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Abstract
Stackelberg games increasingly influence security poli-
cies deployed in real-world settings. Much of the work
to date focuses on devising a fixed randomized strategy
for the defender, accounting for an attacker who opti-
mally responds to it. In practice, defense policies are
often subject to constraints and vary over time, allow-
ing an attacker to infer characteristics of future policies
based on current observations. A defender must there-
fore account for an attacker’s observation capabilities
in devising a security policy. We show that this general
modeling framework can be captured using stochastic
Stackelberg games (SSGs), where a defender commits
to a dynamic policy to which the attacker devises an
optimal dynamic response. We then offer the following
contributions. 1) We show that Markov stationary poli-
cies do not suffice in SSGs, except in several very spe-
cial cases; 2) present a finite-time mixed-integer non-
linear program for computing a Stackelberg equilibrium
in SSGs when the leader is restricted to Markov station-
ary policies, and 3) present a mixed-integer linear pro-
gram to approximate it. 4) We illustrate our algorithms
on a simple SSG representing an adversarial patrolling
scenario, where we study the impact of attacker patience
and risk aversion on optimal defense policies.

Introduction
Recent work using Stackelberg games to model security
problems in which a defender deploys resources to pro-
tect targets from an attacker has proven very successful
both in yielding algorithmic advances (Conitzer and Sand-
holm 2006; Paruchuri et al. 2008; Kiekintveld et al. 2009;
Jain et al. 2010a) and in field applications (Jain et al. 2010b;
An et al. 2011). The solution to these games are Stackel-
berg Equilibria, or SE, in which the attacker is assumed
to know the defender’s mixed strategy and plays a best re-
sponse to it (breaking ties in favor of the defender makes
it a Strong SE, or SSE). The defender’s task is to pick an
optimal (usually mixed) strategy given that the attacker is
going to play a best-response to it. This ability of the at-
tacker to know the defender’s strategy in SE is motivated in
security problems by the fact that the attacker can take ad-
vantage of surveillance prior to the actual attack. The sim-
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plest Stackelberg games are single-shot zero-sum games.
These assumptions keep the computational complexity of
finding solutions manageable but limit applicability. In this
paper we approach the problem from the other extreme of
generality by addressing SSE computation in general-sum
discounted stochastic Stackelberg games (SSGs). Our main
contributions are: 1) showing that there need not exist SSE in
Markov stationary strategies, 2) providing a finite-time gen-
eral MINLP (mixed-integer nonlinear program) for comput-
ing SSE when the leader is restricted to Markov stationary
policies, 3) providing an MILP (mixed-integer linear pro-
gram) for computing approximate SSE in Markov station-
ary policies with provable approximation bounds, and 4) a
demonstration that the generality of SSGs allows us to ob-
tain qualitative insights about security settings for which no
alternative techniques exist.

Notation and Preliminaries We consider two-player
infinite-horizon discounted stochastic Stackelberg games
(SSGs from now on) in which one player is a “leader” and
the other a “follower”. The leader commits to a policy that
becomes known to the follower who plays a best-response
policy. These games have a finite state space S, finite ac-
tion spaces AL for the leader and AF for the follower, pay-
off functions RL(s, al, af ) and RF (s, al, af ) for leader and
follower respectively, and a transition function T alafss′ , where
s, s′ ∈ S, al ∈ AL and af ∈ AF . The discount factors are
γL, γF < 1 for the leader and follower, respectively. Finally,
β(s) is the probability that the initial state is s.

The history of play at time t is h(t) =
{s(1)al(1)af (1) . . . s(t − 1)al(t − 1)af (t − 1)s(t)}
where the parenthesized indices denote time. Let Π (Φ)
be the set of unconstrained, i.e., nonstationary and non-
Markov, policies for the leader (follower), i.e., mappings
from histories to distributions over actions. Similarly, let
ΠMS (ΦMS) be the set of Markov stationary policies
for the leader (follower); these map the last state s(t) to
distributions over actions. Finally, for the follower we
will also need the set of deterministic Markov stationary
policies, denoted ΦdMS .

Let UL and UF denote the utility functions for leader and
follower respectively. For arbitrary policies π ∈ Π and φ ∈



Φ, UL(s, π, φ)

= E
[ ∞∑
t=1

γt−1
L RL(s(t), π(h(t)), φ(h(t)))|s(1) = s

]
,

where the expectation is over the stochastic evo-
lution of the states, and where (abusing notation)
RL(s(t), π(h(t)), φ(h(t)))

=
∑
al∈AL

∑
af∈AF

π(al|h(t))φ(af |h(t))RL(s(t), al, af ),

and π(al|h(t)) is the probability of leader-action al in his-
tory h(t) under policy π, and φ(af |h(t)) is the probability of
follower-action af in history h(t) under policy φ. The utility
of the follower, UF (s, π, φ), is defined analogously.

For any leader policy π ∈ Π, the follower plays the best-
response policy defined as follows:

φBRπ
def
∈ arg max

φ∈Φ

∑
s

β(s)UF (s, π, φ).

The leader’s optimal policy is then

π∗
def
∈ arg max

π∈Π

∑
s

β(s)UL(s, π, φBRπ )

Together (π∗, φBRπ∗ ) constitute a Stackelberg equilibrium
(SE). If, additionally, the follower breaks ties in the leader’s
favor, these are a Strong Stackelberg equilibrium (SSE).

A crucial question is: must we consider the complete
space of non-stationary non-Markov policies to find a SE?
Before presenting an answer, we briefly discuss related work
and present an example problem modeled as an SSG.

Related Work and Example SSG While much of the
work on SSE in security games focuses on one-shot games,
there has been a recent body of work studying patrolling in
adversarial settings that is more closely related to ours. In
general terms, adversarial patrolling involves a set of targets
which a defender protects from an attacker. The defender
chooses a randomized patrol schedule which must obey ex-
ogenously specified constraints. As an example, consider a
problem that could be faced by a defender tasked with us-
ing a single boat to patrol the five targets in Newark Bay
and New York Harbor shown in Figure 1, where the graph
roughly represents geographic constraints of a boat patrol.
The attacker observes the defender’s current location, and
knows the probability distribution of defender’s next moves.
At any point in time, the attacker can wait, or attack im-
mediately any single target, thereby ending the game. The
number near each target represents its value to the defender
and attacker. What makes this problem interesting is that two
targets have the highest value, but the defender’s patrol boat
cannot move directly between these.

Some of the earliest work (Agmon, Kraus, and Kaminka
2008; Agmon, Urieli, and Stone 2011) on adversarial pa-
trolling was done in the context of robotic patrols, but in-
volved a highly simplified defense decision space (for ex-
ample, with a set of robots moving around a perimeter,
and a single parameter governing the probability that they

move forward or back). Basilico et al. (Basilico, Gatti, and
Amigoni 2009; Basilico et al. 2010; Basilico, Gatti, and
Villa 2011; Basilico and Gatti 2011; Bosansky et al. 2011)
studied general-sum patrolling games in which they as-
sumed that the attacker is infinitely patient, and the execu-
tion of an attack can take an arbitrary number of time steps.
Recent work by Vorobeychik, An, and Tambe (2012) con-
siders only zero-sum stochastic Stackelberg games.
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Figure 1: Example of a simple Newark Bay and New York
Harbor patrolling scenario.

Considering SSGs in full generality, as we do here, yields
the previous settings as special cases (modulo the discount
factor). Our results, for example, apply directly to dis-
counted variants of adversarial patrolling settings studied by
Basilico et al. Moreover, our use of discount factors makes
our setting more plausible: it is unlikely that an attacker is
entirely indifferent between now, and an arbitrarily distant
future. Finally, Basilico et al. policies are restricted to de-
pend only on previous defender move, even when the attacks
take time to unfold; this restriction is approximate, whereas
the generality of our formulations allows an exact solution
by representing states as finite sequences of defender moves.

Adversarial Patrolling as an SSG We illustrate how to
translate our general SSG model to adversarial patrolling on
graphs for the example of Figure 1. The state space is the
nodes in the graph plus a special “absorbing” state; the game
enters this state when the attacker attacks, and remains there
for ever. At any point in time, the state is the current location
of the defender, the defender’s actions AF are a function of
the state and allow the defender to move along any edge in
the graph, the attacker’s actions AF are to attack any node
in the graph or to wait. Assuming that the target labeled as
“base” is the starting point of the defender defines the ini-
tial distribution over states. The transition function is a de-
terministic function of the defender’s action (since state is
identified with defender’s locations) except after an attack,
which transitions the game into the absorbing state. The pay-
off function is as follows: if the attacker waits, both agents
get zero payoff; if the attacker attacks node j valued Hj ,
while the defender chooses action i 6= j, the attacker re-
ceives Hj , which is lost to the defender. If, on the other
hand, defender also chooses j, both receive zero. Thus, as
constructed, it is a zero-sum game. We will use the problem
of Figure 1 below for our empirical illustrations.

The form of a SSE in Stochastic Games
It is well known that in general-sum stochastic games there
always exists a Nash equilibrium (NE) in Markov stationary
policies (Filar and Vrieze 1997). The import of this result is



that it allows one to focus NE computation on this very re-
stricted space of strategies. In the version of the paper pub-
lished in AAAI proceedings, we provided a “proof” of the
following result:
Theorem 1 (FALSE1). For any general-sum discounted
stochastic Stackelberg game, there exist a leader’s Markov
stationary policy and a follower’s deterministic Markov sta-
tionary policy that form a strong Stackelberg equilibrium.

Unfortunately, this result is false at the stated level of gen-
erality, as we now proceed to demonstrate (we are grateful to
Vincent Conitzer for providing the counterexample we use
below).

Before we demonstrate the falsehood of the above theo-
rem, let us state a very basic, and weak, result that does hold
in general:
Lemma 1. For any general-sum discounted stochastic
Stackelberg game, if the leader follows a Markov stationary
policy, then there exists a deterministic Markov stationary
policy that is a best response for the follower.

This follows from the fact that if the leader plays a
Markov stationary policy, the follower faces a finite MDP.
A slightly weaker result is, in fact, at the core of proving the
existence of Markov stationary NE: it allows one to define
a best response correspondence in the space of (stochastic)
Markov stationary policies of each player, and an application
of Kakutani’s fixed point theorem completes the proof. The
difficulty that arises in SSGs is that, in general, the leader’s
policy need not be a best response to the follower’s.

We now show that Theorem 1 fails to hold even in highly
restricted special cases of SSGs.
Example 1. The leader’s optimal policy may not be
Markov stationary even if transitions are deterministic
and independent of player actions. Moreover, the best
stationary policy can be arbitrarily suboptimal. Con-
sider the following counterexample, suggested to us by Vin-
cent Conitzer. Suppose that the SSG has three states, i.e.,
S = {1, 2, 3}, and the leader and the follower have two ac-
tions each, AL = {U,D} for the leader and AF = {L,R}
for the follower. Let initial state be s = 1 and suppose that
the following transitions happen deterministically and inde-
pendently of either player’s decisions: T12 = 1, T23 = 1,
T33 = 1, that is, the process starts at state 1, then moves
to state 2, then, finally, to state 3, which is an absorbing
state. In state s = 1 only the follower’s actions have an
effect on payoffs, which is as follows: RL(1, ·, L) = −M ,
RL(1, ·, R) = 0, RF (1, ·, L) = ε, RF (1, ·, R) = 0, where
M is an arbitrarily large number and ε << M . In state
s = 2, in contrast, only the leader’s actions have an effect
on payoffs: RL(2, U, ·) = RL(1, D, ·) = 0, RF (1, U, ·) =
−M , RF (1, D, ·) = 0. Suppose that the discount factors
γ = δ are close to 1. First, note that a Markov stationary

1Our proof in the proceedings verison of the paper went awry
in two ways. First, we assumed that there always exists a leader-
optimal policy that is optimal in every state. Second, our approach
relied on backwords induction, whereas in SSGs policies have
complex inter-temporal dependencies.

policy for the leader would be independent of the follower’s
action in state 2, and, consequently, the follower’s best re-
sponse is to play L, giving the leader a payoff of −M . On
the other hand, if the leader plays the following non-Markov
policy: play U when the follower plays L and D otherwise,
the follower’s optimal policy is to play R, and the leader
receives a payoff of 0. Since M is arbitrarily large, the dif-
ference between an optimal and best stationary policy is ar-
bitrarily large. �

A natural question is whether there is any setting where
a positive result is possible, besides zero-sum games where
there is no distinction between Nash equilibria and SSE. In-
deed, there is: team games.

Definition 1. A team game is a SSG with RL(s, al, af ) =
RF (s, al, af ) = R(s, al, af ) and γL = γF .

Proposition 1. For any general-sum discounted team game,
there exist a leader’s Markov stationary policy and a fol-
lower’s deterministic Markov stationary policy that form a
strong Stackelberg equilibrium. Moreover, these are both de-
terministic.

Proof. Construct an MDP with the same state space as
the team game, but the actions space A = AL × AF
(which is still finite), the reward function is R(s, a) where
a = (al, af ) ∈ A, and the transition probabilities are as
in the original team game. Let π∗MDP be an optimal de-
terministic stationary Markov policy of the resulting MDP,
which is known to exist. We can decompose this policy into
π∗MDP = (π∗L, φ

∗
F ), where the former simply specifies the

leader’s and the latter the follower’s part in the optimal MDP
policy. We now claim that (π∗L, φ

∗
F ) constitutes a SSE.

First, we show that φ∗F must be the best response to π∗L.
Let U(π, φ) be the expected utility of both leader and fol-
lower when following π and φ respectively, where expec-
tation is taken also with respect to the initial distribution
over states; that these are equal follows by the identity of
the payoffs and discount factors in the team game. Note that
U(π, φ) = U(πMDP = (π, φ)), where the latter is the
corresponding expected utility of the MDP we constructed
above. Now, suppose that there is φ′ which yields a higher
utility to the follower. Then,

U(π∗, φ′) = UF (π∗, φ′) > UF (π∗, φ∗) = U(π∗, φ∗),

which implies that U(π∗, φ′) > U(π∗, φ∗), a contradiction,
since (π∗, φ∗) are optimal for the MDP.

Second, we show that π∗ is leader-optimal. Suppose not.
Then there exists (π′, φ′) where φ′ is a best response to π′
and

U(π′, φ′) = UL(π′, φ′) > UL(π∗, φ∗) = U(π∗, φ∗),

which implies that U(π′, φ′) > U(π∗, φ∗), a contradiction,
since (π∗, φ∗) are optimal for the MDP.

Computing Markov Stationary SSE Exactly
While in general SSE in Markov stationary strategies do not
suffice, we restrict attention to these in the sequel, as general
policies need not even be finitely representable. A crucial



consequence of the restriction to Markov stationary strate-
gies is that policies of the players can now be finitely rep-
resented. In the sequel, we drop the cumbersome notation
and denote leader stochastic policies simply by π and fol-
lower’s best response by φ (with π typically clear from the
context). Let π(al|s) denote the probability that the leader
chooses al ∈ AL when he observes state s ∈ S. Simi-
larly, let φ(af |s) be the probability of choosing af ∈ AF
when state is s ∈ S. Above, we also observed that it suffices
to focus on deterministic responses for the attacker. Conse-
quently, we assume that φ(af |s) = 1 for exactly one fol-
lower action af , and 0 otherwise, in every state s ∈ S.

At the root of SSE computation are the expected optimal
utility functions of the leader and follower starting in state
s ∈ S defined above and denoted by VL(s) and VF (s). In the
formulations below, we overload this notation to mean the
variables which compute VL and VF in an optimal solution.
Suppose that the current state is s, the leader plays a policy
π, and the follower chooses action af ∈ AF . The follower’s
expected utility is R̃F (s, π, af )

=
∑
al∈AL

π(al|s)

(
RF (s, al, af ) + γF

∑
s′∈S

T
alaf
ss′ VF (s′)

)
.

The leader’s expected utility R̃L(s, π, af ) is defined analo-
gously. Let Z be a large constant. We now present a mixed
integer non-linear program (MINLP) for computing a SSE:

max
π,φ,VL,VF

∑
s∈S

β(s)VL(s) (1a)

subject to :

π(al|s) ≥ 0 ∀s, al (1b)∑
al

π(al|s) = 1 ∀s (1c)

φ(af |s) ∈ {0, 1} ∀s, af (1d)∑
af

φ(af |s) = 1 ∀s (1e)

0 ≤ VF (s)− R̃F (s, π, af ) ≤ (1− φ(af |s))Z ∀s, af (1f)

VL(s)− R̃L(s, π, af ) ≤ (1− φ(af |s))Z ∀s, af (1g)

The objective 1a of the MINLP is to maximize the expected
utility of the leader with respect to the distribution of ini-
tial states. The constraints 1b and 1c simply express the fact
that the leader’s stochastic policy must be a valid probabil-
ity distribution over actions al in each state s. Similarly,
constraints 1d and 1e ensure that the follower’s policy is
deterministic, choosing exactly one action in each state s.
Constraints 1f are crucial, as they are used to compute the
follower best response φ to a leader’s policy π. These con-
straints contain two inequalities. The first represents the re-
quirement that the follower value VF (s) in state smaximizes
his expected utility over all possible choices af he can make
in this state. The second constraint ensures that if an action
af is chosen by φ in state s, VF (s) exactly equals the fol-
lower’s expected utility in that state; if φ(af |s) = 0, on the
other hand, this constraint has no force, since the right-hand-
side is just a large constant. Finally, constraints 1g are used

to compute the leader’s expected utility, given a follower
best response. Thus, when the follower chooses af , the con-
straint on the right-hand-side will bind, and the leader’s util-
ity must therefore equal the expected utility when follower
plays af . When φ(af |s) = 0, on the other hand, the con-
straint has no force.

While the MINLP gives us an exact formulation for com-
puting SSE in general SSGs, the fact that constraints 1f
and 1g are not convex together with the integrality require-
ment on φmake it relatively impractical, at least given state-
of-the-art MINLP solution methods. Below we therefore
seek a principled approximation by discretizing the leader’s
continuous decision space.

Approximating Markov Stationary SSE

MILP Approximation What makes the MINLP formula-
tion above difficult is the combination of integer variables,
and the non-convex interaction between continuous vari-
ables π and VF in one case (constraints 1f), and π and VL in
another (constraints 1g). If at least one of these variables is
binary, we can linearize these constraints using McCormick
inequalities (McCormick 1976). To enable the application
of this technique, we discretize the probabilities which the
leader’s policy can use ((Ganzfried and Sandholm 2010) of-
fer another linearization approach for approximating NE).

Let pk denote a kth probability value and let K =
{1, . . . ,K} be the index set of discrete probability values we
use. Define binary variables dals,k which equal 1 if and only
if π(al|s) = pk, and 0 otherwise. We can then write π(al|s)
as π(al|s) =

∑
k∈K pkd

al
s,k for all s ∈ S and al ∈ AL.

Next, let walafs,k = dals,k
∑
s′∈S T

alaf
ss′ VL(s′) for the leader,

and let zalafs,k be defined analogously for the follower. The
key is that we can represent these equality constraints by the
following equivalent McCormick inequalities, which we re-
quire to hold for all s ∈ S, al ∈ AL, af ∈ AF , and k ∈ K:

w
alaf
s,k ≥

∑
s′∈S

T
alaf
ss′ VL(s′)− Z(1− dals,k) (2a)

w
alaf
s,k ≤

∑
s′∈S

T
alaf
ss′ VL(s′) + Z(1− dals,k) (2b)

− Zdals,k ≤ w
alaf
s,k ≤ Zd

al
s,k, (2c)

and analogously for z
alaf
s,k . Redefine fol-

lower’s expected utility as R̃F (s, d, af , k) =∑
al∈AL

∑
k∈K pk

(
RF (s, al, af )dals,k − γF z

alaf
s,k

)
, with

leader’s expected utility R̃L(s, d, af , k) redefined similarly.



The full MILP formulation is then

max
φ,VL,VF ,z,w,d

∑
s∈S

β(s)VL(s) (3a)

subject to :

dals,k ∈ {0, 1} ∀s, al, k (3b)∑
k∈K

dals,k = 1 ∀s, al (3c)∑
al∈AL

∑
k

pkd
al
s,k = 1 ∀s (3d)

0 ≤ VF (s)− R̃F (s, d, af , k) ≤ (1− φ(af |s))Z∀s, af
(3e)

VL(s)− R̃L(s, d, af , k) ≤ (1− φ(af |s))Z ∀s, af (3f)
constraints 1d− 1e, 2a− 2c.

Constraints 3d, 3e, and 3f are direct analogs of con-
straints 1c, 1f, and 1g respectively. Constraints 3c ensure that
exactly one probability level k ∈ K is chosen.

A Bound on the Discretization Error The MILP approx-
imation above implicitly assumes that given a sufficiently
fine discretization of the unit interval we can obtain an arbi-
trarily good approximation of SSE. In this section we obtain
this result formally. First, we address why it is not in an obvi-
ous way related to the impact of discretization in the context
of Nash equilibria. Consider a mixed Nash equilibrium s∗ of
an arbitrary normal form game with a utility function ui(·)
for each player i (extended to mixed strategies in a stan-
dard way), and suppose that we restrict players to choose a
strategy that takes discrete probability values. Now, for ev-
ery player i, let ŝi be the closest point to s∗i in the restricted
strategy space. Since the utility function is continuous, this
implies that each player’s possible gain from deviating from
ŝi to s∗i is small when all others play ŝ−i, ensuring that finer
discretizations lead to better Nash equilibrium approxima-
tion. The problem that arises in approximating an SSE is that
we do not keep the follower’s decision fixed when consider-
ing small changes to the leader’s strategy; instead, we allow
the follower to always optimally respond. In this case, the
leader’s expected utility can be discontinuous, since small
changes in his strategy can lead to jumps in the optimal
strategies of the follower if the follower is originally indif-
ferent between multiple actions (a common artifact of SSE
solutions). Thus, the proof of the discretization error bound
is somewhat subtle.

First, we state the main result, which applies to all finite-
action Stackelberg games, and then obtain a corollary which
applies this result to our setting of discounted infinite-
horizon stochastic games. Suppose that L and F are the
finite sets of pure strategies of the leader and follower, re-
spectively. Let uL(l, f) be the leader’s utility function when
the leader plays l ∈ L and the follower plays f ∈ F ,
and suppose that X is the set of probability distributions
over L (leader’s mixed strategies), with x ∈ X a par-
ticular mixed strategy with xf the probability of playing
a pure strategy f ∈ F . Let P = {p1, . . . , pK} and let
ε(P) = supx∈X maxf mink∈K |pk − xf |. Suppose that

(x∗, fBR(x∗)) is a SSE of the Stackelberg game in which
the leader can commit to an arbitrary mixed strategy x ∈ X .
Let U(x) be the leader’s expected utility when he commits
to x ∈ X .
Theorem 2. Let (xP , fBR(xP)) be an SSE where the
leader’s strategy x is restricted to P . Then

U(xP) ≥ U(x∗)− ε(P) max
f∈F

∑
l

|uL(l, f)|.

At the core of the proof is the multiple-LP approach for
computing SSE (Conitzer and Sandholm 2006). The proof
is provided in the Appendix.

The result in Theorem 2 pertains to general finite-action
Stackelberg games. Here, we are interested in SSGs, where
pure strategies of the leader and follower have, in general,
arbitrarily infinite sequences of decisions. However, if we
restrict attention to Markov stationary policies for the leader,
we guarantee that the consideration set of the leader is finite,
allowing us to apply Theorem 2.
Corollary 1. In any SSG in which the leader is restricted to
Markov stationary policies, the leader’s expected utility in a
SSE can be approximated arbitrarily well using discretized
policies.

Comparison Between MINLP and MILP
Above we asserted that the MINLP formulation is likely in-
tractable given state-of-the-art solvers as motivation for in-
troducing a discretized MILP approximation. We now sup-
port this assertion experimentally.

For the experimental comparison between the two formu-
lations, we generate random stochastic games as follows. We
fix the number of leader and follower actions to 2 per state
and the discount factors to γL = γF = 0.95. We also re-
stricted the payoffs of both players to depend only on state
s ∈ S, but otherwise generated them uniformly at random
from the unit interval, i.i.d. for each player and state. More-
over, we generated the transition function by first restricting
state transitions to be non-zero on a predefined graph be-
tween states, and generated an edge from each s to another
s′ with probability p = 0.6. Conditional on there being an
edge from s to s′, the transition probability for each action
tuple (al, af ) was chosen uniformly at random from the unit
interval.

Exp Utility Running Time (s)
MINLP (5 states) 9.83 375.26
MILP (5 states) 10.16 5.28

MINLP (6 states) 9.64 1963.53
MILP (6 states) 11.26 24.85

Table 1: Comparison between MINLP and MILP (K = 5),
based on 100 random problem instances.

Table 1 compares the MILP formulation (solved using
CPLEX) and MINLP (solved using KNITRO with 10 ran-
dom restarts). The contrast is quite stark. First, even though
MILP offers only an approximate solution, the actual solu-
tions it produces are better than those that a state-of-the-art



solver gets using MINLP. Moreover, MILP (using CPLEX)
is more than 70 times faster when there are 5 states and
nearly 80 times faster with 6 states. Finally, while MILP
solved every instance generated, MINLP successfully found
a feasible solution in only 80% of instances.

Extended Example: Patrolling the Newark
Bay and New York Harbor

Consider again the example of patrolling the Newark Bay
and New York Harbor under the geographic constraints
shown in Figure 1. We now study the structure of defense
policies in a variant of this example patrolling problem that
is a deviation from the zero-sum assumption. This departure
is motivated by the likely possibility that even though the
players in security games are adversarial (we assume that
the actual values of targets to both players are identical and
as shown in the figure), they need not have the same degree
of risk aversion. In our specific example, the departure from
strict competitiveness comes from allowing the attacker (but
not the defender) to be risk averse.

To model risk aversion, we filter the payoffs through
the exponential function f(u) = 1 − e−αu, where u
is the original payoff. This function is well known to
uniquely satisfy the property of constant absolute risk aver-
sion (CARA) (Gollier 2004). The lone parameter, α, con-
trols the degree of risk aversion, with higher α implying
more risk averse preferences.
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Figure 2: Varying discount factors γ = γL = γF and the
degree of risk aversion α.

In Figure 2 we report the relevant portion of the defense
policy in the cross-product space of three discount factor val-
ues (0.1, 0.75, and 0.999) and three values of risk aversion
(risk neutral, and α = 1 and 5). We can make two qualitative
observations. First, as the attacker becomes increasingly risk
averse, the entropy of the defender’s policy increases (i.e.,
the defender patrols a greater number of targets with pos-
itive probability). This observation is quite intuitive: if the
attacker is risk averse, the defender can profitably increase
the attacker’s uncertainty, even beyond what would be opti-
mal with a risk neutral attacker. Second, the impact of risk
aversion diminishes as the players become increasingly pa-
tient. This is simply because a patient attacker is willing to
wait a longer time before an attack, biding his time until the
defender commits to one of the two most valued targets; this
in turn reduces his exposure to risk, since he will wait to
attack only when it is safe.

Conclusion
We defined general-sum discounted stochastic Stackelberg
games (SSG). SSGs are of independent interest, but also
generalize Stackelberg games which have been important in
modeling security problems. We showed that there does not
always exist a strong Stackelberg equilibrium in Markov sta-
tionary policies. We then provide a MINLP that solves for
exact SSE restricted to Markov stationary policies, as well
as a more tractable MILP that approximates it, and proved
approximation bounds for the MILP. Finally, we illustrated
how the generality of our SSGs can be used to address se-
curity problems without having to make limiting assump-
tions such as equal, or lack of, discount factors and identical
player risk preferences.
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Appendix
Proof of Theorem 2
To prove this theorem, we leverage a particular technique
for computing a SSE in finite-action games: one using mul-
tiple linear programs, one for each follower strategy f ∈
F (Conitzer and Sandholm 2006). Each of these linear pro-
grams (LP) has the general form

max
x

∑
l∈L

xlu
L(l, f)

s.t.

x ∈ D(f),

where D(f) is the constraint set which includes the restric-
tion x ∈ X and requires that the follower’s choice f is his
optimal response to x. To compute the SSE, one then takes
the optimal solution with the best value over the LPs for all
f ∈ F ; the corresponding f is the follower’s best response.
Salient to us will be a restricted version of these LPs, where
we replace D(f) with Dε(f), where the latter requires, in
addition, that leader’s mixed strategies are restricted to P
(note that Dε(f) ⊆ D(f)). Let us use the notation P (f) to
refer to the linear program above, and P ε(f) to refer to the
linear program with the restricted constraint set Dε(f). We
also use P ε to refer to the problem of computing the SSE in
the restricted, discrete, setting.

We begin rather abstractly, by considering a pair of math-
ematical programs, P1 and P2, sharing identical linear ob-
jective functions cTx. Suppose that X is the set of feasi-
ble solutions to P1, while Y is the feasible set of P2, and
Y ⊆ X ⊆ Rm. Let OPT1 be the optimal value of P1.



Lemma 2. Suppose that ∀x ∈ X there is y ∈ Y such that
‖x − y‖∞ ≤ ε. Let x̂ be an optimal solution to P2. Then x̂
is feasible for P1 and cT x̂ ≥ OPT1 − ε

∑
i |ci|.

Proof. Feasibility is trivial since Y ⊆ X . Consider an ar-
bitrary optimal solution x∗ of P1. Let x̃ ∈ Y be such that
‖x∗ − x̃‖∞ ≤ ε; such x̃ must exist by the condition in the
statement of the lemma. Then

cTx∗ − cT x̃ =
∑
i

ci(x
∗
i − x̃i) ≤ |

∑
i

ci(x
∗
i − x̃i)|

≤
∑
i

|ci||x∗i − x̃i| ≤ ε
∑
i

|ci|,

where the last inequality comes from ‖x∗ − x̃‖∞ ≤ ε.
Finally, since x̂ is an optimal solution of P2 and x̃ is P2

feasible, cT x̂ ≥ cT x̃ ≥ cTx∗ − ε
∑
i |ci| = OPT1 −

ε
∑
i |ci|.

We can apply this Lemma directly to show that for a
given follower action f , solutions to the corresponding lin-
ear program with discrete commitment, P εf , become arbitrar-
ily close to optimal solutions (in terms of objective value) of
the unrestricted program Pf .
Corollary 2. Let OPT (f) be the optimal value of P (f).
Suppose that xε(f) is an optimal solution to P ε(f). Then xε
is feasible in P (f) and∑

l∈L

xεlu
L(l, f) ≥ OPT (f)− ε

∑
l

|uL(l, f)|.

We now have all the necessary building blocks for the
proof.

Proof of Theorem 2. Let x̂ be a SSE strategy for the leader
in the restricted, discrete, version of the Stackelberg commit-
ment problem, P ε. Let x∗ be the leader’s SSE strategy in the
unrestricted Stackelberg game and let f∗ be the correspond-
ing optimal action for the follower (equivalently, the corre-
sponding P (f) which x∗ solves). Letting x̂f

∗
be the optimal

solution to the restricted LP P (f∗)ε, we apply Corollary 2
to get∑

l∈L

x̂f
∗
uL(l, f∗) ≥ OPT (f)− ε

∑
l

|uL(l, f∗)|

= U(x∗)− ε
∑
l

|uL(l, f∗)|,

where the last equality is due to the fact that x∗ is both an
optimal solution to Stackelberg commitment, and an optimal
solution to P (f∗).

Since x̂ is optimal for the restricted commitment problem,
and letting f̂ be the corresponding follower strategy,

U(x̂) =
∑
l∈L

x̂lu
L(l, f̂) ≥

∑
l∈L

x̂f
∗
uL(l, f∗)

≥ U(x∗)− ε
∑
l

|uL(l, f∗)|

≥ U(x∗)− εmax
f∈F

∑
l

|uL(l, f)|.
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