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Abstract

Stackelberg games are two-stage games in which
the first player (called the leader) commits to a
strategy, after which the other player (the fol-
lower) selects a best-response. These types of
games have seen numerous practical application
in security settings, where the leader (in this
case, a defender) must allocate resources to pro-
tect various targets. Real world applications in-
clude the scheduling of US federal air marshals
to international flights, and resource allocation at
LAX airport. However, the best known algorithm
for solving general Stackelberg games requires
solving Integer Programs, and fails to scale be-
yond a few (significantly smaller than 100) num-
ber of leader actions, or follower types. In this
paper, we present a new gradient-based approach
for solving large Stackelberg games in security
settings. Large-scale control problems are often
solved by restricting the controller to a rich pa-
rameterized class of policies; the optimal control
can then be computed using Monte Carlo gradi-
ent methods. We demonstrate that the same ap-
proach can be taken in a strategic setting. We
evaluate our approach empirically, demonstrat-
ing that it can have negligible regret against the
leader’s true equilibrium strategy, while scaling
to large games.

1 INTRODUCTION

Stackelberg games have received significant attention in
the context of security applications, where a defender (the
leader in the Stackelberg game) must deploy a limited num-
ber of security resources to protect a set of vulnerable tar-
gets to guard against an attacker (the follower in the Stack-
elberg game). Algorithms for these games have been de-
ployed in real-world settings, e.g., to generate checkpoints
and patrols at the Los Angeles International Airport [Pita

et al., 2009], as well as to schedule US Federal Air Mar-
shals (FAMS) to flights [Jain et al., 2010b, Tsai et al.,
2009].

The best known solver for general Bayesian Stackelberg
games is the DOBBS algorithm [Paruchuri et al., 2008],
which was the first to formulate a Stackelberg game
(given in normal form) as a Mixed Integer Linear Program
(MILP). Since then, a great deal of research has been de-
voted to algorithms that scale to games of the size encoun-
tered in real settings. This has led to the development of a
general class of Stackelberg Security Games (SSGs) [Ko-
rzhyk et al., 2011], which captures many of the key fea-
tures of these real settings, along with algorithms includ-
ing ORIGAMI, ERASER, ERASER-C [Kiekintveld et al.,
2009], and ASPEN [Jain et al., 2010a], which can handle
a large number of defender actions. With the exception
of ASPEN, these algorithms work by assuming additional
structure on the SSG, specifically on the pure strategy set
of the defender. Similarly, the HBGS algorithm [Jain et al.,
2011] scales to multiple attacker types by assuming hierar-
chical structure on the attacker types. Hence, these algo-
rithms are able to solve MILPs more compact than would
be generated from a game expressed in normal form.1

Among approximate methods, Monte-Carlo approaches
have been used to solve games with infinite types [Kiek-
intveld et al., 2011], but also makes assumptions on what
defender pure strategies are feasible. The HUNTER al-
gorithm [Yin and Tambe, 2012], in contrast, can solve
Stackelberg games with limited additional assumptions, but
searches a game tree whose depth scales with the number
of attacker types, and whose branching factor is the num-
ber of available targets. Approximate methods have also
been utilized in recent work [Yang et al., 2012, 2013] con-
sidering attackers with bounded rationality, including at-
tackers which behave according to the Quantal Response
(QR) model [McKelvey and Palfrey, 1995]. This model-
ing assumption is made with limited loss of generality, as
the degree of attacker rationally is specified by a parame-

1ORIGAMI makes the most restrictive assumptions on the
game, and does not need to solve an MILP at all.



ter of the model. As we will see shortly, the algorithms in
the present work can be seen as a refinement of the BRQR
algorithm of Yang et al. [2013].

We introduce a different approach for finding good de-
fender strategies in Stackelberg security games, which
avoids imposing structure on the defender’s pure strate-
gies, the attackers’ types, or the players’ utilities. Instead,
we propose restricting the search for defender strategies
within a rich, but parameterized, class of mixed strategies.
In a standard Stackelberg equilibrium the defender (who is
the leader), plays an (unrestricted) mixed strategy, knowing
that the attacker will select a best-response. In contrast, we
will consider games where the defender’s choice of mixed
strategy must come from some fixed class of distributions.

This type of assumption is analogous to successful meth-
ods in AI and reinforcement learning such as policy gra-
dient methods [Baxter and Bartlett, 2001], which avoid
making assumptions about the dynamics of the environ-
ment, but rather, constrain the search for a good policy to
within a parameterized family of policies. In this work, we
will demonstrate how a similar approach can be applied to
a strategic setting. We then apply Monte-Carlo gradient
methods, a procedure we call STACKGRAD, to find solu-
tions to the defender’s optimization problem. In contrast
to an ordinary optimal control problem, a unique feature of
our derivation is that this gradient computation must pass
through the attacker’s response function. In order to main-
tain differentiability, we consider a smoothed version of the
attacker’s response function. We therefore consider an at-
tacker in the QR model. While our primary motivation for
this assumption is analytic, we reap the additional capabil-
ity of modeling boundedly rational attackers.

Figure 1 provides a schematic of our approach. We be-
gin with a Stackelberg game, consisting of the defender’s
set of mixed strategies, ∆, the attacker’s response function
g, and the defender’s utility for playing D ∈ ∆, denoted
U(D, g(D)). We then formulate an approximate Stackel-
berg game by restricting D ∈ ∆(Θ) ⊂ ∆ and smoothing
g ⇒ g̃, where Θ denotes the parameterization of the de-
fender strategy space. Finally, we solve for the defender’s
best strategy in the restricted game via gradient ascent.

Yang et al. [2013] propose finding approximate Stackel-
berg equilibria against QR attackers by finding local min-
ima of the defender’s expected utility function (over the un-
restricted class of defender mixed strategies D). This algo-
rithm, called BRQR, relies on a black-box call to a pro-
cedure for finding such local minima. We can view our
approach as an instantiation of BRQR where the restriction
to defender strategies ∆(Θ) bears fruit in two ways. First,
we can explicitly find these local minima using gradient de-
scent. In contrast, previous work relies on using black-box
non-convex function optimization toolboxes. Secondly, we
can scale to games with large pure strategy spaces in a prin-

Figure 1: STACKGRAD optimizes the approximate game
given considering a parametric class of leader (defender)
strategies and by smoothing the follower’s (attacker’s) re-
sponse function.

cipled manner, by designing ∆(Θ) to have a compact pa-
rameterization.

While any parameterized class of defender mixed strategies
may be utilized, we propose two rich classes which yield
heuristics with no computational dependence on the num-
ber of attacker types, and only mild dependencies on the
size of the defender’s pure strategy set. We then demon-
strate empirically that STACKGRAD not only scales to
large games, but also finds mixed strategies that are close
to the defender’s true Stackelberg optimal strategy.

Our primary contributions are in the derivation of a new al-
gorithm for solving Stackelberg games approximately and
in its empirical evaluation. Specifically, we define STACK-
GRAD, by deriving an approximate stochastic gradient of
the defender’s utility with respect to its strategy parame-
ters through the (smoothed) best response function of the
attacker. We argue analytically that STACKGRAD has
no computational dependence on the number of attacker
types in a Bayesian Stackelberg game, being able to han-
dle any number (even infinite types). We then demonstrate
empirically that, despite searching within a restricted class
of mixed strategies, the solutions found by STACKGRAD
have almost the same payoff to the defender as the true (un-
restricted) Stackelberg optimum, computed directly using a
solver for the unrestricted game. We also demonstrate the
STACKGRAD has only a mild computational dependence
on the number of pure strategies, by considering a game
inspired by the Federal Air Marshal (FAMS) domain.

2 PRELIMINARIES

2.1 GENERAL SECURITY GAMES

We consider the Stackelberg security game introduced by
Kiekintveld et al. [2009] (see Korzhyk et al. [2011] for a
good overview).

An SSG is a two-player game between a defender and
attacker. The attacker selects a target from a set T =
{t1, . . . , tN}. The defender prevents attacks by guard-
ing targets with various resources R = {r1, . . . , rK}. In
the most general setting considered in previous work, re-
sources may simultaneously cover a set of targets. For ex-
ample, resources might be air marshals, and targets might
be airline flights [Tsai et al., 2009]. An air marshal might
protect a number of targets by flying a circuit which starts



and ends at the marshal’s home city; each flight along the
circuit is considered covered. This is modeled by having
the defender assign resources to schedules, where a sched-
ule S ⊂ T is just a subset of the possible targets. Assigning
a resource rk to schedule S corresponds to covering each
t ∈ S with resource rk. The set of schedules to which a
resource rk may be assigned is denoted by Sk. Sk specifies
the constraints induced by the domain. For example, in the
air marshal SSG, Sk comprises sets of flights that can form
a circuit that starts and ends in the marshal’s home city.

A defender’s pure strategy is an assignment of resources to
schedules, which we denote by s ∈ S , S1 × · · · × SK .
Strategy component sk is the schedule to which resource
rk is assigned. Strategy s induces a coverage vector c ∈
{0, 1}N (sometimes denoted c(s) when we wish to empha-
size the dependence on s) indicating which targets are cov-
ered: cn = 1 if tn ∈ sk for some k. An attacker’s pure
strategy is simply a target tn ∈ T .

Our methods also allow for non-binary coverage. That
is, we can take c(s) to be an arbitrary function from S
to [0, 1]K representing the assignment of varying resource
quantities to achieve degrees of target coverage. However,
to simplify our expressions, and to stay consistent with pre-
vious work, we assume binary cn unless otherwise noted.

If the defender plays a mixed strategy—a distribution D
over pure strategies—we use c̄ ∈ [0, 1]d to denote the
probability that each target is covered. In other words,
c̄(D) = Es∼D [c(s)].

The players’ utilities are functions of which target is at-
tacked, and whether that target is covered (by any re-
source). Attacker and defender utilities are denoted Ua :
{0, 1} × T → R and Ud : {0, 1} × T → R respectively.
Ua(0, tn), for example, specifies the utility to the attacker
if tn is attacked and uncovered. The expected payoffs for
playing defender mixed strategy D and attacker pure strat-
egy tn are given by:

Ua(D, tn) = c̄(D)Ua(1, tn) + (1− c̄(D))Ua(0, tn)

Ud(D, tn) = c̄(D)Ud(1, tn) + (1− c̄(D))Ud(0, tn)

In a security game, it is assumed that for all n, Ma,n ,
Ua(0, tn) − Ua(1, tn) ≥ 0 and Md,n , Ud(1, tn) −
Ua(0, tn) ≥ 0. The attacker never prefers that its target
is covered. Similarly, the defender never prefers that the
attacker’s target is uncovered.

2.2 STACKELBERG EQUILIBRIA

The solution concept typically applied to security games is
that of a Stackelberg Equilibrium, as opposed to the more
conventional Nash Equilibrium. In a two-player Stackel-
berg game, one player—termed leader—first commits to
a strategy. The other player—termed follower—observes

this commitment, and plays a best response to the leader’s
chosen strategy. In security games, the defender is the
leader and the attacker follows. This leader-follower in-
teraction is argued to be better suited than simultaneous
moves for modeling security domains, since after the de-
fender deploys its resources, that deployment is subject to
scrutiny by a malicious agent, who can use this information
when deciding on its point of attack.

Due to the two-stage nature of the game, it is convenient to
think of the follower as selecting a response function which
maps each of the leader’s mixed strategies to a pure strat-
egy. With ∆ the set of defender mixed strategies, we denote
a response function by g : ∆→ T . Upon observing leader
mixed strategy D, the follower plays pure strategy g(D).

We say that (D, g) forms a Strong Stackelberg Equilibrium
(SSE) if, informally: (1) given response function g, the
leader maximizes its payoff by playing D, (2) g is not just
a response function, but always returns a follower best re-
sponse, and (3) if there are multiple follower best-response
functions, g selects the one most beneficial to the leader.

Condition (3) is what distinguishes a Strong Stackelberg
Equilibrium from an ordinary Stackelberg Equilibrium. It
can be argued that this is a reasonable solution concept if
one believes that the leader can always force the attacker to
break ties in its favor. For our purposes, it will be necessary
only to observe that the payoff to the leader in a SSE is the
most that a leader can hope to guarantee against a rational
follower. Below we state the definition of an SSE formally
in the context of a security game.

Definition 1 (Follower Best-Response). A follower re-
sponse function g : ∆ → T is a best-response function
if for any other response function g′ : ∆ → T and leader
strategy D ∈ ∆, Ua(D, g(D)) ≥ Ua(D, g′(D)).

Definition 2 (Strong Stackelberg Equilibrium). (D, g)
where D ∈ ∆ and g : ∆ → T is a Strong Stackelberg
Equilibrium iff:

1. For all D′ ∈ ∆, Ud(D, g(D)) ≥ Ud(D′, g(D′))

2. g is a best-response function.

3. For any D′ ∈ ∆ and best-response function g′,
Ud(D′, g(D′)) ≥ Ud(D′, g′(D′))

The definition of a SSE ensures that, although there may
be multiple such equilibria, they all give the same payoff to
the defender. Given an instance of a security game G, let
VG denote the payoff to the defender in equilibrium.

2.3 BAYESIAN STACKELBERG GAMES

An extension of the game described in the previous section
allows the defender to model uncertainty over the potential
attackers by a prior q over a set of attacker types Λ. Letting



gλ denote the best response of attacker λ, the defender’s
utility in the Bayesian setting is given by:

Ud(D, {gλ}) =
∑
λ∈Λ

q(λ)Ud(D, gλ(D)). (1)

As with a single attacker, if gλ breaks ties in a consistent
manner we can uniquely define VG in the Bayesian setting.
Given an arbitrary defender strategy D, we define the com-
petitive ratio of the defender’s choice of strategy against
the SSE solution. We assume that Ud(D, {gλ}) ≥ 0, and
VG > 0.

Definition 3 (Competitive Ratio). Given an instance of a
Bayesian Stackelberg game G, and defender strategyD, de-
fine R(D) = Ud(D, {gλ})/VG .

The defender would like to maximize equation (1), or short
of doing so, find a strategyD which attains a large competi-
tive ratio. In this work, we propose using gradient methods
to search for such strategies. However, in order to do so Ud

will have to be differentiable with respect to its argument.
In the next section, we describe the approximations needed
to ensure this.

3 GAME APPROXIMATION

We now consider an approximation to general Bayesian
Stackelberg games. We (1) assume a probabilistic model
for the attacker, and (2) restrict the set of strategies avail-
able to the defender.

Recall that the softmax function ση : RN × {1, . . . , N} →
[0, 1] provides a probabilistic approximation to the max-
imum element of the set. Given a vector x ∈ RN , we let
ση(x, i) = exp(ηxi)∑N

i=1 exp(ηxi)
. The categorical distribution over

the set {1, . . . , N}, which selects element i with probabil-
ity ση(x, i) is called the softmax distribution. As the in-
verse temperature η → ∞, softmax concentrates mass on
the indices belonging to the maximum elements of x.

The first step to approximating the security game of Sec-
tion 2 is to have the attacker select its target according to
the softmax distribution over its utilities, often times called
a quantal response attacker [Yang et al., 2012]. Let Uλ de-
note the utility function corresponding to attacker type λ.
Let us also define

uλ(D) = [Uλ(D, t1), . . . ,Uλ(D, tN )],

the vector of expected payoffs to the attacker for each
choice of target, assuming the defender plays mixed strat-
egy D. In the security game approximation, we assume
that conditioned on the defender’s choice of D, and a fixed
choice of η (a parameter of the approximation), the attacker
selects target tn with probability ση(uλ(D), n).

Second, we restrict the defender to select distributions from
a parameterized class ∆Θ ⊂ ∆, where Θ denotes a set of

parameters, and for each θ ∈ Θ, there is a corresponding
distribution Dθ ∈ ∆Θ. We denote the probability mass
function (over S) of Dθ by p(· | θ).

Putting these approximations together gives us a stochas-
tic optimization problem from the perspective of the de-
fender (summarized in the model below). First nature
draws attacker type λ according to q. Given λ, η, and
θ ∈ Θ, an attacker’s (now random) response tn is deter-
mined by a draw from the categorical distribution defined
by ση(uλ(Dθ), ·), rather than an exact best-response func-
tion gλ. Upon independently drawing s ∼ Dθ, the defender
receives Ud(cn(s), tn).

Security Game Approximation
Defender selects θ ∈ Θ.
Nature draws λ ∼ q
n ∼ ση(uλ(Dθ), ·), s ∼ Dθ
Defender receives payoff Ud(cn(s), tn).

The goal of the defender in the security game approxima-
tion is to maximize its expected payoff, which is given by
the following function:

Ũd(θ) = E [Ud(cn(s), tn)] , (2)

The expectation here is taken according to the process just
described.

If we take ∆Θ identical to ∆ and η → ∞, then the logic
of the model is that of a leader-follower game, and the de-
fender strategy θ∗ that maximizes Ũd(θ) is precisely its
strategy in a Stackelberg equilibrium. However, maximiz-
ing Ũd may not be tractable for larger games. If, on the
other hand, ∆Θ is restrictive (∆Θ 6= ∆), the strategy Dθ∗
might suffer regret against an attacker best-response func-
tion g, but the parametric class may allow Ud to be effi-
ciently maximized. Balancing these two effects is impor-
tant. In the next section, we describe how given a fixed
parametric class Θ, Ũd can be maximized using gradient
methods.

4 MONTE-CARLO GRADIENT
ESTIMATE: STACKGRAD

If Θ ⊂ Rd for some d, then gradient algorithms are natural
candidates for maximizing Equation 2. However, to com-
pute∇Ũd(θ) even at a single point θ, it might be necessary
to sum over all of Λ, and the entire support of Dθ, which
even for a parametric class of distributions might include
all elements of S. A more tractable approach is to take a
Monte-Carlo estimate of ∇Ũd(θ), which need not depend
on the size of S, and has no dependence on |Λ|.

The first step to producing such an estimate is to derive
for any θ, an unbiased estimate γ̃θ of ∇Ũd(θ). Recall that
given the defender’s choice of parameter θ, the probability



of schedule s ∈ S is given by p(s | θ). Let us denote the
probability that the defender selects pure strategy s, and an
attacker of type λ selects target tn by p(s, tn | θ, λ).

Thus, with probability q(λ)p(s, tn | θ, λ), the defender re-
ceives Ud(s, tn), and so the gradient is

∇Ũd(θ) =
∑
λ∈Λ

∑
s∈S,tn∈T

q(λ)Ud(cn(s), tn)∇p(s, tn | θ, λ)

=
∑
λ∈Λ

∑
s∈S,tn∈T

p(s, tn | θ, λ)

p(s, tn | θ, λ)
q(λ)Ud(cn(s), tn)∇p(s, tn | θ, λ)

= E
[
Ud(cn(s), tn)

∇p(s, tn | θ, λ)

p(s, tn | θ, λ)

]
. (3)

We can estimate ∇Ũd(θ) by drawing m random samples
according to the model. The gradient estimate for sample i
is given by

γ̃
(i)
θ = Ud(cn(s(i)), t(i)n )

∇p(s(i), t
(i)
n | θ, λ(i))

p(s(i), t
(i)
n | θ, λ(i))

,

and the overall gradient estimate by 1
m

∑m
i=1 γ̃

(i)
θ . This

presumes that given realizations λ, s and tn, the ratio
∇p(s,tn|θ,λ)
p(s,tn|θ,λ) can be efficiently computed. We examine

classes Θ where this holds in the following sections.

For gradient methods to converge in expectation any unbi-
ased estimate of ∇Ũd suffices (even taking m = 1), al-
though lower variance estimates perform better in practice.
Furthermore, ∇p(s,tn|θ,λ)

p(s,tn|θ,λ) depends on the realization λ(i),
and not the entire set Λ. Thus, the computation required to
estimate ∇Ũd is independent of |Λ|, and we expect such
methods to scale to any number of attacker types (even in-
finitely many).

For completeness, we state the algorithm STACKGRAD,
which is a projected stochastic gradient ascent, utiliz-
ing Monte-Carlo gradient estimates. Let PΘ(x) =
minθ∈Θ‖x−θ‖2 denote the Euclidean projection of x onto
Θ. We use the shorthand λ, s, t ∼ M(θ) to denote random
variables sampled according to the stochastic approxima-
tion given defender parameter θ.

Algorithm STACKGRAD
Inputs: Class Θ, Horizon T , Sampling Parameter m
Initialize θ0.
for τ = 1, . . . , T do

Sample λ(i), s(i), t
(i)
n ∼M(θτ ) for i = 1, . . . ,m.

Let γ̃τ = 1
m

∑m
i=1 Ud(cn(s(i)), t

(i)
n )
∇p(s(i),t(i)n |θτ−1,λ

(i))

p(s(i),t
(i)
n |θτ−1,λ(i))

θτ = PΘ(θτ−1 + 1√
τ
γ̃τ )

end for
return θT

Standard results (e.g. Boyd et al. [2003]) tell us that af-
ter T iterations, the expected value of Ũd(θT ) will be

within O( 1√
T

) of a local maximum of the function Ũd.
Therefore, if the quality of the defender strategy found by
STACKGRAD, R(DθT ), is poor, it must either be because:
(1) good mixed strategies for the true game exist only in
∆ \∆Θ (i.e. maxθ∈Θ VG − Ũd(θ) � 0), or (2) good de-
fender strategies exist in ∆Θ, but STACKGRAD converged
to a suboptimal local maximum.

In what follows, we will see that in empirical validations,
STACKGRAD exhibits good behavior on standard security
games. This leads us to two questions, which we leave
open for future theoretical research. (1) Are there classes of
Stackelberg games, and parameterized strategies Θ, where
the best strategy for the approximate game is guaranteed to
be a good strategy for the true game? (2) Are there classes
of Stackelberg games where STACKGRAD is guaranteed
to exhibit good convergence properties?

5 INDEPENDENT RESOURCE
ALLOCATION : CATEGORICAL
DISTRIBUTIONS

In this section we demonstrate how to compute the ratio
∇p(s,tn|θ,λ)
p(s,tn|θ,λ) for a natural defender strategy class. We will

then demonstrate how this parameterized class can be used
to search for defender strategies in games with a large, even
infinite number, of adversary types.

One simple, but rich class of defender strategies assumes
that each defender resource is independently assigned to a
schedule. For each resource k and schedule s ∈ Sk, we as-
sign resource k to swith some probability. This assignment
is conducted independently across resources.

For each set of schedules Sk = {sk,0, . . . , sk,dk}, we there-
fore introduce a parameter θk,l where for l ≥ 1, θk,l ≥ 0
specifies the probability with which resource k is assigned
to resource sk,l. We require that

∑dk
l=1 θk,l ≤ 1, and re-

source k is assigned to schedule sk,0 with the remaining
probability θk,0 = 1−

∑dk
l=1 θk,l. Thus, this class of strate-

gies is parameterized by Θ ⊂ Rd where d =
∑K
k=1 dk.

Notice that ∆Θ is rich enough to describe any marginal dis-
tribution of an individual resource’s assignment to sched-
ules, including any pure strategy. However, ∆Θ cannot
capture mixed strategies which contain correlations be-
tween resource assignments.

In what follows, we derive ∇p(s,tn|θ,λ)
p(s,tn|θ,λ) . We will need a

helper lemma that characterizes the gradient of target cov-
erage probabilities with respect to θ, the full proof of which
is given in the supplemental material. In order to give the
result, we will need some definitions. Given a joint as-
signment of resources to schedules s, let c−k,n(s) indicate
whether target n is covered by some resource other than re-
source k. In other words, c−k,n(s) = 1[tn ∈ ∪k′ 6=ksk′ ].



Also let ck,l,n indicate whether the lth schedule of resource
k contains target tn; ck,l,n = 1[tn ∈ sk,l].
Lemma 1. For any target index n, resource index k, and
schedule index l ≥ 1,

∂

∂θk,l
c̄n(Dθ) = (ck,l,n − ck,0,n)Ps∼Dθ (c−k,n(s) = 0)

The ratio ∇p(s,tn|θ,λ)
p(s,tn|θ,λ) can be written in terms of the deriva-

tive in Lemma 1. Let s = [s1,l1 , . . . , sK,lK ], so that the
indices of the selected schedules are given by l1, . . . , lK .
Define z(s, k, l) ∈ {−1, 0, 1} by letting z(s, k, l) = 1[lk =
k]− 1[lk = 0]. In other words z(s, k, l) provides a sign of
1 if resource k is assigned to schedule l, a sign of −1 if it
is assigned to schedule 0 and a sign of 0 otherwise.
Theorem 1. For any target tn, schedule assignment s, as
well as resource index k and schedule index l ≥ 1, we have
that:
∂
θk,l

p(s, tn | θ)
p(s, tn | θ)

=
z(s, k, l)

θk,lk
− ηMa,n

∂

∂θk,l
c̄n(Dθ)

+ η

N∑
n′=1

ση(u(Dθ), n′)Ma,n′
∂

∂θk,l
c̄n′(Dθ)

Proof. Fix s = [s1,l1 , ..., sK,lK ]. We have that p(s | θ) =∏K
k′=1 θk′,lk′ . Now fix a resource index k and schedule

index l ≥ 1. We have that ∂
∂θk,l

p(s | θ) =
∏
k′ 6=k θk′,lk′

if lk = l; ∂
∂θk,l

p(s | θ) = −
∏
k′ 6=k θk′,lk′ if lk = 0; and

∂
∂θk,l

p(s | θ) = 0 otherwise. From the definition of z:

∂
∂θk,l

p(s | θ)
p(s | θ)

=
z(s, k, l)

θk,lk
(4)

Next fix a target index n, and note that
∂

∂θk,l
exp(ηun(Dθ))) = exp(ηun(Dθ)) ∂

∂θk,l
ηun(Dθ) =

−η exp(ηun(Dθ))Ma,n
∂

∂θk,l
c̄n(Dθ)

This lets us differentiate ση(u(Dθ), n):

∂

∂θk,l
ση(u(Dθ), n) =

∂

∂θk,l

exp(ηun(Dθ)))∑N
n′=1 exp(ηun′(Dθ)))

=
1∑N

n′=1 exp(ηun′(Dθ))
∂

∂θk,l
exp(ηun′(Dθ))

+ exp(ηun(Dθ))
∂

∂θk,l

1∑N
n′=1 exp(ηun′(Dθ))

= −ηση(u(Dθ), n)Ma,n
∂

∂θk,l
c̄n(Dθ)

− ση(u(Dθ), n)∑N
n′=1 exp(ηun′(Dθ))

∂

∂θk,l

N∑
n′=1

exp(ηun′(Dθ))

= −ηση(u(Dθ), n)Ma,n
∂

∂θk,l
c̄n(Dθ)

+ ηση(u(Dθ), n)

N∑
n′=1

ση(u(Dθ), n′)Ma,n′
∂

∂θk,l
c̄n′(Dθ)

(5)

Using equations (4) and (5), we have:

∂
∂θk,l

p(s, tn | θ)
p(s, tn | θ)

=
ση(u(Dθ), n) ∂

∂θk,l
p(s | θ)

p(s | θ)ση(u(Dθ), n)

+
p(s | θ) ∂

∂θk,l
ση(u(Dθ), n)

p(s | θ)ση(u(Dθ), n)

=
z(s, k, l)

θk,lk
− ηMa,n

∂

∂θk,l
c̄n(Dθ)

+ η

N∑
n′=1

ση(u(Dθ), n′)Ma,n′
∂

∂θk,l
c̄n′(Dθ)

6 EXPERIMENTS SCALING WITH
ATTACKER TYPES

The derivation from the previous section allows us to im-
plement the STACKGRAD algorithm for a particular class
of defender mixed strategies, specifically those that assign
resources to schedules independently. We call the result-
ing algorithm STACKGRAD-I (where I follows from the
independence assumption).

We now demonstrate that STACKGRAD-I scales very well
on games with a large numbers of attacker types. Specif-
ically, we will see that for a fixed choice of parameters T
and m, both the run-time and quality of the solution θT
found by STACKGRAD-I are constant in the number of
attacker types.

Experiments were conducted on the patrolling domain in-
troduced by Paruchuri et al. [2007], (see Paruchuri et al.
[2008]). The goal is to assign a single security re-
source (such as a UAV or robot) to a sequence of targets
[ti1 , . . . , tid ], called its patrol. Thus, for patrol length d,
the set of defender pure strategies S consists of all length d
permutations of the target set.

In the original game, the coverage induced by strategy
s = [tn1

, . . . , tnd ] is not binary, and depends on the lo-
cation of a target tn in s. That is, there are parameters
p1, . . . , pd where cn(s) = pj if n = nj and cn(s) = 0 if
n 6= {n1, . . . , nd}. Target tn is covered with probability pj
if it appears jth in the patrol, otherwise it is not covered at
all. x

We use this formulation, but note that for this (non-binary)
coverage function Lemma 1 must re-derived. Using the
categorical distribution, there is a single parameter θl for
each permutation in S, and it is not difficult to show that
∂
∂θl

c̄n(Dθ) = cn(sl) − cn(s0). The result of Theorem
1 is unchanged. Secondly, we note that for this particu-
lar game, the categorical distribution completely character-
izes the set of mixed defender strategies (∆ = ∆Θ). Thus,



for large enough inverse temperature in the softmax func-
tion (η →∞), maximizing Ũd(θ) is equivalent to finding a
Stackelberg equilibrium defender strategy.

Experiments where run on randomly generated instances
of these games; Ud(0, tn), Md,n, Uλ(1, tn) and Mλ,n are
chosen at random in [0, 1]. In all instances STACKGRAD-
I is run with inverse temperature η = 20, and sampling
parameter m = 50. Every data point is the average of
20 experiments. Experiments were run on a 2.5 GHz In-
tel Xeon E5-2680v3 processor, and Integer programs were
solved using IBM CPLEX 12.4.

Figure 2: Patrol Game: STACKGRAD-I vs. DOBBS

Figure 3: Competitive Ratio

In the left plot of Figure 2, we compare the running time of
STACKGRAD-I and the DOBBS algorithm of Paruchuri
et al. [2008], which is the fastest algorithm for general
Stackelberg games, but must solve an integer program. Ex-
periments were conducted on instances with 5 targets and
patrol lengths of 2, for a total of 40 defender pure strate-
gies. While the game is small enough to be tractable with a
small number of defender pure strategies, as the number of
attacker types is increased, the DOBBS algorithm begins
to experience an exponential increase in its running time.
In contrast, STACKGAD-I exhibits near constant average
running time, with a range between 38 seconds and 59 sec-
onds (against 55 attackers and 45 attackers respectively).
Furthermore, as displayed on the right plot of Figure 2,
scaling the game has no effect on the quality of the solu-
tion found by STACKGRAD-I. The competitive ratio of the
solution θ∗ found by STACKGRAD-I against the true opti-
mum found by DOBBS ranges between 84.5% and 86.8%.

Of course both the running time and the quality of the solu-
tion found by STACKGRAD-I is a function of T , the num-
ber of iterations the gradient ascent is run. For the results in
Figure 2, STACKGRAD-I was terminated after T = 1000
iterations.

In Figure 3, we show the results of running STACKGRAD-
I for up to T = 5000 iterations, for 25, 40, 55 attacker
types. Here we see that the competitive ratio of the best
solution found by STACKGRAD-I against the Stackelberg
optimum quickly (displayed on the y axis) exceeds 90%.
After 100 seconds (corresponding to about T = 2500), the
average competitive ratio has reached above 94%.

STACKGRAD’s constant running time, and performance,
as the number of attackers is scaled up (but T is held con-
stant), can be attributed to the fact that neither the param-
eterization nor the computation of the gradient depend on
the size of Λ. Furthermore, the parameterization is com-
plete, in the sense that all mixed strategies for the game are
representable. The number of pure strategies, however, was
kept small; with five targets and patrol of length two, there
are a total of 20 defender pure strategies. In the next sec-
tion, we demonstrate how STACKGRAD can be deployed
to find solutions in games where the set of pure strategies
is very large.

7 LARGE STRATEGY SETS

7.1 STRUCTURED PURE STRATEGIES

While the categorical distribution model of Section 5
demonstrates the power of gradient methods when the
number of pure strategies are small, and the number of at-
tacker types is large, most security games are concerned
with settings in which there is a very large space of de-
fender pure strategies. Recall that under the categorical
model Θ ⊂ Rd, where d =

∑K
k=1(|Sk| − 1). Thus, if |Sk|

tends to be large, we would not expect STACKGRAD-I to
perform very well. This is often the case in real security
domains where the set of pure strategies exhibits a combi-
natorial explosion with the number of defender resources
or potential targets.

In this Section, we introduce a new class of defender mixed
strategies Θ which has a compact representation even as
|Sk| grows large. We consider a setting in which schedules
can be iteratively constructed. In the FAMS domain, for
example, an air marshal rk is assigned a schedule consist-
ing of a sequence of flights sk = [tn1

, . . . , tnL ] (which we
take to be ordered). The length of the schedule is bounded
(there is some upper boundL ≤ B), and must land the mar-
shal back to its origin airport. Although the set of feasible
schedules for a marshal rk can be exponentially large in B,
it has a natural combinatorial structure. In particular, given
a subsequence of flights sk,1:l = [tn1

, . . . , tnl ], l < L, the
set of feasible “next flights” can be efficiently computed.



Specifically, the subsequence of flights specified by sk,1:l

lands the marshal at some airport A at some time τ . The
viable choices for the l + 1 flight are those flights leaving
airport A after time τ , that can get the marshal back home
in B − l hops or fewer.2

More generally, we consider games where the schedules for
some resource rk is given by an ordered set of targets sk.
We will further assume that given some subseqence sk,1:l,
the set of feasible next targets F (sk,1:l) can be efficiently
computed. Formally, tn belongs to F (sk,1:l) if and only if
there is some schedule sk ∈ Sk, where sk = [sk,1:l, tn, . . . ]
(sk begins with the prefix sk,1:l).

7.2 PARAMETRIC MODEL

Following the recipe outlined in Section 4, we introduce a
new parametric model Θ for games that exhibit the sequen-
tial structure just described.

We will consider a simple logistic model. For each resource
k we introduce a vector wk of dimension N , where N is
the number of targets. We denote the nth element of wk by
wk,n. A resource rk is assigned to schedule sk according
to a sequential stochastic process. Given a subsequence
of targets of length l, sk,1:l, the next target in resource
rk’s schedule is selected with probability proportional to
exp(wk,n) when tn ∈ F (sk,1:l) and with probability 0 oth-
erwise. For tn ∈ F (sk,1:l):

P[sk(l + 1) = tn | sk,1:l] =
exp(wk,n)∑

tn′∈F (sk,1:l)
exp(wk,n′)

(6)

Thus, wk,n indicates the propensity for target tn to be cov-
ered whenever that target is available in the feasible set of
next targets. As was the case with the model of Section 5,
each resource will be independently assigned to a schedule.
Therefore θ = {w1, . . . ,wK}, and ∆(Θ) indicates the set
of distributions over resource assignments where resources
are independently assigned to schedules according to the
aforementioned stochastic process. Notice that the dimen-
sion of θ is KN , where K is the number of resources and
N is the number of targets. Therefore, the parameterization
remains compact even if the size of |S| explodes.

We state ∇p(s,tn|θ)p(s,tn|θ) for this new parametric class of strate-
gies in the following Theorem. Due to space restrictions,
the full proof is given in the supplemental material.

Theorem 2. Let tnk,l denote the lth target covered by
the kth resource chosen by the defender. For any target
tn∗ chosen by the attacker, schedule assignments s cho-
sen by defender, and any parameter wk,n. ∂

∂wk,n
p(s, tn∗ |

2This computation is via a modification of Djikstra’s algo-
rithm.

θ)/p(s, tn∗ | θ) is given by the following equation:

L∑
l=1

1[n = nk,l]− P[sk(l) = tn | sk,1:(l−1), θ]

− η
N∑

n′=1

ση(uλ(Dθ), n′)Ma,n′
∂

∂wk,n
c̄n′(Dθ)

+ ηMa,n∗
∂

∂wk,n
c̄n∗(Dθ)

Unlike the categorical model of Section 5, the partial
derivative of c̄n(Dθ) cannot be easily computed in closed
form. Changing the value of parameter wk,n, might effect
the coverage of targets tn′ 6= tn. In the federal air marshal
(FAMS) domain, wk,n corresponds to the likelihood that
marshal rk takes flight tn. Increasing wk,n, however, also
changes the coverage probabilities of other flights; flights
departing from the destination airport of tn also become
more likely, as the marshal needs to return home.

Therefore, instead of computing the derivative in closed
form, we use numerical differentiation. Given a set of pa-
rameters θ = {w1, . . . ,wK}, let θ+ δn,k denote the set of
parameters, where wk,n = wk,n + δ, and all other param-
eters are unchanged. We estimate ∂

∂wk,n
c̄n(θ) by sampling

schedules s(i) according to θ and schedules s(i)
n,k according

to θ+ δ
(k)
n for i = 1, . . . ,m. We then estimate ∂

∂wk,n
c̄n(θ)

using 1
m

∑m
i=1

cn(s(i))−cn(s
(i)
k,n)

δ .

8 EXPERIMENTS: SCALING WITH
LARGE STRATEGY SETS

The derivation of the gradient for the model in the previous
section gives us another instantiation of STACKGRAD,
which we call STACKGRAD-L (where L follows from the
logistic model). We now demonstrate the scalability of
STACKGRAD-L in domains with a large number of de-
fender pure strategies.

Recall that the STACKGRAD-L was derived to have no
dependency on |Sk|, the number of schedules available for
any resource k. We compare against the state-of-the-art
ASPEN algorithm [Jain et al., 2010a]. We note that the
ASPEN algorithm was designed to eliminate the combina-
torial explosion in joint schedules. If all |Sk| = X , then
there are XK possible joint schedules if the Stackelberg
game were to be expressed in normal form. Nevertheless,
ASPEN still has a computational dependency the size of an
individual set of schedules Sk. In particular, ASPEN uses
a column generation technique, where selecting each new
column requires solving a network flow problem with at
least

∑K
k |Sk| edges.



We conduct experiments on games inspired by the FAMS
domain. We begin with a fixed weighted network G∗, rep-
resenting actual air travel between the 500 US airports with
the most traffic [Colizza et al., 2007]. Nodes represent air-
ports and the weights in G∗ represent how many tickets
were available between two airports in a given year. Given
a parameter N , we generate a game instance as follows.
We create a new network G, where G is generated by sam-
pling 30 airports from G∗ where at least 5 of these airports
are chosen to be “hub” airports. We then create N edges in
G corresponding to flights, where a flight between aiports
v1 and v2 is present in G with probability proportional the
weight on (v1, v2) in G∗. The edges in G are meant to be
representative of actual flights between 30 US airports on
a given day. Each edge represents a flight, and therefore a
target. In this game, we have only a single attacker type.
In all our experiments there are 3 marshals, who can take
a tour of length L ≤ 5 before returning to their home city.
The home city is selected uniformly from one of the hubs
for each of the marshals. We allow any such tour on G. 3

We conduct experiments for various values of
N ∈ {500, 1000, 1500, 2000, 2500, 5000, 10000}. Sk for
a single marshal k consists of all tours from a start vertex
of length at most 5 in a network consisting of up to 10000
directed edges. Even simply enumerating Sk for our larger
instances is impossible. However, running ASPEN requires
{Sk} to be given as input. Therefore, in order to allow AS-
PEN to complete in a reasonable amount of time, we gen-
erate subsets Ŝk ⊂ Sk by randomly sampling Y = 10, 000
tours for each marshal. As a result, the performance of
STACKGRAD-L is not reported as a competitive ratio to
the true Stackelberg optimum, since ASPEN is also solv-
ing a restricted game.

Nevertheless, we can compare the performance of
STACKGRAD-L to that of ASPEN as the size of the game
is increased. In Figure 4 we compare the runtime of AS-
PEN with STACKGRAD-L for various values of N . Once
Y is fixed, the size of the pure strategy set of ASPEN is
constant. ASPEN is unaware of any of the pure strategies
outside the set Ŝ1 × Ŝ2 × Ŝ3. Nevertheless ASPEN must
still solve a mixed integer linear program where the num-
ber of constraints scale with N . The average runtime of
STACKGRAD-L increases as N grows as well, as the pa-
rameterization of STACKGRAD-L is in RN , but remains
bounded by that of ASPEN for large N .

In Figure 4 we also display the average performance of
each algorithm. Performance is measured as the direct pay-

3This permissiveness is somewhat artificial; in reality, a flight
lands at its destination at a specified time, eliminating flights that
leave sooner than that from consideration at the destination air-
port. This realism can be accounted for in the definition of F in
the previous section. To keep the experiments simple, we allow
any tour on G, and comment that this does not affect the scalabil-
ity of STACKGRAD-L.

off to the defender in the unrestricted game, in contrast to
the results in Section 6, where we computed competitive ra-
tios directly. We see that for smaller number of targets AS-
PEN finds a higher quality solution than STACKGRAD-L
on average. However, as N is increased the solution found
by STACKGRAD-L overtakes. We suspect this is due to
the fact that fixing Y in ASPEN eliminates pure strategies
that might be necessary for the defender, while any pure
strategy can be represented by STACKGRAD-L. For large
N , Ŝk is a very small subset of all the possible tours of
length 5.

Figure 4: STACKGRAD-L vs ASPEN

9 CONCLUSIONS AND FUTURE WORK

We present a new algorithm, STACKGRAD, for solving
Stackelberg security games, which works by performing a
gradient ascent, rather than solving an integer program. We
demonstrate a version of STACKGRAD with no compu-
tational dependence on the number of attacker types, and
another version with a mild dependence on the number
of defender pure strategies. Since the procedure restricts
its search to within a parametric class of defender mixed
strategies, and might find strategies bounded away from
the true Stackelberg optimum, we also provide empirical
evidence that the solutions found by STACKGRAD are of
comparable quality to solutions in the unrestricted game.
These empirical successes invite open questions for future
research, chief among these being whether there are para-
metric classes of defender mixed strategies which are prov-
ably competitive with the true Stackelberg optimum.
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