers. Stone, Sutton, & Kuhlmann (2005) map the Keep-
away problem into a discrete time, episodic reinforcement
learning framework, which we utilize here.

State variables are comprised of an agent’s distance and
angle relative to other players. Keepers make a decision only
when they possess the ball. The actions available to a keeper
with the ball are Pass Ball to Keeper i and Hold Ball. Keep-
ers without the ball follow a deterministic policy - the keeper
closest to the ball moves to acquire the ball while the others
move to an open region so as to be able to receive a pass.
Takers also follow a deterministic policy of moving to pass-
ing lanes so as to be able to intercept a pass. Random noise
is injected into all observations and actions. Communication
is not allowed between agents except through the simulator
and thus agents cannot share their knowledge.

To define the set of variable-mapping functions, we
mapped all the variables corresponding to keeper (taker) po-
sitions in 4v3 Keepaway to the variables corresponding to
keeper (taker) positions in 3v2 Keepaway. From a high level,
this is essentially telling the agent who its teammates and
opponents are and, as far as giving prior domain informa-
tion is concerned, is a fairly reasonable type of knowledge
to provide. In fact, this information is already encoded in
the actions (since keepers can only pass the ball to keepers).

This is a significantly more complex domain than
Blocksworld for several reasons not the least of which is
that this a multi-agent system with a continuous state space.
The possibility of transfer in this domain has been explored
by Taylor & Stone (2005) where they use a specific trans-
formation to transfer learned knowledge (as opposed to our
approach of generating a set of transformations). We now

0 0.5 1 1.5

5

6

7

8

9

10

Training Time (hours)

Ep
is

od
e

du
ra

tio
n

(s
ec

on
ds

)

Learning without Transfer

Learning with Transfer from 3v2 Keepaway
(a)

Learning 4v3 Keepaway

0 0.5 1 1.5 2 2.5 3

5

6

7

8

9

10

Training Time (hours)

Ep
is

od
e

du
ra

tio
n

(s
ec

on
ds

)

Learning without Transfer

Learning with Transfer from 3v2 Keepaway(b)

Figure 5: Learning 4v3. The solid blue lines show the per-
formance of the Keepers that transferred a policy learned in
3v2. Note that (a) and (b) are the same plot, but displayed
over different time scales.

examine whether the approach based on MDP Homomor-
phisms is relevant to transfer in this domain. We first trained
keepers in a 3v2 (3 keepers versus 2 takers) domain. We
then used the policies learned here to bootstrap learning in
the 4v3 domain and compared learning performance against
keepers learning 4v3 Keepaway from scratch. We measured
effectiveness of transfer by how much sooner the team of
keepers bootstrapping with transferred knowledge were able
to achieve a target hold time of 8 seconds versus the team of
keepers learning without any transferred knowledge.

Figure 5 presents our results. The y-axis indicates episode
length - longer episodes imply better keeper performance.
Each plot line represents a single trial over a three hour train-
ing period and is smoothed by averaging over a window of
a hundred episodes. In Figure 5(a), keepers with transferred
knowledge attained the target about 30 minutes sooner than
keepers without transferred knowledge. Figure 5(b) plots the
same data but on a longer time scale. We see that in the long
term, keepers that bootstrap with transferred knowledge per-
form as well as keepers learning from scratch indicating that
these transferred policies, which may not be optimal in the
target domain, do not hinder performance in the long term.

We are thus indeed able to bootstrap learning in 4v3 Keep-
away by transferring a policy learned in 3v2 Keepaway with-
out loss of performance in the long term.

Conclusions
We have examined the problem of transfer in MDPs. We
showed that by defining a mapping between state variables,
we can compactly represent a set of candidate transfor-
mations between a target and a source MDP. We showed
that intra-option learning methods can be used to determine
which transformation to apply in any given state. By con-
sidering transformations based solely on transition probabil-
ities, we are able to transfer policies from the source domain
to a larger set of options in the target domain. We evaluated
our approach in the Blocksworld and the Robosoccer Keep-
away domains and showed that this is a viable approach to
transfer in continuous domains.

Acknowledgments
This work is supported by the NSF under Grant Number
CCF-0432027 and by a grant from DARPA’s IPTO program.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF or DARPA.

References
Dean, T., and Givan, R. 1997. Model minimization in
markov decision processes. In American Association for
Artificial Intelligence, 106 – 111.
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient solution algorithms for factored MDPs.
Journal of Artificial Intelligence Research 19:399–468.
Ravindran, B., and Barto, A. G. 2002. Model minimization
in hierarchical reinforcement learning. In Fifth Symposium
on Abstraction, Reformulation and Approximation, 196–
211.
Ravindran, B., and Barto, A. G. 2003. An algebraic ap-
proach to abstraction in reinforcement learning. In Twelfth
Yale Workshop on Adaptive and Learning Systems, 109–
144. Yale University.
Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Rein-
forcement learning for robocup-soccer keepaway. Adaptive
Behavior 13(3):165–188.
Sutton, R., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1998. Intra-
option learning about temporally abstract actions. In Inter-
national Conference on Machine Learning, 556–564.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Be-
tween mdps and semi-mdps: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelligence.
112(1-2):181–211.
Taylor, M. E., and Stone, P. 2005. Behavior trans-
fer for value-function-based reinforcement learning. In
The Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, 53–59.

