
Lossy Stochastic Game Abstraction with Bounds∗

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University

Satinder Singh
Computer Science & Engineering

University of Michigan

ABSTRACT
Abstraction followed by equilibrium finding has emerged as
the leading approach to solving games. Lossless abstraction
typically yields games that are still too large to solve, so
lossy abstraction is needed. Unfortunately, prior lossy game
abstraction algorithms have no guarantees on solution qual-
ity. We developed a framework that enables the design of
lossy game abstraction algorithms with guarantees on so-
lution quality. It simultaneously handles state and action
abstraction. We define a measure of reward approximation
error and transition probability error achieved by state and
action abstraction in stochastic games such that the regret
of the equilibrium found in the abstract game when imple-
mented in the original, unabstracted game is upper-bounded
by a function of those measures. We then develop the first
lossy game abstraction algorithms with bounds on solution
quality. Both of them work level-by-level up from the end of
the game. One of the algorithms is greedy and the other is an
integer linear program. We also prove that the abstraction
problem is NP-complete (even with just action abstraction,
2 agents, and a 1-step game), but point out that this does
not mean that the game abstraction problems that occur in
practice cannot be solved quickly.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; J.4 [Social and behavioral sciences]: Economics;
I.2.1 [Artificial intelligence]: Applications and Expert
Systems: Games

General Terms
Algorithms, Economics, Theory

Keywords
Game theory, game solving, abstraction, game abstraction,
equilibrium finding, ε-equilibrium

1. INTRODUCTION
∗An extended version of this paper has been accepted for
publication in the ACM Conference on Electronic Com-
merce (EC), 2012. Tuomas Sandholm was supported by
the National Science Foundation under grants IIS-0964579,
IIS-0905390, and CCF-1101668. Satinder Singh was sup-
ported by the National Science Foundation under grants
IIS-1148668 and IIS-0905146.

Game-theoretic solution (equilibrium) concepts provide a
rigorous definition of how rational agents should act in mul-
tiagent settings. The ability to actually compute such so-
lutions is a key capability in a variety of applications, for
example, auctions, exchanges, negotiation, security games,
and recreational games such as poker and billiards. Compu-
tational techniques for finding such solutions to games have
therefore emerged as a central topic in electronic commerce
research (e.g., [19, 18, 10, 16]) and research in the inter-
section of economics and computer science at large. This
research has focused both on developing new game-solving
techniques and on using game-solving techniques to answer
important questions in a variety of applications.

The following paradigm has emerged as a leading ap-
proach to solving large games. First, the game is abstracted
to form a smaller game. Then the abstracted game is solved
with some equilibrium-finding algorithm. Finally, that equi-
librium is mapped back into the original, unabstracted game [13,
21, 6].

There are at least three motivations for abstracting games:

(i) The original, unabstracted game can be prohibitively
large to be solved with the equilibrium-finding algo-
rithm directly. It may take too much time and/or re-
quire too much memory (e.g., [3]).

(ii) The original game might be so complex that it is dif-
ficult to even model without making the model be an
abstraction of reality (e.g., [26]).

(iii) The original game may not fall into a class for which
existence of equilibrium is known or may nor fall into a
class for which an equilibrium-finding algorithm exists;
abstraction can remedy this (e.g., [2]).

Game abstraction typically takes the form of state abstrac-
tion and/or action abstraction. In state abstraction, states
of the game are bundled together so the agent(s) whose turn
it is to move cannot distinguish among those states. This
means that the abstraction pretends that the agent does
not know some of the history that the agent actually knows.
Therefore, state abstraction is often also referred to as infor-
mation abstraction. State abstraction means that the agent
has to use the same probability mixture over his actions in
each of the states in the bundled, abstract state. So, state
abstraction amounts to a restriction on the agent’s strategy
space. Action abstraction means that the actions available
to an agent at any point in the abstracted game are not nec-
essarily the same as (typically fewer in number than) in the
original, unabstracted game.

In early uses of game abstraction, the abstraction was gen-
erated manually using domain knowledge (e.g., [3]). Simi-
larly, when abstraction is used for reason (ii) or (iii) above,
it is typically done manually [26, 2]. When state abstraction
is done for reason (i), it is nowadays usually done automat-
ically using some abstraction algorithm [10, 22, 7, 8, 9, 12,
27, 13, 11]. Action abstraction is still typically done by
hand [13, 21], but that is starting to change [15].

A key question is how good the abstraction is, that is,
how good are the equilibrium strategies from the abstracted
game when evaluated in the real, original game. A domain-
independent lossless state abstraction algorithm was recently
developed for a broad class of games [10]. By ‘lossless’
we mean that the equilibrium from the abstracted game
is an exact equilibrium of the original game. For many
real games—such as Texas Hold’em poker—the losslessly ab-
stracted game is still too large to solve. Therefore, one needs
to employ lossy abstraction. Unfortunately, all prior lossy
game abstraction algorithms (e.g., [22, 10, 7, 8, 9, 12, 27,
13, 11, 24, 25]) and manually-generated game abstractions
(e.g., [3]) are lossy without bound. That is, they have no
guarantee on how good the equilibrium strategies from the
abstracted game will be in the original game. An important
open question in this field—and arguably in game solving at
large—is whether lossy abstraction algorithms with bounds
on solution quality can be devised.

In this paper we develop a framework that enables the
design of such algorithms. It simultaneously handles state
and action abstraction. It is based on bounding the errors in
payoffs as well as errors in transition probabilities, caused by
abstraction. Specifically, we define a measure of reward ap-
proximation error and transition probability approximation
error achieved by state and action abstraction such that the
regret of the equilibrium found in the abstract game when
implemented in the original, unabstracted game is upper-
bounded by some function of those measures. The analysis
is in some ways similar to that of abstraction in Markov de-
cision processes [14, 20, 23], but for the richer—and much
more difficult—setting of games.

We then develop the first lossy game abstraction algo-
rithms with bounds on solution quality. We analyze finite
stochastic general-sum games with any number of agents.
(However, as we will discuss later, we expect the approach
to generalize easily to discounted infinite stochastic games.)
We also prove that the abstraction problem is NP-complete
even if one looks at one level of the game and does only
action abstraction.

The rest of this paper is organized as follows. First, Sec-
tion 2 illustrates the difficulty of game abstraction: even in a
simple game with just action abstraction, a strict refinement
of the abstraction can lead to worse solution quality. Then,
Section 3 presents our analysis framework. Section 4 proves
that state evaluations in the abstract game are near correct
in the original game, and Section 5 proves that equilibria
from the abstract game have bounded regret in the original
game. Section 6 presents abstraction algorithms and ana-
lyzes the problem complexity. Finally, Section 7 presents
conclusions and discusses future research directions.

2. EXAMPLE OF NON-MONOTONICITY
IN ABSTRACTING GAMES

Abstraction in games is a much more difficult problem

than abstraction in single-agent settings. In short, the dif-
ficulty stems from the fact that the opponent(s) may not
honor the abstraction when playing. In this section we
will illustrate the resulting non-monotonicity in abstracting
games.

It is well known that in extensive form games, an equilib-
rium strategy derived in a finer-grained abstraction can be
more exploitable in the original, unabstracted game than an
equilibrium strategy derived in a coarser abstraction. Such
abstraction pathologies have been demonstrated also experi-
mentally, in relatively small extensive form (artificial poker)
games [24].

The example below shows that abstraction pathologies
can occur already in zero-sum two-agent one-step stochastic
games (i.e., strategic form games). This is the case even if
only action abstraction is used.

Example 1. Consider a game between an attacker and
a defender, with two locations, A and B. There is only one
state and the agents move simultaneously, after which the
game ends. The attacker has two possible actions, A and
B, corresponding to which location he attacks. The defender
has three actions, A, B, and BETWEEN, corresponding to
where he defends. If the agents choose the same location,
the defender wins, in which case he gets payoff 1 and the
attacker gets payoff -1. If the defender choose A or B and
the attacker chooses the opposite location, the attacker wins
and gets payoff 1 while the defender gets payoff -1. If the de-
fender choose BETWEEN, the game is a draw: both agents
get payoff 0.

In each equilibrium, the attacker randomizes 50-50 be-
tween the locations. The defender plays A with probability
p and B with probability p, and BETWEEN with probability
1− 2p. There is an equilibrium for each p ∈ [0, 0.5].

Now, consider an abstraction where the attacker only has
action A. The defender would choose A, but that is far from
equilibrium in the original, unabstracted game, yielding re-
gret 1 because the attacker would choose B.

Now, consider a strictly coarser abstraction where the at-
tacker only has action A and the defender only has actions
B and BETWEEN. The defender would choose BETWEEN
in the abstracted game. Interestingly, that choice has no re-
gret in the original, unabstracted game because that is an
equilibrium strategy in that game!

3. FRAMEWORK
In this section we will present our analysis framework. We

will consider stochastic games that have a finite number of
agents and a finite set of possible actions at each state for
each agent. We will present everything in the finite-horizon
undiscounted setting (but we expect the results to extend
easily to the infinite-horizon discounted setting, as we will
discuss later).

If the stochastic game is given as a directed graph with cy-
cles, then we conceptually attach time to the states so that
if a state can be reached via two different-length paths in
the graph, we consider that state to be two different states.
However, if a state can be reached via different paths of the
same length, we do not duplicate the state. (This guarantees
that the number of states in the game is linear in the num-
ber of steps that the game is played.) As a result, our game
representation is a layered directed acyclic graph (LDAG).
Layer 1 consists of the start state, layer 2 consists of the

states reachable in one step, and so on. Throughout the pa-
per we will refer to the height of a state, which is equivalent
to layer, except counting from the other direction, so leaves
are at height 1, states just before the leaves are at height
2, and so on. We will use the word level as a synonym for
height.

Consider two stochastic games: the original, unabstracted
one, M , and the abstracted one, M ′. Each of the two games
has n agents.

We will denote the elements of M as follows. Its state
space is S. The set of states at height j is Sj ⊂ S (note, for
all j 6= k, Sj ∩ Sk = φ). In state s ∈ S the action space for
Agent i is Ai(s) and the joint action space of all n agents is
A(s). In state x ∈ Sj , on taking joint action a ∈ A(x), the
reward to Agent i is Ri(x,a) and the next state is y ∈ Sj−1

with probability T (x,a, y). The action of Agent i in joint
action a is denoted ai.

The elements of M ′ are denoted exactly as for M above
except that throughout a “prime” superscript is used for all
the elements, e.g., the state space of M ′ is denoted S′.

3.1 State and action abstraction functions
We will define a state abstraction function h : S → S′.

Also, for all Agents i and for all s ∈ S, we will define an
action abstraction function gs,i : Ai(s)→ A′i(h(s)). We will
have these functions be surjections, so |S′| ≤ |S| and for
all agents i and for all s ∈ S, |A′i(h(s))| ≤ |Ai(s)|. The
intent is that M ′ is smaller than M and thus we will refer to
M ′ as the abstract game. When we wish to emphasize this
aspect we will attach the prefix “abstract” to the elements
associated with M ′.

State s in M maps to abstract state h(s) in M ′. The set of
states that map to abstract state s′ is denoted h−1(s′) ⊂ S
(i.e., h induces a partition of S).

Action a in state s in M maps to abstract action gs(a) in
abstract state h(s) in M ′. In state s, the set of actions for
Agent i that map to abstract action a′i is denoted g−1

s,i (a′i),
and the set of joint actions that map to abstract joint ac-
tion a′ is denoted g−1

s (a′). Note that the action abstrac-
tion functions are factored by both state and action, i.e.,
g−1
s (a′) = ×ni=1g

−1
s,i (a′i) (where the symbol × denotes cross-

product).
An abstract strategy σ′ maps abstract states of M ′ to

abstract joint-actions in M ′. The strategy for Agent i is
denoted σ′i.

How does one take a strategy σ′ in the abstract game
M ′ and apply it in M? There are many ways of doing this
“lifting”. That is, for state s the probability σ′i(a

′
i|h(s)) of

abstract action a′i by Agent i can be apportioned arbitrarily
among the actions g−1

s,i (a′i) in the lifted strategy.

Definition 1. (Strategy Lifting) Given an abstract strat-
egy σ′i for Agent i in M ′, a lifted strategy for Agent i in M ,

denoted σ
↑σ′i
i is any strategy in M that satisfies the following

conditions: for all s ∈ S, for all i, for all a′i ∈ A′i,∑
ai∈g

−1
s,i (a

′
i)

σ
↑σ′i
i (ai|s) = σ′i(a

′
i|h(s)).

Furthermore, σ↑σ
′

i is the same as σ
↑σ′i
i , and σ↑σ

′
assigns

σ
↑σ′i
i to each i.

Conversely, how does one take a strategy σ defined in M and
apply it in M ′? One cannot do this in general. However, by

construction, the strategy σ↑σ
′

defined in M can always be
applied in M ′.

3.2 Value functions for the original and
abstract game

We define value functions for the games as follows. For
joint strategy σ in M , for Agent i the value of a non-terminal
state x ∈ Sk>1 is

V
σ
i (x) =

∑
a∈A(x)

σ(a|x)
[
Ri(x, a) +

∑
y∈Sk−1

T (x, a, y)V
σ
i (y)

]
(1)

where for terminal states x ∈ S1,

V σi (x) =
∑

a∈A(x)

σ(a|x)Ri(x,a).

For joint abstract strategy σ′ in M ′, the value of Agent i in
abstract non-terminal state x′ ∈ S′k>1 is

Wσ′
i (x′) =

∑
a′∈A′(x′)

σ′(a′|x′)
[
R′i(x

′,a′)

+
∑

y′∈S′
k−1

T ′(x′,a′, y′)Wσ′
i (y′)

]
(2)

where for terminal states x′ ∈ S′1,

Wσ′
i (x′) =

∑
a′∈A′(x′)

σ′(a′|x′)R′i(x′,a′).

Note that we will use V ’s to denote values in M and W ’s
to denote values in M ′. Finally, define the largest, over all
states in LDAG-level k, value obtained in M ′ under abstract
strategy σ′ as

W
σ′

k,i
def
= max

x′∈S′
k

Wσ′
i (x′)

and define

W
σ′

k
def
= max

i
W

σ′

k,i and W
σ′ def

= max
k

W
σ′

k .

3.3 Reward-approximation and transition-
approximation error bounds

Next we define reward-approximation and transition-ap-
proximation error bounds in the mapping from M to M ′, as
a function of LDAG-level and agent:

εRk,i
def
= max

s∈Sk,a∈A(s)
|Ri(s,a)−R′i(h(s), gs(a))|, (3)

then as a function of just LDAG-level:

εRk
def
= max

i
[εRk,i], (4)

and finally as a global bound on the entire game:

εR = max
k

εRk . (5)

Similarly we can define transition-approximation error bounds,
first as a function of LDAG-level and next abstract state:

εTk (x′ ∈ S′k−1)
def
=

maxs∈Sk,a∈A(s) |
∑
x∈h−1(x′) T (s,a, x)− T ′(h(s), gs(a), x′)|,(6)

then as a function of just LDAG-level:

εTk
def
=

∑
x′∈S′

k−1

εTk (x′), (7)

and finally as a global bound on the entire game:

εT
def
= max

k
εTk . (8)

4. EVALUATIONS IN THE ABSTRACT
GAME ARE NEAR CORRECT IN THE
ORIGINAL GAME

Our first result is to show that the evaluation of an ab-
stract strategy in M ′ is not too far from the evaluation of
any corresponding lifted strategy in M . The key insight here
is that we can state such an approximation result for entire,
arbitrary strategy profiles (which contain one strategy for
each agent)—rather than, say, studying equilibrium prop-
erties or best-response properties of individual strategies or
strategy profiles. We will leverage this insight (as embod-
ied in Proposition 1) when we present our game-theoretic
results in the rest of the paper.

Proposition 1. ∀σ′, ∀s ∈ Sk,∀i,

|V σ
↑σ′

i (s)−Wσ′
i (h(s))| ≤ fk,i

def
=

k∑
j=1

εRj,i +

k−1∑
j=1

W
σ′

j,iε
T
j+1.

Proof. By induction on the height of the LDAG.
Base case (terminal nodes of the LDAG): ∀x ∈ S1,

V
σ↑σ
′

i (x)
def
=

∑
a∈A(x)

σ
↑σ′

(a|x)Ri(x, a)

≤
∑

a∈A(x)

σ
↑σ′

(a|x)
[
R
′
i(h(x), gx(a)) + ε

R
1,i

]
; by Eq. 3

= ε
R
1,i +

∑
a′∈A′(h(x))

∑
a∈g−1

x (a′)

σ
↑σ′

(a|x)R′i(h(x), gx(a))

= ε
R
1,i +

∑
a′∈A′(x)

σ
′
(a
′|h(x))R′i(h(x), a

′
); by Def. 1

= ε
R
1,i +W

σ′
i (h(x)) (9)

W
σ′
i (h(x))

def
=

∑
a′∈A′(h(x))

σ
′
(a
′|h(x))R′i(h(x), a

′
)

=
∑

a′∈A′(h(x))

(∑
a∈g−1

x (a′)

σ
↑σ′

(a|x)
)
R
′
i(h(x), a

′
); by Def. 1

≤
∑

a′∈A′(h(x))

∑
a∈g−1

s (a′)

σ
↑σ′

(a|x)
[
Ri(x, a) + ε

R
1,i

]
; by Eq. 3

= V
σ↑σ
′

i (x) + ε
R
1,i (10)

Putting the two pieces (Equations 9 and 10) together, we

have Wσ′
i (h(x))− εR1,i ≤ V σ

↑σ′

i (x) ≤Wσ′
i (h(x)) + εR1,i

Step 2: We assume that the proposition holds for x ∈
S≤k.

Step 3: We prove that the assumption from Step 2 im-
plies that the proposition holds for x ∈ Sk+1. We will only
show one side of the two-sided inequality in the Proposition.
The other side is similarly derived.

V
σ↑σ
′

i (x)
def
=
∑

a∈A(x)

σ
↑σ′

(a|x)
[
Ri(x, a) +

∑
y∈Sk

T (x, a, y)V
σ↑σ
′

i (y)
]
(11)

= term1 + term2

term1
def
=

∑
a∈A(x)

σ
↑σ′

(a|x)Ri(x, a)

≤
∑

a∈A(x)

σ
↑σ′

(a|x)
[
R
′
i(h(x), a

′
) + ε

R
k+1,i

]
= ε

R
k+1,i +

∑
a′∈A′(h(x))

∑
a∈g−1

x (a′)

σ
↑σ′

(a|x)R′i(h(x), a
′
)

= ε
R
k+1,i +

∑
a′∈A′(h(x))

σ
′
(a
′|h(x))R′i(h(x), a

′
) (12)

term2
def
=

∑
a∈A(x)

σ
↑σ′

(a|x)
∑
y∈Sk

T (x, a, y)V
σ↑σ
′

i (y)

≤
∑

a∈A(x)

σ
↑σ′

(a|x)
∑
y∈Sk

T (x, a, y)
[
W
σ′
i (h(y)) + fk,i

]
; by Step 2

= fk,i +
∑

a∈A(x)

σ
↑σ′

(a|x)
∑
y∈Sk

T (x, a, y)W
σ′
i (h(y))

= fk,i +
∑

a∈A(x)

σ
↑σ′

(a|x)
∑
y′∈S′

k

∑
y∈h−1(y′)

T (x, a, y)W
σ′
i (y

′
)

≤ fk,i +
∑

a∈A(x)

σ
↑σ′

(a|x)
∑
y′∈S′

k

(
T
′
(h(x), gx(a), y

′
) + ε

T
k+1(y

′
)
)
W
σ′
i (y

′
)

= fk,i +
∑
y′∈S′

k

W
σ′
i (y

′
)ε
T
k+1(y

′
)

+
∑

a∈A(x)

σ
↑σ′

(a|x)
∑
y′∈S′

k

T
′
(h(x), gx(a), y

′
)W

σ′
i (y

′
)

≤ fk,i +W
σ′
k,iε

T
k+1 +

∑
a∈A(x)

σ
↑σ′

(a|x)
∑
y′∈S′

k

T
′
(h(x), gx(a), y

′
)W

σ′
i (y

′
)

= fk,i +W
σ′
k,iε

T
k+1

+
∑

a′∈A′(h(x))

∑
y′∈S′

k

∑
a∈g−1

x (a′)

σ
↑σ′

(a|x)T ′(h(x), a′, y′)Wσ′
i (y

′
)

= fk,i +W
σ′
k,iε

T
k+1

+
∑

a′∈A′(h(x))

σ
′
(a
′|h(x))

∑
y′∈S′

k

T
′
(h(x), a

′
, y
′
)W

σ′
i (y

′
) (13)

Using Equations 12 and 13 we get the following:

V σ
↑σ′

i (x) ≤ fk,i + εRk+1,i +W
σ′

k,iε
T
k+1

+
∑

a′∈A′(h(x))

σ′(a′|h(x))
[
R′i(h(x),a′)

+
∑
y′∈S′

k

T ′(h(x),a′, y′)Wσ′
i (y′)

]
= Wσ′

i (h(x)) + (εRk+1,i +W
σ′

k,iε
T
k+1) + fk,i. (14)

This sets up the recursion

fk+1,i = εRk+1,i +W
σ′

k,iε
T
k+1 + fk,i

where f0,i = 0, and εT1 = 0, and W
σ′

0,i = 0.

Proposition 1 was presented in a manner that allowed the
use of level-dependent reward and transition error bounds.
By using the largest error bounds across levels, we present
a simpler form of the result in the following corollary.

Corollary 1. ∀σ′, ∀s ∈ Sk, ∀i,

|V σ
↑σ′

i (s)−Wσ′
i (h(s))| ≤ k

[
εR +W

σ′

k ε
T
]
.

Observe that the overall error in value functions is linear in
the height of the LDAG (the additional dependence on k

comes from the linear dependence on k of W
σ′

k).

5. EQUILIBRIA FROM THE ABSTRACT
GAME HAVE BOUNDED REGRET IN
THE ORIGINAL GAME

In this section we bring in game-theoretic reasoning while
leveraging the approximation results from the previous sec-
tion that apply to all strategy profiles. We will show that
any subgame perfect Nash equilibrium (SPNE) in an ab-
stract game M ′ is an approximate SPNE in the original
game M . In particular, we will show how the regret of any
SPNE of M ′ when lifted to M is bounded in terms of the
reward and transition abstraction error bounds of the state
and action abstraction functions that map M to M ′.

Theorem 1. For any subgame perfect Nash equilibrium

(SPNE) strategy σ
′∗ in M ′, any corresponding lifted joint

strategy σ↑σ
′∗

in M has the property that

∀i,∀s ∈ Sk, ∀πi ∈ S → Ai(S) :

V
〈πi,σ

↑σ
′∗

−i 〉
i (s) ≤ V σ

↑σ
′∗

i (s) + 2kfk,i (15)

where 〈πi, σ↑σ
′∗

−i 〉 is the joint strategy in M that results from

Agent i unilaterally deviating from σ↑σ
′∗

to pure strategy πi,
and fk,i is as defined in Proposition 1.

Proof. By induction on the height of the LDAG (as in

the proof for Proposition 1). Note that unlike strategy σ↑σ
′∗

,

the strategy 〈πi, σ↑σ
′∗

−i 〉 is not implementable in the abstract
game M ′. We will also need the following definition of an

adaptation of σ↑σ
′∗

that is consistent with the action of πi
on state s and hence is constrained to take the same action
in all states in h(s) to be implementable in M ′, i.e., the only

change from σ↑σ
′∗

is that

σ
↑σ
′∗
πi(s)|s

i (πi(s)|x ∈ h(s)) = 1,

where the corresponding abstract strategy is denoted σ
′∗
πi(s)|s.

Base case (terminal nodes of the LDAG): We prove
that the theorem holds for s ∈ S1. Suppose pure strategy πi

is such that for some s ∈ S1, V
〈πi,σ

↑σ
′∗

−i 〉
i (s) > V σ

↑σ
′∗

i (s) +

2f1,i. Define σ
′∗
M,πi(s)|s to be the minimal adaptation of σ

′∗
M

as in the theorem statement. Now,

V
〈πi,σ

↑σ
′∗

−i 〉
i (s)

=
∑

a−i∈A−i

σ↑σ
′∗

−i (a−i|s)Ri(s, 〈πi(s),a−i〉)

= V σ
↑σ
′∗
πi(s)|s

i (s). (16)

We get a contradiction by the following chain:

W
σ
′∗
πi(s)|s

i (h(s)) ≥ V
σ
↑σ
′∗
πi(s)|s

i (s)− f1,i; by Proposition 1

= V
〈πi,σ

↑σ
′∗

−i 〉
i (s)− f1,i; by Equation 16

> (V
σ↑σ
′∗

i (s) + 2f1,i)− f1,i; by supposition

≥ ((W
σ
′∗

i (h(s))− f1,i) + 2f1,i)− f1,i; by Prop. 1

= W
σ
′∗

i (h(s))

which is a contradiction because σ
′∗ is an SPNE in M ′.

Step 2: We assume the theorem holds for s ∈ S≤k.
Step 3: We prove that the assumption from Step 2 im-

plies that the theorem holds for s ∈ Sk+1.

Suppose πi is such that for some s ∈ Sk+1, V
〈πi,σ

↑σ
′∗

−i 〉
i (s) >

V σ
↑σ
′∗

i (s) + 2(k + 1)fk+1,i. Now,

V
〈πi,σ

↑σ
′∗

−i 〉
i (s) =

∑
a−i∈A−i

σ
↑σ
′∗

−i (a−i|s)
[
Ri(s, 〈πi(s), a−i〉)

+
∑
x∈Sk

T (s, 〈πi(s), a−i〉, x)V
〈πi,σ

↑σ
′∗

−i 〉
i (x)

]

=
∑

a−i∈A−i

σ
↑σ
′∗

−i (a−i|s)Ri(s, 〈σ
↑σ
′∗
πi(s)|s

i (s), a−i〉)

+
∑

a−i∈A−i

σ
↑σ
′∗

−i (a−i|s)

∑
x∈Sk

T (s, 〈πi(s), a−i〉, x)V
〈πi,σ

↑σ
′∗

−i 〉
i (x)

≤
∑

a−i∈A−i

σ
↑σ
′∗

−i (a−i|s)Ri(s, 〈σ
↑σ
′∗
πi(s)|s

i (s), a−i〉)

+
∑

a−i∈A−i

σ
↑σ
′∗

−i (a−i|s)
∑
x∈Sk

T (s, 〈πi(s), a−i〉, x)

[
V
σ
↑σ
′∗
πi(s)|s

i (x) + 2kfk,i

]
= V

σ
↑σ
′∗
πi(s)|s

i (s) + 2kfk,i

≤ W
σ
′∗
πi(s)|s

i (h(s)) + fk+1,i + 2kfk,i. (17)

We get a contradiction by the chain

W
σ
′∗
πi(s)|s

i (h(s)) ≥ V
〈πi,σ

↑σ
′∗

−i 〉
i (s)− fk+1,i − 2kfk,i; by Eq. 17

>
[
V
σ↑σ
′∗

i (s) + 2(k + 1)fk+1,i

]
− fk+1,i − 2kfk,i

; by supposition

= V
σ↑σ
′∗

i (s) + 2k(fk+1,i − fk,i) + fk+1,i

≥
[
W
σ
′∗

i (h(s))− fk+1,i

]
+ 2k(fk+1,i − fk,i)

+fk+1,i; by Prop. 1

= W
σ
′∗

i (h(s)) + 2k(fk+1,i − fk,i) (18)

which is a contradiction because by construction in Propo-
sition 1, fk+1,i ≥ fk,i.

The regret at height k in the regret bound of Theorem 1
depends cubically on k (there is a dependence on k in Equa-
tion 15 and a further multiplicative dependence on k2 in the
fk,i term as defined in the statement of Proposition 1).

5.1 Extension to infinite-horizon discounted
stochastic games

In the single-agent Markov Decision Process (MDP) coun-
terpart to stochastic games there is a long history (e.g., [17])
of using finite-horizon analyses as the basis for an analysis
of the discounted infinite-horizon MDP. Here we very briefly
sketch the same argument-structure applied to our stochas-
tic game setting. Suppose we pick a finite horizon of L and
find abstractions as specified in our paper so that the regret
at the root node (where the regret is the largest) is ε. Now
consider any extension of the finite horizon strategy profile
to an infinite-horizon strategy profile, e.g., by always select-
ing the same arbitrary strategy profile at every time step
after time L. What is the maximum additional regret at
the root node? The additional regret is upper bounded by
the fraction γL Rmax

1−γ , where Rmax is the difference between
the largest reward and smallest reward. Crucially, this addi-
tional regret term decreases exponentially with L and so by
making L large enough we can make this additional regret
as small as we want (in particular, we can apportion a frac-
tion of the overall error guarantee we seek to the error due
to the finite-horizon approximation). We leave the detailed
derivation of this result to future work.

6. ABSTRACTION ALGORITHMS
Here we develop algorithms for automatically constructing

an abstract game M ′ from the original game M with the
guarantee that an SPNE in M ′ when lifted and implemented
in M will be an approximate SPNE in M (cf. Theorem 1).

6.1 Bottom-up single-pass level-by-level greedy
abstraction algorithm

We start by describing a greedy, bottom-up, single-pass
algorithm. Given an overall approximation bound on the
quality of the SPNE to be found by constructing M ′, there
is a challenging and interesting question of how to apportion
the approximation bound into the ε’s needed for the different
levels of the game (see Equations 3,4,6,7) and indeed more
finely to the different state and action abstractions. For now,
we assume that we have done this apportionment by working
backwards from our theory in Section 4. One simple way to
do this would be to assume that the εR’s and εT ’s are the
same for all levels and then solving for these two constants
from Equation 15. Regardless of how we obtain them, we
will present an algorithm which will take as input εRk and εTk
for every level k separately.

Our algorithm for constructing M ′ proceeds bottom-up,
layer by layer as shown in Algorithm 3. For each layer, first
the action-abstractions (g’s) are constructed greedily and
then the state-abstractions (h’s) are constructed greedily.
This ordering of actions first and states second was a choice
and one could get a similar algorithm by doing this in the
reverse order. The size of M ′ would in general depend on
this choice and which choice is better would depend on the
details of M .

Action Abstractions.

ALGORITHM 1: Computing Action Abstractions

Input: s ∈ Sk, ε, ε′, S′k−1, hk−1

1 for i = 1 . . . n do
2 forall the ai ∈ Ai(s) do
3 gs,i(ai)← ai // default assumption that ai will start a

new bucket
4 reward-check = false, transition-check = false
5 // next compare ai with all actions that come before it

in Ai(s) under the ordering of line 2
6 forall the b ∈ Ai(s) before ai do
7 // check if ai is similar in reward to the action that

b maps to (cf. Equation 3)
8 if maxa−i∈A−i(s) |Ri(s, 〈ai,a−i〉)−

Ri(s, 〈gs,i(b),a−i〉)| ≤ ε then
9 reward-check = true

10 end
11 // check if ai is similar in transitions to the action

that b maps to (cf. Equation 7)

12 if
(
k == 1

)
OR(∑

x′∈S′
k−1{

maxa−i∈A−i(s) |
∑
x∈h−1

k−1
(x′)

T (s, 〈ai,a−i〉, x)−∑
x∈h−1

k−1
(x′)

T (s, 〈gs,i(b),a−i〉, x)|
}
≤ ε′

)
then

13 transition-check = true
14 end
15 if (reward-check == true AND transition-check ==

true) then
16 gs,i(ai)← gs,i(b) // map ai to whatever b

maps to
17 break

18 else
19 reward-check = false
20 transition-check = false

21 end

22 end
23 end

24 end
Output: gs,1, . . . , gs,n

Algorithm 1 shows the procedure for obtaining action ab-
stractions for any specific state given the state abstractions
at the level below. It takes a state s as input, cycles through
each agent (line 1), for each agent considers every action in
A(s) (line 2), and then buckets the actions with a prototype-
action for each bucket. Buckets get assigned by checking
both that the rewards are similar (lines 8-10) and that tran-
sitions are similar (lines 12-14), where similarity is defined
by the ε and ε′ input parameters respectively. The function
gs,i(ai ∈ Ai(s)) maps action ai to the prototype-action for
its bucket. Algorithm 1 is called separately for every state
(see lines 3-5 of Algorithm 3).

State Abstractions.
Algorithm 2 shows the procedure for obtaining state ab-

stractions for any level given the action abstractions already
obtained at that level as well as the state abstractions at the
level below. It cycles through every state s at that level (line
1) and compares it to every state x it has already mapped to
a bucket before (line 4). The comparisons involve finding a
one-to-one correspondence (line 9) if one exists between the
abstract actions of s and the abstract actions in the proto-
type state corresponding to x that satisfies reward similar-
ity (line 10) and satisfies transition similarity (lines 11-12),

ALGORITHM 2: Computing State Abstractions

Input: ε, ε′, g, S′k−1, hk−1

1 forall the s ∈ Sk do
2 hk(s) = s // default assumption that s will start a new

bucket
3 // next compare s with all states that come before it in Sk

under the ordering of line 1
4 forall the x ∈ Sk before s do
5 // First check if the same number of abstract actions

are available for each agent in s and hk(x)
6 if

∀i, |range(gs,i(Ai(s)))| == |range(ghk(x),i(Ai(hk(x))))|
then

7 // Consider all matchings between the abstract
actions of s and hk(x)

8 Z ← all one-to-one correspondences between
range(gs(A(s))) and range(ghk(x)(A(hk(x)))

9 if ∃Z ∈ Z such that,

10

([
maxa∈A(s) maxi |Ri(s,a)−

Ri(hk(x), Z(gs(a)))| ≤ ε
]
// reward-check

11 AND
[
(k == 1) OR(∑

x′∈S′
k−1

{
maxa∈A(s) |

∑
y∈h−1

k−1
(x′)

T (s,a, y)−

12
∑
y∈h−1

k−1
(x′)

T (hk(x), Z(gs(a)), y))|
}
≤

ε′
)])

// transition-check

13 then
14 hk(s)← hk(x)
15 break

16 end

17 end
18 end

19 end
Output: hk

where similarity is defined by the ε and ε′ input parameters
respectively. Such a one-to-one correspondence can be found
via a bipartite-matching algorithm and if such a matching
exists s is mapped (line 14) to the prototype state hk(x).
Consequently, Algorithm 2 buckets similar states with the
h function mapping each state to a prototype-state for its
bucket and is called once for each level (see line 7 of Algo-
rithm 3).

Constructing M ′.
The bottom-up single-pass Algorithm 3 first calls the ac-

tion abstraction algorithm (lines 3-5) with approximation

parameters
εRk
2

and
εTk
2

, where the fractions are used to al-
low for approximation on both sides of the choice of the
prototypes in each bucket. Then it calls the state abstrac-
tion algorithm (line 7) again with fractional approximation
parameters for the same reason as for the action abstrac-
tion algorithm. It returns the action-abstraction function
g as well as the state-abstraction function h. From these
the transition probabilities and the reward functions of M ′

can be defined by using the transition probabilities and the
reward functions in M for the prototype states and actions
defined in the buckets in h and g.

6.1.1 Comments on the greedy abstraction algorithm
Algorithm 3 is correct by construction; it yields an M ′

that satisfies the transition and reward approximation bounds

ALGORITHM 3: Computing Abstract Game

Input: εR1 , . . . , ε
R
n , ε

T
1 , . . . , ε

T
n

1 for k = 1 to horizon do
2 // compute action abstractions
3 forall the s ∈ Sk do

4 gs ← ALGORITHM 1(s,
εRk
2
,
εTk
2
, S′k−1, hk−1)

5 end
6 // compute state abstractions

7 hk ← ALGORITHM 2(
εRk
2
, g,

εTk
2
, S′k−1, hk−1)

8 S′k ← range(hk(Sk))

9 end
Output: g, h

specified as inputs to the algorithm. Recall that these re-
ward and transition bounds were chosen to guarantee the
upper-bound on the approximation quality of the SPNE
found in M ′ when implemented in M .

If εRk and εTk is set equal to zero for all levels k, any ab-
stractions found by Algorithm 3 would be provably lossless.

If only action abstraction were desired, this can be ob-
tained easily by simply not calling the state abstraction al-
gorithm (i.e., by deleting line 7 and setting the h function
to the identity function). If, on the other hand, only state
abstraction were desired, this can be obtained just as eas-
ily by not calling the action abstraction algorithm (i.e., by
deleting lines 3 to 5 and setting the g function to the identity
function).

Finally, we expect the actual regret in M from using the
lifted strategies corresponding to the SPNE strategies found
in M ′ would typically be far smaller than that implied by the
theoretical worst-case upper bounds. We plan to evaluate
this empirically in future work.

6.2 Bottom-up single-pass level-by-level inte-
ger linear program (ILP) for abstraction

One can ask whether it is possible to write a mathemat-
ical program to optimize over entire abstractions. Unfortu-
nately, the constraints in the program would not be linear.
(Problems where the constraints and objective are linear
tend to be dramatically faster to solve.) For example, the
error at level 2 would involve a product of reward error in
level 1 and transition probability error in level 2. In general,
with a k-level LDAG, the constraints in the mathematical
program would be kth-order polynomials.

Therefore, in this section we develop an integer linear pro-
gram (ILP) that optimizes the action and state abstraction
within a level, given the abstraction at levels below, and
given an error bound allowed for this level. Note that this
approach might not yield the best (coarsest in some sense)
abstraction, for example, because we do not optimize all
levels simultaneously and because we are assuming that the
allowable error for each level is given. Nevertheless, as we
will see, this approach avoids the need to exogenously make
many of the decision choices used in the greedy algorithm of
the previous section. The ILP is used the same way as the
greedy algorithm: bottom level first, then the level above it,
and so on.

This ILP chooses prototypical actions (one for each ac-
tion bucket for each state and agent in the abstraction)
and prototypical states (one for each state bucket in the
abstraction)—rather than generating new actions or new

states to be the prototypes.
By construction, the ILP will generate an abstraction that

honors the bounds.
We will present the ILP for optimizing an interior level k.

The bottom level is simpler because there are no transitions
left; we will not present the ILP for that.

The following constraint allows the ILP to split the overall
allowed error for this level, εk (which is given as an input to
the ILP) between reward error and transition error. (The
greedy algorithm of the previous section requires both of
these numbers as input. In other words, it does not handle
this splitting.)

εRk + εTkWk ≤ εk

Here, Wk = maxσ′W
σ′

k . (Note that this is a conservative
multiplier; by using a less conservative—i.e., less aggregated—
multiplier, it might be possible to get coarser abstractions
while still satisfying the overall error bound.)

The following constraints allow the ILP to split the error
between action abstraction and state abstraction. (In con-
trast, the greedy algorithm of the previous section hardwires
these splits 50-50.)

εstate,Rk + εaction,Rk ≤ εRk and εstate,Tk + εaction,Tk ≤ εTk

Now, we define the following helpful auxiliary variables:

αs = 1 if state s is selected as a state prototype,

and 0 otherwise.

βs,a,i = 1 if action a is selected as an action prototype

for agent i in state s, and 0 otherwise.

The objective in the ILP can be any linear function of
the variables. Our goal is to generate a coarse abstraction,
so the equilibrium finding in the abstracted game would be
scalable. However, what kind of abstraction is good for scal-
ability may depend on the problem (e.g., whether the game
is zero-sum or not) and on the equilibrium-finding algorithm.
One family of proxies for this is the size of the resulting ab-
straction as measured by some linear combination of the
number of states and actions in the abstracted game:

min
∑
s

αs + ρ
∑
s,a,i

βs,a,i, for any constant ρ

(Note that we could also have different ρ’s for different agents
at different states. Also, we could use a different ρ when
running the ILP at different levels of the LDAG.)

Next, we tie the elements to the prototypes using addi-
tional auxiliary variables:

Hs,t = 1 if state s maps to prototype t, and 0 otherwise.

Ga,b,s,i = 1 if action a maps to action prototype b

in state s for agent i, and 0 otherwise.

We do the tying in the ILP using the following constraints:

∀s,
∑
tHs,t = 1

// Each state maps to exactly one prototype state

(possibly itself).

∀s, i, a ∈ Ai(s),
∑
bGa,b,s,i = 1

// Each action maps to exactly one prototype action.

Next, we tie the above mappings to the α’s and β’s:

∀t,
∑
sHs,t ≤ αt

// Only selected state prototypes can be mapped to.

∀s, i, b ∈ Ai(s),
∑
aGa,b,s,i ≤ βs,b,i

// Only selected action prototypes can be mapped to.

Then, we have to make sure that in the abstracted game,
all actions within an information set have the same actions.
In other words, states can be bundled only if they have the
same abstracted action set:

∀s, t,
(
Hs,t = 1⇒ ∀i, a ∈ Ai(s), b ∈ Ai(s), Ga,b,s,i = Ga,b,t,i

)
.

This can be written in the ILP, for example, using the fol-
lowing two sets of constraints:

∀s, t, i, a ∈ Ai(s), b ∈ Ai(s), Ga,b,s,i ≤ Ga,b,t,i + (1−Hs,t)
∀s, t, i, a ∈ Ai(s), b ∈ Ai(s), Ga,b,t,i ≤ Ga,b,s,i + (1−Hs,t).

Like in the greedy algorithm in the previous section, the
action abstraction reward checks are

∀s, i, a ∈ Ai(s), b ∈ Ai(s),
Ga,b,s,i = 1 ⇒

max
a−i∈A−i(s)

|Ri(s, 〈a,a−i〉)−Ri(s, 〈b,a−i〉)| ≤ εaction,Rk .

(Note that the only variable on the right hand side of the

implication is εaction,Rk .) These conditions can be written as
ILP constraints, for example, as follows:

∀s, i, a ∈ Ai(s), b ∈ Ai(s),
max

a−i∈A−i(s)
|Ri(s, 〈a,a−i〉)−Ri(s, 〈b,a−i〉)|

≤ εaction,Rk +M(1−Ga,b,s,i),

where M is a large number (as is standard in integer pro-
gramming).

Similarly, the action abstraction transition error checks
can be written as ILP constraints as follows:

∀s, i, a ∈ Ai(s), b ∈ Ai(s),∑
x′∈S′

k−1

{
max

a−i∈A−i(s)
|

∑
s′∈h−1

k−1
(x′)

T (s, 〈a,a−i〉, s′)

−
∑

s′∈h−1
k−1

(x′)

T (s, 〈b,a−i〉, s′)|
}

≤ εaction,Tk +M(1−Ga,b,s,i).

In principle, the state abstraction reward error checks are
as follows, for each state s and the prototype state t of the
state bucket that s belongs to:

max
a∈A(s)

max
i
|Ri(s,a)−Ri(t, gs(a))| ≤ εstate,Rk .

However, we have to be careful because the action abstrac-
tion function g is not a constant now, but endogenous to the
ILP. (The helpful side of this is that—unlike in the greedy
state abstraction algorithm in the previous section (ALGO-
RITHM 2)—we do not have to have a Z-function that stud-
ies the one-to-one correspondences between action in s and
t for agent i: the ILP will automatically generate a g where
the actions match.) We can write these checks as ILP con-
straints as follows. The idea is that we write the constraints

down for all possible abstractions, and then relax them (us-
ing the big-M ’s) for the abstractions that the ILP does not
choose:

∀s, t, i,a ∈ A(s),b ∈ A(s),

|Ri(s,a)−Ri(t,b)|

≤ εstate,Rk +M(1−Hs,t) +
∑
j

M(1−Gaj ,bj ,s,j).

Finally, the state abstraction transition error checks are
conceptually as follows. They check whether the transitions
are similar for s and the prototype state t of the state bucket
that s belongs to:∑

x′∈S′
k−1

{
max

a∈A(s)
|

∑
s′∈h−1

k−1
(x′)

T (s,a, s′)

−
∑

s′∈h−1
k−1

(x′)

T (t, gs(a), s′)|
}
≤ εstate,Tk .

Now, again, g is endogenous to the ILP. We can write the
above conditions as ILP constraints as follows:

∀s, t,a ∈ A(s),b ∈ A(s),∑
x′∈S′

k−1

{
max

a∈A(s)
|

∑
s′∈h−1

k−1
(x′)

T (s,a, s′)

−
∑

s′∈h−1
k−1

(x′)

T (t,b, s′)|
}

≤ εstate,Tk +M(1−Hs,t) +
∑
j

M(1−Gaj ,bj ,s,j).

This completes the construction of the ILP. Note that
the ILP handles action and state abstraction simultaneously.
This is in contrast to the greedy algorithm of the previous
section that does one of these first without looking at the
other, and then does the other.

6.3 Discussion of the abstraction algorithms
and problem complexity

Both the greedy algorithm and the ILP satisfy the accu-
racy bounds by construction. For any constant number of
agents, the ILP is of polynomial size. However, the within-
level abstraction problem that both algorithms are trying to
solve is hard in the worst case:

Proposition 2. The (decision version of the) within-level
abstraction optimization problem that the ILP and the greedy
algorithm are trying to solve is NP-complete. This is the
case even if we only want to do action abstraction (i.e., no
state abstraction), even if there are only two agents and one
state in the game, and the game is only played for one step.

Proof. It is easy to check the solution, so the problem is
in NP. What remains to be shown is that it is NP-hard. We
reduce from SET COVER, which is NP-complete. There we
are given a set S = (S1, . . . , Sr) and a ground set of elements
E = {1, . . . , q}. Each set Si contains some subset of E. The
question is whether all the items in E can be covered using
only k sets from S.

Now, we can solve this problem by considering the ab-
straction problem of a 2-agent game where there is only one
state and one step. The two agents are an attacker and a
defender. The attacker’s action set is E = {1, . . . , q}. The

defender’s action set is S = (S1, . . . , Sr). The payoffs in this
game are such that the attacker gets M if he attacks a loca-
tion that the defender does not defend, and −M otherwise
(here, M is very large). The defender gets 1 if he defends
successfully and -1 otherwise.

We set the target accuracy in the abstraction algorithm so
that the defender cannot lose for sure. (This is possible since
the abstraction algorithm will try to remove the defender’s
actions first before any of the attacker’s actions because the
attacker’s payoffs dominate.) We ask the abstraction algo-
rithm whether such an abstraction exists with k actions for
the defender. This is exactly SET COVER.

The problem being hard in the worst case does not mean
that the ILP will be slow in practice. In fact, it has been
shown experimentally that within-level abstraction optimiza-
tion ILPs run fast (in less than a second) even in the large
(in a different type of game state abstraction problem) [9].
How fast the ILP will run in practice will depend on the
game.

Running a polynomial-time abstraction algorithm (such
as our greedy algorithm), or an abstraction algorithm that
runs fast in practice though not being polynomial in the
worst case, can be very helpful as a preprocessor. These
algorithms run in polynomial time in the entire stochastic
game, while the (Nash) equilibrium-finding algorithm can
take exponential time just to solve one stage game—because
solving a normal form game is PPAD-complete (even with
two agents and all payoffs in {0, 1}) [5, 4, 1].

7. CONCLUSIONS AND FUTURE RESEARCH
Abstraction followed by equilibrium finding has emerged

as the leading approach to solving games. Lossless abstrac-
tion typically yields games that are still too large to solve,
so lossy abstraction is needed. Unfortunately, prior lossy
game abstraction algorithms have no guarantees on solution
quality.

In this paper we developed a framework that enables the
design of lossy game abstraction algorithms with guaran-
tees on solution quality. It simultaneously handles state
and action abstraction. It is based on bounding the er-
rors in payoffs as well as errors in transition probabilities,
caused by abstraction. Specifically, we defined a measure of
reward approximation error and transition probability error
achieved by state and action abstraction in stochastic games
such that the regret of the equilibrium found in the abstract
game when implemented in the original, unabstracted game
is upper-bounded by a function of those measures.

We then developed the first lossy game abstraction al-
gorithms with bounds on solution quality. Both of them
work level-by-level up from the end of the game. One of
the algorithms is greedy and the other is an integer linear
program. We also proved that the abstraction problem is
NP-complete (even with just action abstraction, 2 agents,
and a 1-step game), but want to point out that this does
not mean that the game abstraction problems that occur in
practice cannot be solved quickly.

The obvious stream of applications of this work is to de-
velop better (faster and/or higher-accuracy) game-solving
algorithms by having better automated abstraction algo-
rithms. However, the work has an additional important
potential application stream in modeling. All models are
abstractions of reality. As one models a real-world situation

formally as a game, one faces modeling choices. What as-
pects of the real world situation should be captured in the
model? How detailed should one make the signal space? For
example, how should one discretize state if the game solver
requires discrete states? How should one discretize the ac-
tion space when there are too many (and possibly infinitely
many) actions in reality but one wants to use a scalable
game solver that assumes a finite action space? Such mod-
eling questions are really questions about abstraction, and
the work in this paper will help pave the way to answering
those questions in a rigorous way, whether the modeling is
done by human or by machine.

There is ample scope for future research. Both of our
algorithms obtain action and state abstraction by removing
some actions and states and keeping others. Our theoretical
results do not assume this form of abstraction and other
more general forms of abstraction (with automated state and
action generation) may yield smaller abstract games. We
also believe that our results will extend in a straightforward
way to sequential games, at least as long as the information
sets form a layered directed acyclic graph. This means that
when it is an agent’s turn to move, the agent knows how
many moves have been made so far (but not necessarily what
agents have been given turns to move nor how they moved).
This condition is satisfied in many common games. However,
it would be interesting to see whether our techniques could
be extended to games where that condition does not hold.

References
[1] Abbott, T., Kane, D., and Valiant, P. 2005. On the

complexity of two-player win-lose games. In FOCS.

[2] Archibald, C. and Shoham, Y. 2009. Modeling bil-
liards games. In AAMAS.

[3] Billings, D., Burch, N., Davidson, A., Holte, R.,
Schaeffer, J., Schauenberg, T., and Szafron, D.
2003. Approximating game-theoretic optimal strategies
for full-scale poker. In IJCAI.

[4] Chen, X., Deng, X., and Teng, S.-H. 2009. Settling
the complexity of computing two-player Nash equilibria.
Journal of the ACM 56, 3.

[5] Daskalakis, C., Goldberg, P., and Papadimitriou,
C. 2009. The complexity of computing a Nash equilib-
rium. SIAM Journal on Computing 39, 1, 195–259.

[6] Ganzfried, S., Sandholm, T., and Waugh, K. 2012.
Strategy purification and thresholding: Effective non-
equilibrium approaches for playing large games. AAMAS.

[7] Gilpin, A. and Sandholm, T. 2006a. A competitive
Texas Hold’em poker player via automated abstraction
and real-time equilibrium computation. In AAAI.

[8] Gilpin, A. and Sandholm, T. 2006b. A Texas Hold’em
poker player based on automated abstraction and real-
time equilibrium computation. In AAMAS. Demo track.

[9] Gilpin, A. and Sandholm, T. 2007a. Better automated
abstraction techniques for imperfect information games,
with application to Texas Hold’em poker. In AAMAS.

[10] Gilpin, A. and Sandholm, T. 2007b. Lossless ab-
straction of imperfect information games. JACM 54, 5.

[11] Gilpin, A. and Sandholm, T. 2008. Expectation-
based versus potential-aware automated abstraction in
imperfect information games: An experimental compar-
ison using poker. In AAAI. Short paper.

[12] Gilpin, A., Sandholm, T., and Sørensen, T. B.
2007. Potential-aware automated abstraction of sequential
games, and holistic equilibrium analysis of Texas Hold’em
poker. In AAAI.

[13] Gilpin, A., Sandholm, T., and Sørensen, T. B.
2008. A heads-up no-limit Texas Hold’em poker player:
Discretized betting models and automatically generated
equilibrium-finding programs. In AAMAS.

[14] Givan, R., Dean, T., and Greig, M. 2003. Equiva-
lence notions and model minimization in markov decision
processes. Artificial Intelligence 147, 1-2, 163–223.

[15] Hawkin, J., Holte, R., and Szafron, D. 2011.
Automated action abstraction of imperfect information
extensive-form games. In AAAI.

[16] Jiang, A. X. and Leyton-Brown, K. 2011.
Polynomial-time computation of exact correlated equilib-
rium in compact games. In EC.

[17] Kearns, M., Mansour, Y., and Ng, A. 1999. A
Sparse Sampling Algorithm for Near-Optimal Planning
in Large Markov Decision Processes. In IJCAI.

[18] Lipton, R., Markakis, E., and Mehta, A. 2003.
Playing large games using simple strategies. In EC.

[19] Littman, M. and Stone, P. 2003. A polynomial-time
Nash equilibrium algorithm for repeated games. In EC.

[20] Ravindran, B. 2004. An algebraic approach to ab-
straction in reinforcement learning. Ph.D. thesis, UMass.

[21] Schnizlein, D., Bowling, M., and Szafron, D.
2009. Probabilistic state translation in extensive games
with large action sets. In IJCAI.

[22] Shi, J. and Littman, M. 2002. Abstraction methods
for game theoretic poker. Revised Papers from the 2nd
Internat. Conference on Computers and Games. Springer.

[23] Sorg, J. and Singh, S. 2009. Transfer via soft homo-
morphisms. In AAMAS. 741–748.

[24] Waugh, K., Schnizlein, D., Bowling, M., and
Szafron, D. 2009a. Abstraction pathologies in extensive
games. In AAMAS.

[25] Waugh, K., Zinkevich, M., Johanson, M., Kan, M.,
Schnizlein, D., and Bowling, M. 2009b. A practical
use of imperfect recall. In SARA.

[26] Wellman, M. 2006. Methods for empirical game-
theoretic analysis (extended abstract). In AAAI.

[27] Zinkevich, M., Bowling, M., Johanson, M., and
Piccione, C. 2007. Regret minimization in games with
incomplete information. In NIPS.

