
Learning Predictive State Representations in Dynamical Systems
Without Reset

Britton Wolfe bdwolfe@umich.edu
Michael R. James mrjames@umich.edu
Satinder Singh baveja@umich.edu

Computer Science and Engineering, University of Michigan, Ann Arbor, MI 48109

Abstract

Predictive state representations (PSRs) are
a recently-developed way to model discrete-
time, controlled dynamical systems. We
present and describe two algorithms for
learning a PSR model: a Monte Carlo algo-
rithm and a temporal difference (TD) algo-
rithm. Both of these algorithms can learn
models for systems without requiring a re-
set action as was needed by the previously
available general PSR-model learning algo-
rithm. We present empirical results that
compare our two algorithms and also com-
pare their performance with that of existing
algorithms, including an EM algorithm for
learning POMDP models.

1. Introduction

Predictive state representations or PSRs is a recently
developed formalism (Littman et al., 2002) for mod-
eling agent-environment interactions as discrete-time
controlled dynamical systems. PSRs provide an al-
ternative to more traditional models common to AI
and machine learning such as hidden Markov mod-
els (HMMs) or partially observable Markov decision
processes (POMDPs). A number of representational
advantages of PSRs relative to POMDPs have been
shown: 1) PSRs can model all environments at least
as compactly as POMDPs (Singh et al., 2004), 2) PSRs
can model some environments exponentially more
compactly than POMDPs (Rudary & Singh, 2004),
and 3) PSR models use only observable quantities
while POMDP models use unobserved or hidden vari-
ables (Littman et al., 2002). These relative advantages

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

together offer the hope of more robust and efficient
methods for learning models of agent-environment in-
teraction than are available for POMDPs.

A few methods for learning PSR models have already
been developed in the still-early phase of exploration
in this direction. For example, Singh et al. (2003) de-
veloped a gradient method, James and Singh (2004)
developed a method for learning PSR models in dy-
namical systems in which it is possible to reset the en-
vironment to an initial configuration, and Rosencrantz
et al. (2004) developed a method that uses principle-
components analysis for learning PSR models in un-
controlled dynamical systems. In this paper we de-
scribe two learning algorithms for PSR models in con-
trolled dynamical systems: a Monte Carlo algorithm
called suffix-history and a temporal difference (TD) al-
gorithm. Neither algorithm requires the availability of
a reset action, in contrast to the previously available
general algorithm for PSR-model learning (James &
Singh, 2004). Finally, we empirically compare their
performance to each other and to existing applicable
methods.

2. PSRs

The key idea behind PSRs, and the closely re-
lated prior work on observable operator models or
OOMs (Jaeger, 1998) as well as the more recent work
on TD networks (Sutton & Tanner, 2005), is to rep-
resent the state of the environment as a set of predic-
tions about observations that the agent could see as
it performs some tests or experiments. A PSR-model
maintains a state vector of predictions that allow the
agent to make any prediction about future events. We
develop the PSR formalism below.

2.1. Definitions and Notation

In this paper, we restrict attention to discrete-time
dynamical systems. An agent’s interaction with such

Learning Predictive State Representations in Dynamical Systems Without Reset

Table 1. A system-dynamics matrix. In this example, the set Q = {t1, t3, t4} forms a set of core tests. The initial
prediction vector is shown in boldface. The equations in the ti column show how any entry on a row can be computed
from the prediction vector of that row.

D t1 t2 t3 t4 . . . ti . . .
φh p(t1|φh) p(t2|φh) p(t3|φh) p(t4|φh) p(ti|φh) = p(Q|φh)mti

h1 p(t1|h1) p(t2|h1) p(t3|h1) p(t4|h1) p(ti|h1) = p(Q|h1)mti

h2 p(t1|h2) p(t2|h2) p(t3|h2) p(t4|h2) p(ti|h2) = p(Q|h2)mti

...
hj p(t1|hj) p(t2|hj) p(t3|hj) p(t4|hj) p(ti|hj) = p(Q|hj)mti

...

a system can be written as a sequence of alternating
actions and observations, a1o1a2o2 . . ., where we use
ai and oi to refer to the action and observation of
timestep i, respectively. The actions are selected from
a set A, and the observations are members of a set O.

A history is a sequence of alternating actions and ob-
servations a1o1a2o2 . . . anon that describes an agent’s
experience in the system up through timestep n. A test
is a sequence of alternating actions and observations
a1o1a2o2 . . . amom that describes a possible sequence
of future actions and observations. Note the distinc-
tion between ai and ai; the former is a variable that
represents the ith action in a test, while the latter is
a variable representing the action of the ith timestep.
A test succeeeds if the observations of the test are ob-
tained, given that the test’s actions are taken. A pre-
diction for a test t = a1o1 . . . amom starting from a
given history h is the probability that t will succeed
when its actions are executed immediately following h.
Formally, the prediction for a test t = a1o1 . . . amom

from some history h of length n is
p(t|h) = Pr(on+1 = o1, o

n+2 = o2, . . . o
n+m = om

| h, an+1 = a1, a
n+2 = a2, . . . a

n+m = am).

For ease of notation, we will use the following short-
hand in the remainder of the paper: for a set of
tests T = {t1, t2, . . . tn}, p(T |h) = [p(t1|h) p(t2|h) . . .
p(tn|h)] is a row vector of predictions for the tests
in T from a history h. Similarly, for a set of his-
tories H = {h1, h2, . . . hn}, p(t|H) = [p(t|h1) p(t|h2)
. . . p(t|hn)]T is a column vector of predictions for test
t from the histories in H. And lastly, p(T |H) is a
|H|×|T | matrix such that the (i, j)th entry is p(tj |hi).

2.2. System-Dynamics Matrix

A system-dynamics matrix D completely specifies a
discrete-time dynamical system (Singh et al., 2004).
It is a theoretical matrix with an infinite number of
rows and an infinite number of columns (see Table 1).
Each row corresponds to a history, including the empty

or null history φh. Each column corresponds to a test.
The entry Dij is defined to be p(tj |hi).1 More de-
tail about the system-dynamics matrix can be found
in Singh et al. (2004); this introduction is merely in-
tended to facilitate the later discussion of the learning
algorithms.

If a system-dynamics matrix D has finite rank n, then
there exists some set C of n columns of D that spans
the image of D. That is, all columns of D are lin-
early dependent upon C. As noted in Singh et al.
(2004), any dynamical system that can be modeled as a
POMDP with a finite number of states m has a system-
dynamics matrix of rank no more than m. So restrict-
ing our attention to finite-rank system-dynamics ma-
trices is a mild assumption that will be made for the
remainder of this paper.

A set of linear core tests for a system is a set Q =
{q1, . . . , qn} of tests such that the columns of D cor-
responding to Q are maximally linearly independent,
i.e., all columns of D are linearly dependent on the
columns corresponding to Q. Similarly, a set of linear
core histories for a system is a set H of n histories such
that the rows of D corresponding to H are maximally
linearly independent. At least one valid set of core
tests (or histories) exists for any system D of finite
rank.

2.3. Linear PSR Model

This section will describe one type of PSR called a
linear PSR. The algorithms that we will present later
learn a linear PSR (or variant) as a model of the envi-
ronment. In the remainder of this paper we will drop
the “linear” qualifier. We will begin by describing the
components of a PSR and then describe its operation.

A PSR model of a system is completely defined by a
1The histories (and similarly tests) can be ordered

by length, and ordered lexicographically within the same
length, giving a totally-ordered, countable list of histories
(or tests).

Learning Predictive State Representations in Dynamical Systems Without Reset

pair of objects: an initial prediction vector or initial
state p(Q|φh), and a set of matrices {∀a, o : Mao} and
vectors {∀a, o : mao} called the model update param-
eters. In order to understand the semantics of these
components, it is useful to keep in the mind the fact
that the system and its system-dynamics matrix D are
interchangeable, i.e., a PSR model of a system should
be able to generate D.

• The initial prediction vector p(Q|φh) is a row
vector such that the ith element of p(Q|φh) is
p(qi|φh), for each core test qi ∈ Q.

• For each action a and observation o, the vector
mao is a column vector such that p(Q|h)mao =
p(ao|h) for all h. Such a vector exists and is
unique because of how the core tests are defined:
The column of D that corresponds to the test ao
is a linear combination of the core tests’ columns.
The mao vector is composed of the weights in that
linear combination.

• For each action a and observation o, the ma-
trix Mao is a |Q| × |Q| matrix with the ith
column equal to maoqi

, where maoqi
satisfies

p(aoqi|h) = p(Q|h)maoqi
,∀h. The maoqi

vectors
exist and are uniquely determined by Q and D
in the same way as the mao vectors. In fact,
since all columns are linearly dependent upon the
core tests’ columns, there exists an mt such that
p(Q|h)mt = p(t|h),∀h for any test t (Table 1).

The fact that mt exists for any t shows that p(Q|h) is
a sufficient statistic for the history h. That is, given
p(Q|h), it is possible to compute the accurate predic-
tion for any test from the history h, without using h
itself. Thus, the prediction vector p(Q|h) at any his-
tory h is the state of the system after history h.

The prediction vector is updated according to

p(Q|hao) =
[p(aoq1|h) · · · p(aoqn|h)]

p(ao|h)
=

p(Q|h)Mao

p(Q|h)mao

upon taking action a and seeing observation o from
history h.

3. Learning Algorithms

The problem that we wish to focus on is simply, How
can an agent learn a PSR model of its environment?

In the remainder of this section, we will describe our
two algorithms: the suffix-history algorithm and the
temporal difference (TD) algorithm for learning a PSR
model of an environment. Both of our algorithms

learn from one continuous interaction between agent
and system. This is in contrast to the closest prior
work in James and Singh (2004) that requires several
interactions, each one beginning after resetting the en-
vironment to its initial configuration. Of course, in
many real-world environments a reset action may not
be available.

3.1. Suffix-History Algorithm

Suppose that one had access to an oracle that could
be queried for entries in the system-dynamics matrix
D. We will first describe how one can build a PSR
model using such an oracle. Then we will show how
queries to the oracle can be replaced by estimates of
the entries of D from the data.

3.1.1. Using an Oracle

Suppose that one knew a set of core tests Q and a
set of core histories H. Then for all tests t, p(t|H) =
p(Q|H)mt by definition of mt. Since Q and H are
core, the matrix p(Q|H) is invertible, so one can com-
pute mt = p−1(Q|H)p(t|H) for any t. This includes
{mao} and {maoqi

}, which are the update parameters
needed for the PSR model. Thus, one can build a PSR
model by asking the oracle for p(Q|φh), p(Q|H), and
{∀a, o, i : p(ao|H), p(aoqi|H)}.

Of course the core tests and histories are not known to
begin with. These can be determined through an itera-
tive procedure. On the ith iteration, the algorithm ex-
amines a submatrix p(Ti|Hi) of D, computing its rank
ri. It finds ri linearly independent rows and columns
corresponding to some histories H ′

i and tests T ′
i . If

ri = ri−1, then the procedure stops and the core tests
(histories) are T ′

i (H ′
i). Otherwise (ri 6= ri−1), Ti+1

and Hi+1 are computed as {∀a, o, t ∈ T ′
i : ao, aot} and

{φh} ∪ {∀a, o, h ∈ H ′
i : ao, hao}, respectively. Then

the next iteration begins. The initial set T1 (H1) is all
tests (histories) of length 1 or less.

This iterative method for choosing Q and H is not
guaranteed (James & Singh, 2004) to find a full set
of core tests (histories), but the tests (histories) that
it does find will be linearly independent. Despite this
limitation, this procedure often works well in practice,
as seen in James and Singh (2004) as well as in our
results below.

3.1.2. Without an Oracle

Without an oracle, one could estimate an entry p(t|h)
in D by performing a Bernoulli trial: execute the ac-
tions of t starting from history h, and do this multiple
times. The fraction of individual trials in which t suc-

Learning Predictive State Representations in Dynamical Systems Without Reset

ceeded is then p̂(t|h). This is the method used in James
and Singh (2004). The problem with this method is
that it requires being in history h multiple times. We
have only a single long history S = a1o1a2o2 · · · anon

of interaction as our data, so we see each history at
most once.

The suffix-history algorithm gets around this issue
by treating every suffix of S as if it were a separate
training sequence. The estimate p̂(t|h) is then the
proportion of these training sequences (suffixes of S)
where the observations of t are seen given that the
actions of t are taken following h. This is equiva-
lent to p̂(t|h) = Succeeded(t, h)/Executed(t, h), where
Succeeded(t, h) is the number of times the sequence
ht was seen in S and Executed(t, h) is the number of
times the actions of t followed the sequence h in S.
This method allows us to obtain information about
many entries in D from any subsequence of S.

Our method of using suffixes as histories is similar to
one used by Jaeger (1998) for uncontrolled dynami-
cal systems. One drawback of both these methods is
that the suffix-histories are not independent, as com-
ponents of a true Bernoulli trial should be. However,
this is ameliorated by the fact that suffix-histories that
are far enough apart are almost independent. Another
potential issue is that suffix-histories do not start in
the initial configuration of the system. However, if the
system D has a stationary distribution (induced by
following a fixed policy), then we can view the suffix-
histories as starting from that stationary distribution
instead of the initial history φh of D. Thus we would
learn a model of a slightly different system D′ whose
dynamics is the same as D except for the initial config-
uration. In the appendix we prove that under certain
conditions the core tests and the model-update param-
eters of D′ are the same as for D.

When using estimates D̂ instead of the accurate val-
ues D from an oracle, one cannot perform strict linear
independence tests (as required in the oracle method)
because of the noise in the estimates. Instead, we ex-
amine singular values to test for linear independence
and use thresholds or cutoffs (on singular values) com-
puted based on the number of samples available for
each estimate. The more samples we have in our es-
timates the less conservative the singular value cutoff
becomes. The details of this procedure are identical
to that used in James and Singh (2004) and we omit
them here.

3.2. TD Algorithm

The suffix-history algorithm is a Monte Carlo algo-
rithm in the sense that an estimated prediction p̂(t|h)

is obtained by carrying out all the actions of t from
h. One then notes if t succeeded, and p̂(t|h) is an
average across several trials. Considerable experience
in the field of reinforcement learning has shown the
superiority of temporal difference (TD) methods over
Monte Carlo methods for predicting value functions
(see, e.g., Singh & Sutton, 1996). In a recent paper
Sutton and Tanner (2005) showed that TD algorithms
can be adapted to predictions of tests in a class of mod-
els they call TD networks that are related to PSRs
(though the precise relationship is not yet fully de-
veloped). Here we adapt their TD algorithm to PSR
models.

3.2.1. The Temporal Difference Idea

The basic idea behind TD methods is to update a
guess of a long-term outcome on the basis of a guess
at the next time step instead of waiting until the
end as in Monte Carlo methods. For example, sup-
pose the outcome of interest is a prediction p(t|h) for
t = a1o1a2o2a3o3 and for some history h of length k.
After observing h, the current model can compute an
estimate p̂(t|h) of p(t|h). If the agent takes action a1

at timestep k+1, it gains information about p(a1o1|h)
as it sees the next observation ok+1 and compares it
with o1. This information allows it to compute a new
one-step delayed estimate of p(t|h),

p̃(t|h) =
{

p̂(a2o2a3o3|ha1o1), ok+1 = o1

0, ok+1 6= o1
.

Note that E[p̃(t|h)] = p(a1o1|h) ∗ p̂(a2o2a3o3|ha1o1),
which equals p(t|h) if p̂(a2o2a3o3|ha1o1) is accurate.
So the TD error is p̃(t|h) − p̂(t|h), and the model pa-
rameters can be updated based on this error. This will
work well if, on average, p̃(t|h) is more accurate than
p̂(t|h). We would expect this to be the case because
p̂(t|h) is a prediction for a |t|-step test, while p̃(t|h) is
a prediction for a (|t| − 1)-step test. The (|t| − 1)-step
test, say a2o2a3o3, will occur in the agent’s experience
at least as often as – and probably more often than
– the t-step test a1o1a2o2a3o3. So we expect the esti-
mate for a2o2a3o3 to be more accurate than that for
a1o1a2o2a3o3.

3.2.2. TD for learning PSR models

To support TD learning, the minimal PSR model de-
scription of Section 2.3 needs to be extended a bit as
follows. The set of tests for use in the state representa-
tion is expanded to include not only the core tests but
also all suffixes of the core tests; the latter are needed
to provide the one-step delayed estimates. We will call
the expanded set of tests Y and write the expanded
state vector in some history h as p(Y |h). The TD al-

Learning Predictive State Representations in Dynamical Systems Without Reset

gorithm learns a model that uses the following state
vector update equation (see Sutton and Tanner (2005)
for motivation):

p(Y |hao) = g

(
p(Q|h)W ao + bao

dao(h)

)

where Q ⊆ Y is the set of “core” tests,2 W ao is a
|Q| × |Y | weight matrix, bao is a bias vector, and g is
the logistic function that is applied element-by-element
to its argument. One can use several different options
for the denominator dao(h): it can always be 1 (no de-
nominator); it can be computed as in linear PSRs as
p(Q|h)wao for some weight vector wao (denominator
weights); or it can be p̂(ao|h) as computed in the cur-
rent state vector (state for denominator). The differ-
ent modifications of the update equation define slightly
different types of PSR-models; we implemented all of
these modifications but in Section 4 present results
only for the state for denominator choice that worked
approximately best across domains. Note that the up-
date equation for the TD algorithm’s PSR-model is
similar to that of the original linear PSR, for which
Y = Q are the set of core tests, g(x) = x, bao = 0,
and dao(h) is computed using denominator weights.
The parameters of the model that must be learned
by the algorithm are W ao, bao, and the denominator
weights wao (if applicable). In this paper the sets of
tests Y and Q are given to the algorithm, i.e., the
TD learning algorithm only has to learn the model up-
date parameters and thus faces an easier task than the
suffix-history learning algorithm above which needs to
discover the set of core tests Q from the data.

Table 2. Domain and Core Search Statistics. The Asymp
column denotes the approximate asymptote for the percent
of required core tests found during the trials for suffix-
history (with parameter 0.1). The Training column de-
notes the approximate smallest training size at which the
algorithm achieved the asymptote value.

Domain |A| |O| |Q| Asymp Training
Tiger 3 2 2 100 % 4000
Paint 4 2 2 100 % 4000

Cheese 4 7 11 82 % 32000
Network 4 2 7 43 % 2048000

Bridge 12 5 5 100 % 1024000
Shuttle 3 5 7 100 % 1024000

Maze 4x3 4 6 10 90 % 1024000

2More generally we can use any subset of Y that in-
cludes Q.

4. Results

In this section we present results from experiments us-
ing several simulated domains with varying complex-
ity from Cassandra’s web site (1999) that were also
used to test PSR learning in James and Singh (2004)
and Singh et al. (2003). Summary statistics for each
domain are presented in Table 2. Our experiments
provide several comparisons: 1) suffix-history learning
with TD learning (again, note that the latter is given
the tests to begin with and thus faces an easier task),
2) the two algorithms described here with the results
from the older PSR-learning algorithm on these same
domains, and finally 3) the performance of all the PSR
learning algorithms to the performance of EM-based
POMDP learning.

4.1. Experimental Setup for each Domain

Our experiments aim to answer the following question:
How accurate of a model can be learned for a given
length of training data? Thus for each algorithm, we
test the performance with several different training-
sequence lengths. The results are shown in Figure 1
and are detailed below.

For each trial in our experiment, we generated a train-
ing data sequence and a test data sequence using a
uniformly-random action at each time step. Our evalu-
ation criterion for the algorithms is the accuracy of the
learned model’s predictions on the test sequence. The
error at history h in the test sequence was computed
as 1

|O|
∑|O|

i=1(p(aoi|h)− p̂(aoi|h))2, where a happens to
be the action chosen in history h, p̂(aoi|h) is the es-
timate computed by the learned model, and p(aoi|h)
is the true prediction. This is a normalized version
of the measurement used in Singh et al. (2003) and
James and Singh (2004). The error for each trial is the
average (per time step) error over the test sequence,
including the first timesteps of testing where the model
learned for the system’s stationary distribution may be
quite inaccurate. Despite this fact, we obtained good
results. During testing the learned models’ state vec-
tor entries were bounded in the [0, 1] range of valid
probabilities, but the p̂(aoi|h) values used to evaluate
the models were not bounded and sometimes fell out-
side the [0, 1] range.

4.1.1. EM Algorithm for POMDP learning

To compare PSR and POMDP learning, we used EM
(Baum-Welch)3 to learn a POMDP model for each do-
main and computed the same prediction error from
the learned POMDP model as for PSR-learning. For

3We modified the code from Murphy (2004).

Learning Predictive State Representations in Dynamical Systems Without Reset

!"
#

!"
$

!"
%

!"
!$

!"
!#

!"
!!

!"
! &'()*+#

!"
#

!"
$

!"
%

,-./0)

!"
#

!"
$

!"
%

!"
!$

!"
!#

!"
!!

!"
! 12))3)

!"
#

!"
$

!"
%

4)567-8

!"
#

!"
$

!"
%

!"
!$

!"
!#

!"
!!

!"
! 9'.45

!"
#

!"
$

!"
%

32:55;)

!"
#

!"
$

!"
%

!"
!$

!"
!#

!"
!!

!"
! 5.0)-

"<""!
"<"!
"<!
=)35>?&
@)3)5
A-'/.)45
B>C7-)>A.D)4
=)35>EF

Figure 1. Error vs. training length. The scale is identical
for each y-axis. The horizontal dotted line represents the
reset algorithm’s results; the amount of training data used
for those results was not available, so the x-axis has no
meaning for that series. The lines labeled 0.001, 0.01 and
0.1 are for the suffix-history algorithm with those choices
of the scalar parameter. For the cheese domain the error
of the reset algorithm is lower than 6 × 10−6. Other al-
gorithms’ results are labeled in the legend. See text for
further detail.

each domain, we used the correct number of states in
EM and ran it for 200 iterations upon the training se-
quence. After each iteration, we evaluated the current
POMDP model on the test sequence. The lowest error
over the 200 iterations in a trial is the error assigned
to EM for that trial. Furthermore, for each training-
sequence length, the error reported is the lowest er-
ror over 10 trials. This error is plotted in each graph
of Figure 1 as a function of training-sequence length.
Note that we gave EM-based POMDP-learning every
chance to outperform PSR-learning methods by tak-
ing the minimum error over all iterations and all trials
as well as by giving it the correct number of states to
begin with.

4.1.2. Reset and Gradient Algorithms

The gradient algorithm results presented here are
taken from Singh et al. (2003), and the reset algo-
rithm results are taken from James and Singh (2004).

4.2. Comparing Algorithms

The different graphs in Figure 1 correspond to differ-
ent domains. Each graph contains results for three
versions of the suffix-history algorithm defined by a
scalar parameter with choices 0.001, 0.01 and 0.1; the
parameter determines how conservative the algorithm
is in using cutoffs in SVD analysis for discovering core
tests (with smaller numbers implying more conserva-
tive). Overall the suffix-history algorithm with pa-
rameter setting 0.1 performs very well when compared
with the other algorithms (Figure 1).

[versus EM for POMDP learning] The suffix-
history algorithm outperforms EM in all domains ex-
cept for the network domain. In all domains includ-
ing network, the suffix-history algorithm improves its
performance as the training-sequence length increases,
whereas the EM algorithm’s error curves are rela-
tively flat. Thus it may be the case that the EM al-
gorithm would perform better than suffix-history for
small training sizes.
[versus TD] The TD algorithm may have a slight
edge over the suffix-history algorithm for the smaller
training sizes (in the cheese and shuttle domains, e.g.),
but the TD algorithm generally performs worse than
the suffix-history algorithm, especially for the larger
training sizes. This was surprising to us and we ex-
plore this further below.
[versus Gradient] Suffix-history outperforms the
gradient algorithm for all the domains except network
(for which the two algorithms were close) and cheese
(which was not very close). We explore the perfor-
mance discrepancy in the cheese domain further be-

Learning Predictive State Representations in Dynamical Systems Without Reset

10
4

10
5

10
6

10
7

10
8

10
−8

10
−6

10
−4

10
−2 Uncontrolled 3−State POMDP

TD
suffix−history

Figure 2. Error vs. training length. Each line is a trial of
the TD or suffix-history algorithm.

low.
[versus Reset] A straightforward comparison against
the reset algorithm is not possible because it required
the use of a reset action. Nevertheless we plot the
lowest error found by the reset algorithm on the same
domains from James and Singh (2004). In all domains
except for cheese, suffix-history is able to match or
outperform reset for sufficiently large training lengths.

Next we sought an explanation for our observation
above that in the cheese and network domains suffix-
history does not outperform the other algorithms. It
turns out that in these problems suffix-history is not
able to find enough core tests. Of course, larger train-
ing sizes generally resulted in a greater percentage of
the required number of core tests being found. In
Table 2 we list the approximate asymptote of the %
of required core tests found as the training size in-
creases and the training size at which the asymptote
was reached. When comparing with the error plots in
Figure 1, one can see that the domains for which the al-
gorithm eventually finds a full set of core tests — tiger,
paint, shuttle, and bridge — suffix-history performs
very well when compared with the EM and gradient
algorithms. In the cheese domain, where suffix-history
did not find all the core tests and fell well short of the
gradient algorithm’s performance, we did a separate
experiment in which we gave suffix-history the number
of core tests in the true model to see if that would make
a difference. The graph for the cheese domain shows
that indeed, with this prior knowledge suffix-history
outperforms all the other algorithms (see points la-
beled # Core Given). Recall that gradient, TD, and
EM all had access to the true number of core-tests and
states in all the experiments.

To further clarify the performance of TD versus the
Monte Carlo-like suffix-history algorithm, we decided
to run an experiment on the simplest of problems
in which we would expect TD to outperform Monte

Carlo: a 3-state POMDP in which one core-test is
2-steps long and 2 core tests are 1-step long. We
expect the TD algorithm to have an advantage over
Monte Carlo methods when learning predictions for
tests longer than one step (because with only 1-step
tests the two algorithms are essentially the same). The
comparison between suffix-history and the TD algo-
rithm is shown in Figure 2. For the smaller training
sizes, the suffix-history algorithm finds models with
only one core test, but was still comparable with the
TD algorithm. For the larger training sizes, its er-
ror drops significantly below the TD algorithm’s er-
ror, as it finds models with the full number (3) of re-
quired core tests. This is consistent with our results
in Figure 1. We note that these results seem incon-
sistent with the results of Sutton and Tanner (2005)
who showed that TD outperforms Monte Carlo in a
related setting, though this discrepancy may in part
be explained by the fact that they focused mostly on
fully observable domains while we focused on partially
observable domains.

5. Conclusions and Future Work

Methods for learning PSRs from data are clearly at
an early stage of development; we would characterize
them at roughly the stage of learning lookup table-like
models. This exploration is necessary to clarify basic
issues such as relative advantages of TD versus Monte
Carlo, and the relative advantages of learning PSR
models versus learning POMDP models using EM. In
this paper we presented the suffix-history algorithm, a
basic PSR learning algorithm for controlled dynamical
systems that does not assume a reset action unlike
the previously available general algorithm, as well as a
basic TD-inspired algorithm for learning PSR-models.
We showed that suffix-history outperforms both TD-
learning of PSR models and EM-learning of POMDP
models at least with large amounts of data.

As future work there continue to be some basic issues
to explore in the simple lookup table-like setting of
this paper, e.g., the use of eligibility traces with TD
methods and finding more efficient methods for com-
puting prediction estimates from sampled data. Fi-
nally, making PSR-model learning practical for real-
world applications would require the use of function
approximation.

Appendix

The suffix-history algorithm interacts with a system
D and builds a model for a different system D′ that
is derived from D by changing the initial condition of
the system. Specifically, the initial condition for D′

Learning Predictive State Representations in Dynamical Systems Without Reset

is the stationary distibution of D under the uniform
random policy. We now show two sets of conditions
under which core tests and model update parameters
for D′ are valid core tests and parameters for D; only
the initial prediction vector is different. In the fol-
lowing proofs, we will use p(·) (Q) and p′(·) (Q′) to
denote predictions (core tests) for D and D′ respec-
tively. Also, we will use the result that for a matrix
Z = XY , rank(Z) ≤ min(rank(X), rank(Y)) several
times below.
Theorem 5.1. Let D be a system with finite rank n
that can be modeled by a POMDP with n hidden states.
Let D′ be the system obtained by replacing the initial
belief state of D with a new initial belief state. If the
rank of D′ is also n, then any set of core tests and
update parameters for D′ are a valid set of core tests
and update parameters for D.

Proof. (Sketch) Let H denote the set of all histories.
We define B (B′) to be an ∞× n matrix with the ith
row being the belief state for D (D′) in history hi. We
also define p(Q′|S) = p′(Q′|S) as an n×n matrix with
the (i, j)th element being the probability of core test j
succeeding from POMDP state i, where S denotes the
set of POMDP states. Note that the ranks of B, B′,
p(Q′|S) and p′(Q′|S) are upper bounded by n.

By assumption, |Q| = |Q′| = n and therefore
rank(p(Q|H)) = rank(p′(Q′|H)) = n. From the equa-
tion p(Q|H) = Bp(Q|S), we obtain that rank(B) = n.
Similarly, from the equation p′(Q′|H) = B′p(Q′|S)
we obtain that rank(p(Q′|S)) = n. Finally, given
that p(Q′|H) = Bp(Q′|S), and that p(Q′|S) is
a square matrix with full rank, we obtain that
B = p(Q′|H)p−1(Q′|S) which in turn implies that
rank(p(Q′|H)) = n because rank(B) = n and the
maximum possible rank of p(Q′|H) is n. Therefore,
the set of core tests Q′ found for system D′ must also
be core tests for the original system D. The update
parameters for D′ are valid for D because they do
not depend upon the initial belief state, but only the
core tests and the POMDP dynamics (Littman et al.,
2002).

Theorem 5.2. Let D be a system-dynamics matrix
and h∗ be a history for D. Let D′ be a system-dynamics
matrix such that D′ has the same dynamics as D, but
its first row is identical to the row of D from history
h∗. If rank(D) = rank(D′), then any set of core tests
and update parameters for D′ are a valid set of core
tests and update parameters for D.

Proof. (Sketch) Note that the row corresponding to
any history h in D′ is identical to the row corre-
sponding to history h∗h in D. Thus all the rows of

D′ are rows of D. Therefore, any set of tests whose
columns are linearly independent in D′ must have
columns that remain linearly independent in D. Fi-
nally, given that rank(D) = rank(D′), we obtain that
Q′ are also core tests for D. Let H ′ denote a set of
linearly independent histories of size |Q′| for system
D′, and let h∗H ′ denote the corresponding histories
in D. By assumption, for any test t and history h,
p(t|h∗h) = p(t|h). The update parameters for any t,
mt in D are p−1(Q′|h∗H ′)p(t|h∗H ′) and m′

t in D′ are
p′

−1(Q′|H ′)p′(t|H ′), and are thus equal. So the up-
date parameters found for Q′ in D′ are also update
parameters for Q′ in D.

Acknowledgements The authors’ research was sup-
ported by NSF grant IIS-0413004.

References

Cassandra, A. (1999). Tony’s pomdp file repository
page. http://www.cs.brown.edu/research/ai/pomdp/
examples/index.html.

Jaeger, H. (1998). Discrete-time, discrete-valued observ-
able operator models: A tutorial (Technical Report 42).
German National Research Center for Information Tech-
nology.

James, M. R., & Singh, S. (2004). Learning and discovery
of predictive state representations in dynamical systems
with reset. Proceedings of ICML 2004 (pp. 417–424).

Littman, M. L., Sutton, R. S., & Singh, S. (2002). Pre-
dictive representations of state. In Advances in neural
information processing systems 14, 1555–1561.

Murphy, K. (2004). Hidden markov model (hmm) tool-
box for matlab. http://www.ai.mit.edu/∼murphyk/
Software/HMM/hmm.html.

Rosencrantz, M., Gordon, G., & Thrun, S. (2004). Learn-
ing low dimensional predictive representations. Proceed-
ings of ICML 2004 (pp. 695–702).

Rudary, M., & Singh, S. (2004). A nonlinear predictive
state representation. In Advances in neural information
processing systems 16, 791–798.

Singh, S., James, M. R., & Rudary, M. (2004). Predic-
tive state representations: A new theory for modeling
dynamical systems. Proceedings of UAI 2004 (pp. 512–
519).

Singh, S., Littman, M., Jong, N., Pardoe, D., & Stone, P.
(2003). Learning predictive state representations. Pro-
ceedings of ICML 2003 (pp. 712–719).

Singh, S., & Sutton, R. S. (1996). Reinforcement learning
with replacing eligibility traces. Machine Learning, 22,
123–158.

Sutton, R. S., & Tanner, B. (2005). Temporal-difference
networks. In Advances in neural information processing
systems 17, 1377–1384.

