
Relational Knowledge with Predictive State Representations

David Wingate, Vishal Soni, Britton Wolfe and Satinder Singh
Computer Science and Engineering

University of Michigan, Ann Arbor, MI 48109
{wingated,soniv,bdwolfe,baveja}@umich.edu

Abstract
Most work on Predictive Representations of State
(PSRs) has focused on learning and planning in un-
structured domains (for example, those represented
by flat POMDPs). This paper extends PSRs to rep-
resent relational knowledge about domains, so that
they can use policies that generalize across differ-
ent tasks, capture knowledge that ignores irrele-
vant attributes of objects, and represent policies in
a way that is independent of the size of the state
space. Using a blocks world domain, we show how
generalized predictions about the future can com-
pactly capture relations between objects, which in
turn can be used to naturally specify relational-style
options and policies. Because our representation is
expressed solely in terms of actions and observa-
tions, it has extensive semantics which are statistics
about observable quantities.

1 Introduction
Models of dynamical systems that use predictive representa-
tions of state replace the traditional notion of state (which is
usually a latent, unobservable quantity) by a set of statistics
about the future. A number of results have been obtained
about these predictive state representations (or PSRs). In the
case of discrete observations, for example, PSRs [Littman
et al., 2002] have been shown to be just as accurate, expres-
sive and compact as unstructured partially observable Markov
decision processes (POMDPs). In the case of continuous ob-
servations and linear dynamics, the Predictive Linear Gaus-
sian model [Rudary et al., 2005] is just as expressive and
more compact than the celebrated Kalman filter. Predictive
representations have shown to be good bases for generaliza-
tion [Rafols et al., 2005], and can be learned directly from
an agent’s experience trajectories by a number of different
algorithms [Wiewiora, 2005; McCracken & Bowling, 2006;
James & Singh, 2004]. To date, most work on PSRs has fo-
cused on state tracking and parameter estimation in flat, un-
structured worlds such as general POMDPs and linear dy-
namical systems.

We extend PSRs in a different direction. Our main contri-
butions are several extensions to the current state-of-the-art
of PSRs that allow the sort of generalization that is captured

by relational representations. Our extensions allow PSRs to
deal with structured relational domains, and entail three natu-
ral benefits. First, we are able to express policies for a family
of domains in a way that is independent of the size of the state
space (for example, in a blocks world domain the description
of a policy would be independent of the number of blocks).
Second, we can express abstract knowledge by ignoring irrel-
evant properties of observations (in a blocks world, the color
of a block may not impact how it can be manipulated), which
allows us to generalize across objects. Third, we can param-
eterize policies so that they generalize over multiple tasks (in
a blocks world, the policy for stacking block a on block b
should be similar to stacking block c on block d).

To accomplish this, we broaden the language that PSRs
use to represent knowledge. PSRs represent knowledge as
action-conditional predictions about the future, which is for-
mally captured by the notion of a test. We generalize these
tests to include multi-attribute observations, and define two
new types of tests, called “set tests” and “indexical tests.” We
show how policies and options [Precup et al., 1998] can be
specified in terms of mappings from these generalized tests
to actions, which allows the policies and options to general-
ize over whatever the tests generalize over. Finally, we show
how a nonlinear PSR can be naturally specified with these
generalized tests. Our extensions to PSRs maintain a key fea-
ture of PSRs, which is that all knowledge, including relational
knowledge, has extensive semantics based on statistics about
observable quantities. Furthermore, as we will show below,
the form of our extensions will allow relational knowledge
to be maintained and computed efficiently. In summary, this
paper is about advancing the expressiveness of PSRs and ex-
tending them to capture relational knowledge. We do not ad-
dress relational learning or planning.

2 Background and Motivation
The key idea of a PSR is to represent state as a set of tests,
which represent possible future observations given possible
future actions. A PSR maintains a set of core tests, the pre-
dictions of which are state in any history, and which allow
it to make correct predictions about any sequence of future
events.

In a controlled, discrete, dynamical system (for example,
a POMDP), at each time step i, the agent executes an action
ai ∈ A and receives an observation oi ∈ O (we occasionally

use multi-attribute observations, which are tuples denoted by
angle brackets).

A history is a sequence of alternating actions and obser-
vations a1o1a2o2 · · · amom describing an agent’s experience
through timestep m. An s-test (or “sequence test,” which
we will also just call a “test”), denoted a1o1a2o2 · · · anon,
describes a possible sequence of future actions and obser-
vations (note the distinction between superscripts and sub-
scripts). A test succeeds if the observations of the test are
obtained, given that the test’s actions are taken. A predic-
tion for a test t = a1o1a2o2 · · · anon starting in history h is
the probability that t will succeed when its actions are exe-
cuted immediately following h. Formally, we define the pre-
diction for a test from history h of length m to be p(t|h) =
Pr(om+1 = o1, om+2 = o2, · · · , om+n = on|h, am+1 =
a1, · · · , am+n = an). For ease of notation, we will use the
following shorthand: for a set of tests T = {t1, t2, · · · tn},
p(T |h) = [p(t1|h), p(t2|h), · · · p(tn|h)]T is a column vector
of predictions for the tests in T from a history h.

In a PSR, state is represented by a set of predictions about
core tests. The predictions of these core tests comprise a suf-
ficient statistic for history, which can be used in two ways.
First, they can be used to compute the prediction of an arbi-
trary test [Littman et al., 2002]. Second, they can be used to
maintain state, as follows. Given a set of core tests Q, their
predictions p(Q|h) (which constitute state), an action a and
an observation o, the updated prediction for a core test qi ∈ Q
is given by

p(qi|hao) =
p(aoqi|h)

p(ao|h)
.

This means that to maintain state, we only need to compute
the predictions of the one step tests (ao) and the one-step ex-
tensions (aoqi) to the core tests as a function of p(Q|h).

2.1 An Example: Blocks World
Blocks world is a structured domain typical of relational set-
tings. Even in this simple world, there are many types of
structure that s-test PSRs cannot leverage because the tests
they use are not expressive enough.

We define a partially observable blocks world, in which the
agent has an eye that can focus on different places (viewing
the world from the side). The domain is like a grid world,
with discrete positions; for a given position, the observation
is either a block, the Table, or nothing (represented by φ).
For most of the paper, we will assume that each block has
a unique observation (a number), but we will occasionally
consider versions where each block yields a multi-attribute
observation. In these cases, the blocks will have a color, a
number, and a “marked” bit (explained in Section 5.3).

Actions are U (move the eye up), D (move the eye down),
aφ (stay still) and find(a) (saccade to block a). The
move curr(b) action moves whatever block the eye is look-
ing at onto block b (both must be clear; b may be the Table),
and the eye stays where it was. Since we do not specify pre-
and postconditions for actions, we assume that if the agent
executes an invalid action, it fails and the state is unchanged.
The eye can be at most one space above any given stack.

2.2 Structured Questions
In order to exploit relational structure in domains such as the
blocks world, we must be able to ask questions about the fu-
ture that s-tests cannot pose. These questions will motivate
our extensions to PSRs, and will allow us to accomplish our
goals of generalization across domains, generalization across
tasks, and generalization across objects. Here are some ex-
amples:
• “What is the probability that if I move my eye down, I

will not see block b?” This negative question cannot be
answered with an s-test because they are defined in terms
of things that we do see, not things that we do not see.
However, we can represent “not block b” with the set of
all observations except b. This motivates “set tests,” which
aggregate multiple observations.

• “What is the probability of seeing a red block on top of a
blue block?” This type of question motivates an ability to
ignore irrelevant attributes of observations, which allows
us to deal with objects in terms of their attributes, and not
their identities. Again, this motivates set tests.

• “What is the probability of seeing one block, moving up,
and seeing a block that has the same (but unspecified)
color?” In this case, color is acting as a variable, which
must have the same value for both blocks. This question
motivates an ability to refer to previous observations, and
is the inspiration for “indexical tests.”

Asking (and answering) these sorts of questions helps us to
capture knowledge of structure in a domain, but requires gen-
eralizing the language of s-tests. One possibility is to allow
tests to contain arbitrary questions, represented by arbitrary
functions of observations and action. However, the answers
(or predictions) of such arbitrary tests may not be efficiently
computable. We seek a simpler way: we will show that our
generalized tests provide the needed capability for capturing
relational knowledge, and are computationally efficient.

3 Generalizing the Language of Tests
This section discusses two generalizations of standard s-tests.
We will first define set tests, in which we replace a single pos-
sible observation with a set of acceptable observations, and
will then discuss indexical and complemented indexical tests.

3.1 Set Tests
Standard s-tests can only ask about one observation at each
timestep, but to ask negative tests and to ignore irrelevant at-
tributes we want to ask about arbitrary sets of observations.
We accomplish this with set tests.

Suppose we have two tests t1 and t2, both of length m, that
differ in a only a single observation. We could ask, “What
is the probability of t1 or t2?” Because only one of the tests
could succeed from a given history, the answer is p(t1|h) +
p(t2|h). Set tests generalize this idea by replacing a single
observation with an arbitrary set of observations. Define a set
of observations Ok ⊆ O, and let σk

j ∈ Ok be the j-th member
of Ok. Define a test t which replaces the k-th observation ok

with the set Ok: t = a1o1 · · · akOk · · · anon. This test can be

viewed as a set of |Ok| tests (individually denoted tj), where

tj replaces Ok with σk
j . Then p(t|h) =

∑|Ok|
j=1 p(tj |h).

There is considerable flexibility in defining these sets of
observations. To ask about red objects, we construct a set
of all observations with the attribute “red.” We are also not
limited to replacing a single observation with a set; any (or
all) observations could be replaced. If we replace multiple
observations, the resulting test includes all combinations of
the elements of those sets. For example, if O1 = {σ1

1 , σ1
2}

and O2 = {σ2
1 , σ2

2}, the test t = a1O1a2O2 “expands” to in-
clude four primitive tests: a1σ1

1a2σ2
1 , a1σ1

1a2σ2
2 , a1σ1

2a2σ2
1 ,

and a1σ1
2a2σ2

2 , and the prediction of t is the sum of their pre-
dictions.

Because the systems we consider have a finite set of obser-
vations, the complement of an observation is well defined. To
ask negative tests, we let ¬ok = O \ {ok}, which is the set of
all observations except ok.

3.2 Indexical Tests
With a set test we can ask, “What is the probability of seeing
a red block on top of another red block?”, but a different kind
of test is needed to ask “What is the probability of seeing
two blocks on top of each other which have the same (but
unspecified) color?”

We call these tests indexical tests. In an indexical test, we
replace a single observation ok with a variable Xk, and then
we replace some later observation of with the same variable,
as in t = a1o1 · · · akXk · · · afXk · · · anon. Of course, multi-
ple observations can be replaced, and indexical variables can
be reused many times.

By default, the variable Xk will “match” any observa-
tion from O, but we can restrict it to match a subset of
observations. In either case, we define dom(Xk) ⊆ O
to be the set of acceptable observations for Xk. For
multi-attribute observations, Xk is a vector of variables
[Xk

1 , . . . , Xk
m]T , any of which we can restrict. This allows

us to test whether observations match on some attributes of
interest, while ignoring the other attributes. For example,
t = a1〈X1

1 , X1
2 , X1

3 〉a
2〈X1

1 , Y 2
2 , Y 2

3 〉, with no restriction on
the domains, will succeed if the first attribute is the same in
both time steps. We do not allow indexical variables to bind
across tests.

Let us contrast indexical tests and set tests. Earlier, we
showed a set test tO = a1O1a2O2 that expanded to include
four tests. Suppose we let dom(X1) = O1. Then, the index-
ical test tX = a1X1a2X1 only includes two primitive tests
(a1σ1

1a2σ1
1 and a1σ1

2a2σ1
2), and the prediction of tX is the

sum of their predictions.
It is natural to define the indexical analog of a comple-

mented set test. A complemented indexical test asks the fol-
lowing kind of question: “What is the probability that if I take
some action, see some observation, and take another action, I
will see a different observation?” To do this, we allow ¬Xk

in a test, in addition to Xk.

3.3 Linear PSRs and Efficient Tests
One of the primary motivations for restricting the class of
generalized tests we consider is computational. There are

special efficiencies for our generalized tests in the case of lin-
ear PSRs, which allow the predictions of the generalized tests
to be computed in time that is independent of the “complex-
ity” of the test. Before explaining further, we will first review
linear PSRs.

In a linear PSR, for every s-test t, there is a weight vector
mt ∈ R

|Q| independent of history h such that the prediction
p(t|h) = mT

t p(Q|h) for all h. This means that updating the
prediction of a single core test qi ∈ Q can be done efficiently
in closed-form. From history h, after taking action a and see-
ing observation o:

p(qi|hao) =
p(aoqi|h)

p(ao|h)
=

mT
aoqi

p(Q|h)

mT
aop(Q|h)

We only need to know mao, which are the weights for the
one-step tests, and the maoqi

, which are the weights for the
one-step extensions.

An important computational aspect of set tests is the
fact that their predictions can also be computed with lin-
ear operations. In particular, for any set test t, there is
a weight vector mt such that p(t|h) = mT

t p(Q|h). Let
t = a1o1 · · · akOk · · · anon, where Ok is a set of observa-
tions. Then it is easy to show that

mT
t = mT

anonMan−1on−1 · · ·
(
∑

σk∈Ok Makσk

)

· · ·Ma1o1

where the i-th row of Mao ∈ R
|Q|×|Q| is mT

aoqi
. In the case

that multiple observations are replaced with sets, we compute
the weight vector by replacing the corresponding Mao with
the appropriate sum.

The prediction for an indexical test is also linear. Let t =
a1o1 · · · akXk · · · afXk · · · anon. Then:

mT
t =

∑

σk∈dom(Xk)

mT
anon · · ·Makσk · · ·Maf σk · · ·Ma1o1 .

In the case of multiple, reused or complemented indexicals,
the weight vector equation generalizes in the obvious way:
the outer sum is over all valid joint settings of the indexical
variables.

Because the weight vectors for set and indexical tests are
independent of history, they can be computed once and reused
over and over again. Thus, after a one-time cost of computing
the weights, the complexity of using both set and indexical
tests is independent of the length of the test as well as the
number of observations being aggregated (equivalently, the
number of s-tests being aggregated). The complexity does,
however, depend on the number of core tests.

4 Specifying Options and Policies with
Generalized Tests

We will now show how generalized tests can be used to spec-
ify policies and options. Two of the three criteria for success
outlined in the introduction involve the use of compact, de-
scriptive policies: first, the complexity of a policy should be
independent of the size of our domain, and second, it should
generalize over multiple (but similar) tasks. We show that
by specifying options and policies in terms of generalized
tests, both automatically generalize in the same way their
constituent tests do.

4.1 Specifying Policies with Tests
Formally, a policy is a mapping from states to actions. States
in a PSR are represented as the predictions of core tests
p(Q|h). This state will always be a vector in R

|Q|, so a policy
must map R

|Q| to A.
Instead of mapping p(Q|h) directly to actions, we first use

the state, p(Q|h), to compute the predictions of a set of addi-
tional generalized tests, and then map the predictions of those
additional tests to actions. There are many possible ways to
do this. One way is to create a list of expressions involving
tests, associate an action with each expression, and execute
the first action whose expression is true. For example:

p(U, φ|h) = 1 → move curr(Table)

p(aφ, φ|h) = 1 → D

default → U (1)

This policy moves the eye to the top of the stack, and then
pops blocks off the stack until it is empty. It operates inde-
pendently of the number of blocks in the domain, as well as
the number of blocks in the stack. To avoid notational clutter
in deterministic domains, we will usually omit the p(·|h) = 1
associated with each test.

4.2 Specifying Options with Tests
Options are temporally extended actions. They could rep-
resent, for example, “walk to the doorway,” or “wait until
the light turns green.” Formally, an option is specified by a
set of initiation states (in which the option is available), by a
termination function (which specifies the probability that the
option will terminate at each timestep, and which may be a
function of state), and by a policy over states.

We specify the initiation states, the termination function,
and the option policy in terms of tests. An option policy is
specified in the same way as a global policy. The initiation
states and termination function are also specified in the same
way, but each expression has an associated value in {0, 1}
or [0, 1], respectively, rather than an associated action. For
example, using the policy in Eq. (1), allowing initiation in
any state, and using

p(aφ, 〈O1
, O

2
, O

3〉|h) ∧ p(U, φ|h) = 1 → 1.0

default → 0.0

as our termination condition, then we have an option that
pops blocks off the stack until the top block matches the cri-
teria specified by 〈O1, O2, O3〉. Here we define p(t1|h) ∧
p(t2|h) ≡ p(t1|h)p(t2|h).

5 Connecting to Relational Knowledge
Representations

We have completed the development of our generalized tests,
and will next demonstrate how they can be applied with a de-
tailed example. First, we will define predictive equivalents
to traditional relational predicates and will illustrate their use
in several options and policies. The first goal we consider
is on(a, b), but we will also develop a policy for the more
complicated goal of on(〈X, ∗, ∗〉, 〈X, ∗, ∗〉), which is satis-
fied when two blocks of the same color are stacked (regard-
less of what color they are). Finally, we will show how pre-
dictive predicates can create a nonlinear PSR to track the state
of the world.

Predicate Test Predicate Test
on(a, b) = find(a), a, D, b eye on(a) = aφ, a

clear(a) = find(a), a, U, φ eye above(a) = D, a
¬on(a, b) = find(a), a, D,¬b eye below(a) = U, a
¬clear(a) = find(a), a, U,¬φ

Figure 1: Table of predictive predicates used.

5.1 Predictive Predicates and Core Tests
A traditional relational representation of the blocks world
defines several predicates such as clear(a) and on(a, b).
Equivalent constructs, which we will call predictive predi-
cates, can be defined predictively with generalized tests. Pre-
dictive predicates form building blocks for defining policies
and options whose semantics are entirely based on statistics
about future observations.

For example, the test ton(a,b) ≡ a1 = find(a), o1 =

a, a2 = D, o2 = b, can be used to define a predictive pred-
icate on(a, b) that is is true whenever p(ton(a,b)|h) = 1.
This test finds block a, moves the eye down and checks to
see if it sees block b. Similarly, the test tclear(a) ≡ a1 =

find(a), o1 = a, a2 = U, o2 = φ can be used to define a pre-
dictive predicate clear(a) that is true in a history h whenever
p(tclear(a)|h) = 1. For ease of exposition, we will omit the
implied tests associated with each of these predictive predi-
cates, and just write on(a, b) instead of p(ton(a,b)|h); we will
also omit the implied action and observation labels, writing
on(a, b) = find(a), a, D, b. To track the position of the eye,
we define three predictive predicates: eye on(a) = aφ, a,
eye above(a) = D, a, and eye below(a) = U, a. We
can also discuss the complement of a predictive predicate in
terms of a complemented set test. For example, ¬on(a, b) =
find(a), a, D,¬b.

To emphasize that these predictive predicates are actually
tests, Fig. 1 summarizes the predicates and their correspond-
ing tests.

5.2 Options and Policies
Given those predictive predicates, we can now begin to define
options and policies that accomplish abstract actions in our
domain. For instance, the following option, pop curr, moves
to the table the block at the top of the current stack. This
option works independently of the number of blocks in the
stack, which is important to deal with stacks independently
of the size of the state space:

Option: pop curr

Available: ¬eye on(φ)

Termination: eye on(φ)

Policy:
eye below(φ) → move curr(Table)

¬eye below(φ) → U

Given the pop curr option and the rest of our predictive
predicates, we can define an option to satisfy on(a, b). The
idea of this policy is to find block a, clear all of the blocks off
the top of it, then find block b and clear it, then move block a
onto block b:

Option: on(a, b)

Available: (all)

Termination: on(a, b)

Policy:

eye on(a) ∧ clear(a) ∧ clear(b) → move curr(b)

¬eye on(a) ∧ clear(a) ∧ clear(b) → find(a)

eye on(b) ∧ clear(a) ∧ ¬clear(b) → pop curr

¬eye on(b) ∧ clear(a) ∧ ¬clear(b) → find(b)

eye on(a) ∧ ¬clear(a) → pop curr

¬eye on(a) ∧ ¬clear(a) → find(a)

There are a few points worth noting about this policy. The
policy is compact and independent of the size of the state
space (that is, it works for any number of blocks). The ex-
istence of such a policy is not a surprise. Indeed, the policy is
a straightforward implementation of a standard relational pol-
icy in PSR terms. What is interesting is that PSRs allow one
to write such a policy in purely observable quantities. Note
that the policy is only good for stacking a on b; later, we will
parameterize this policy to generalize across similar tasks.

5.3 More Sophisticated Goal States

So far, we have only used set tests. To showcase the power
of indexical tests, we will now develop policies for more so-
phisticated goal states. The first is on(〈X, ∗, ∗〉, 〈X, ∗, ∗〉),
which is satisfied when any two blocks of the same color are
stacked. We now have a multi-attribute observations, which
are color, number, and a “marked” bit. The agent is allowed
to mark blocks as a form of visual memory; only one block
can be marked at a time.

We also need to make a few intuitive redefinitions and clar-
ifications to actions and predicates. Basically, we allow ev-
erything to take an observation set as an argument. For exam-
ple, find(Oi) now moves the eye randomly to a block that
satisfies Oi (each satisfactory block has a nonzero probabil-
ity of being reached). Predictive predicates are similar: we
define eye on(Oi) = aφ, Oi eye above(Oi) = D, Oi, and
eye below(Oi) = U, Oi. The on predictive predicate is a lit-
tle different because the generalized test find(Oi), Oi, D, Oj

is no longer deterministic. We define on to be true when
p(find(Oi), Oi, D, Oj |h) > 0.0. In other words, it is an ex-
istential relational query that has nonzero probability when
there is some object satisfying Oi on top of some object
satisfying Oj . The clear predictive predicate is similar:
clear(Oi) = (find(Oi), Oi, U, φ) > 0.0.

To start constructing our policy, we will define an indexical
test which is true whenever the marked block has the same
color as the block the eye is looking at:

same as marked =
aφ, 〈X, ∗,¬mark〉, find(〈∗, ∗, mark〉), 〈X, ∗, mark〉

This lets us define pop until same as marked, which is
an option to pop blocks off the current stack until the top
block has the same color as the marked block:

Option: pop until same as marked

Available: (all)

Termination: same as marked ∧ eye below(φ)

Policy:
eye below(φ) → move curr(Table)

eye on(φ) → D

default → U

We define another option, pop until(〈O1, O2, O3〉),
which is defined by Eq. (1) and the termination condition
in Section 4.2. Together, these two options help us create a
policy for on(〈X, ∗, ∗〉, 〈X, ∗, ∗〉). The idea is to find a block,
mark it, and then clear all blocks off the top of it. Then, find
another block with the same color, clear it, then put them on
top of each other:

Option: on(〈X, ∗, ∗〉, 〈X, ∗, ∗〉)

Available: (all)

Termination: on(〈X, ∗, ∗〉, 〈X, ∗, ∗〉)

Policy:

clear(〈∗, ∗, mark〉)∧

same as marked∧

eye below(φ) → move curr(〈∗, ∗, mark〉)

clear(〈∗, ∗, mark〉)∧

same as marked → pop until same as marked

clear(〈∗, ∗, mark〉) → find(〈∗, ∗,¬mark〉)

eye on(〈∗, ∗, mark〉) → pop until(〈∗, ∗, mark〉)

eye on(Table ∪ φ) → find(〈∗, ∗, ∗〉)

default → mark

We could easily extend this policy to solve for a goal like
on(〈red, ∗, ∗〉, 〈red, ∗, ∗〉) by replacing the find action with
an option that finds a red block.

5.4 Parameterized Policies and Options
So far, our policies and options generalize across domains
and across objects, but do not generalize across tasks. For ex-
ample, the policy for achieving on(a, b) does not generalize
to stacking other blocks on each other. However, since all of
our tests and predicates are propositional in nature, we could
parameterize the tests and actions and options in the obvi-
ous way: simply replace constant observations with variables.
So, on(a, b) might become on(A,B) = find(A), A, D, B for
variables A and B. As long as actions can be similarly param-
eterized, the agent can bind these variables to specific blocks
and obtain predictions and policies on-demand.

5.5 A Nonlinear, Relational PSR
So far, we have tacitly assumed the existence of an underlying
PSR capable of predicting any test. We will now show how
such a PSR can be constructed using predictive predicates.
Two things are needed for a PSR: a set of core tests and a
state update mechanism.

We represent our core tests as predictive predicates. If there
are k blocks, one set of core tests is k2 predicates, represent-

ing each possible on(a, b) combination, plus O(k) additional
predicates tracking the eye and marker. Practically, this is an
overkill: since our domain is deterministic, we can compress
to just O(k) predicates by remembering one on(a, b) predi-
cate for each a (this complexity is analogous to the fact that
in a traditional relational system, the size of the knowledge
base grows linearly with the number of blocks in the domain,
although the policy description does not).

To update the state of the system, we use a rule-based sys-
tem. We associate a rule with every action, which describes
how to update the prediction of each core test. An example
of such a rule is shown below:

Action: move curr(d)

clear(d)← 0; eye on(φ)← 1

∀X: if eye on(X)
eye on(X)← 0
on(X, d)← 1

∀X, Y : if eye on(X) ∧ on(X, Y)
on(X, Y)← 0
clear(Y)← 1

This rule is run whenever the action move curr(d) is ex-
ecuted. It updates both the core tests representing what the
eye sees, as well as all of the core tests representing the state
of the blocks (the PSR is nonlinear because of the nonlinear
nature of these rules).

6 Related Work
This paper focuses on extending PSRs to allow generalized
tests, which can be used to build relational knowledge into
PSR models, as well as build generalizing policies and op-
tions. We do not yet address learning and planning with this
new representation (however, see [Dzeroski et al., 2001] for
an example of existing work on learning with logical rela-
tional representations). Furthermore, the representations de-
veloped here are essentially propositional, and are at present
unrelated to efforts to combine first-order relational knowl-
edge with probability [Milch et al., 2005; Richardson &
Domingos, 2006]. Temporal difference networks [Sutton &
Tanner, 2005] are perhaps the model closest in spirit to ours.
While it is theoretically possible for a TD-net to compute pre-
dictions for our generalized tests, they were not specifically
designed for such a task and would require numerous modi-
fications. In contrast, our generalized tests function very nat-
urally in a PSR setting: their predictions are linearly com-
putable, they arise from a natural generalization of s-tests,
and they can succinctly represent relational knowledge.

7 Conclusions and Future Research
We have taken the first steps in extending PSRs from their
existing limitation to flat, unstructured domains into domains
that have relational structure. We introduced set tests and in-
dexical tests, which allow an agent to ask (and answer) ques-
tions that s-tests and e-tests cannot represent. We showed that
policies and options can be defined in terms of these gener-
alized tests. We have illustrated these policies and options,
as well as how to build a PSR model that captures relational
knowledge, in a prototypical blocks world. We also discussed
how all of these tests, policies, and options may be parame-
terized to further generalize.

We connected our generalized tests to traditional relational
representations, and showed how standard relational predi-
cates can be defined in predictive terms. We used these pre-
dictive predicates to translate the traditional blocks world do-
main into a PSR model, with a final form that is closely con-
nected to a relational representation. Our resulting relational
PSR model satisfies our three basic criteria for success: pol-
icy succinctness, policy generalization, and attribute irrele-
vance.

As immediate future work, we are addressing the problem
of learning PSR models that use these generalized tests and
then planning with them in relational domains.

Acknowledgments
Special thanks to Matt Rudary for generous help and insight-
ful comments. David Wingate is supported under a National
Science Foundation Graduate Research Fellowship. Britton
Wolfe, Vishal Soni and Satinder Singh are supported by NSF
grant IIS-0413004, NSF grant CCF-0432027, and by a grant
from DARPA’s IPTO program. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the NSF or DARPA.

References
Dzeroski, S., Raedt, L. D., & Driessens, K. (2001). Relational

reinforcement learning. Machine Learning, 43, 7–52.
James, M. R., & Singh, S. (2004). Learning and discovery of

predictive state representations in dynamical systems with
reset. ICML (pp. 417–424).

Littman, M. L., Sutton, R. S., & Singh, S. (2002). Predictive
representations of state. NIPS (pp. 1555–1561).

McCracken, P., & Bowling, M. (2006). Online discovery and
learning of predictive state representations. NIPS (pp. 875–
882).

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D. L.,
& Kolobov, A. (2005). Blog: Probabilistic models with
unknown objects. IJCAI (pp. 1352–1359).

Precup, D., Sutton, R. S., & Singh, S. P. (1998). Theoretical
results on reinforcement learning with temporally abstract
options. ECML (pp. 382–393).

Rafols, E. J., Ring, M. B., Sutton, R. S., & Tanner, B. (2005).
Using predictive representations to improve generalization
in reinforcement learning. IJCAI (pp. 835–840).

Richardson, M., & Domingos, P. (2006). Markov logic net-
works. Machine Learning, 62, 107–136.

Rudary, M. R., Singh, S., & Wingate, D. (2005). Predictive
linear-Gaussian models of stochastic dynamical systems.
UAI (pp. 501–508).

Sutton, R. S., & Tanner, B. (2005). Temporal-difference net-
works. NIPS (pp. 1377–1384).

Wiewiora, E. (2005). Learning predictive representations
from a history. ICML (pp. 964–971).

