
Lossy Stochastic Game Abstraction with Bounds

Tuomas Sandholm, Computer Science Department, Carnegie Mellon University
Satinder Singh, Computer Science & Engineering, University of Michigan

Abstraction followed by equilibrium finding has emerged as the leading approach to solving games. Lossless
abstraction typically yields games that are still too large to solve, so lossy abstraction is needed. Unfor-
tunately, prior lossy game abstraction algorithms have no guarantees on solution quality. We developed a
framework that enables the design of lossy game abstraction algorithms with guarantees on solution qual-
ity. It simultaneously handles state and action abstraction. We define a measure of reward approximation
error and transition probability error achieved by state and action abstraction in stochastic games such that
the regret of the equilibrium found in the abstract game when implemented in the original, unabstracted
game is upper-bounded by a function of those measures. We then develop the first lossy game abstraction
algorithms with bounds on solution quality. Both of them work level-by-level up from the end of the game.
One of the algorithms is greedy and the other is an integer linear program. We also prove that the abstrac-
tion problem is NP-complete (even with just action abstraction, 2 agents, and a 1-step game), but point out
that this does not mean that the game abstraction problems that occur in practice cannot be solved quickly.

Categories and Subject Descriptors: I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems; J.4
[Social and Behavioral Sciences]: Economics; I.2.1 [Artificial intelligence]: Applications and Expert
Systems: Games

General Terms: Algorithms, economics, theory

Additional Key Words and Phrases: Equilibrium finding, abstraction, game abstraction, computational game
theory, game solving, ε-equilibrium

1. INTRODUCTION
Game-theoretic solution (equilibrium) concepts provide a rigorous definition of how ra-
tional agents should act in multiagent settings. The ability to actually compute such
solutions is a key capability in a variety of applications, for example, auctions, ex-
changes, negotiation, security games, and recreational games such as poker and bil-
liards. Computational techniques for finding such solutions to games have therefore
emerged as a central topic in electronic commerce research (e.g., [Littman and Stone
2003; Lipton et al. 2003; Gilpin and Sandholm 2007b; Jiang and Leyton-Brown 2011])
and research in the intersection of economics and computer science at large. This
research has focused both on developing new game-solving techniques and on using
game-solving techniques to answer important questions in a variety of applications.

The following paradigm has emerged as a leading approach to solving large games.
First, the game is abstracted to form a smaller game. Then the abstracted game is
solved with some equilibrium-finding algorithm. Finally, that equilibrium is mapped

The authors thank the EC reviewers for many helpful comments. Tuomas Sandholm was supported by the
National Science Foundation under grants IIS-0964579, IIS-0905390, and CCF-1101668. Satinder Singh
was supported by the National Science Foundation under grants IIS-1148668 and IIS-0905146.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
EC’12, June 4–8, 2012, Valencia, Spain. Copyright 2012 ACM 978-1-4503-1415-2/12/06...$10.00.

back into the original, unabstracted game [Gilpin et al. 2008; Schnizlein et al. 2009;
Ganzfried et al. 2012].

There are at least three motivations for abstracting games:

(i) The original, unabstracted game can be prohibitively large to be solved with the
equilibrium-finding algorithm directly. It may take too much time and/or require
too much memory (e.g., [Billings et al. 2003]).

(ii) The original game might be so complex that it is difficult to even model without
making the model be an abstraction of reality (e.g., [Wellman 2006]).

(iii) The original game may not fall into a class for which existence of equilibrium is
known or may not fall into a class for which an equilibrium-finding algorithm ex-
ists; abstraction can remedy this (e.g., [Archibald and Shoham 2009]).

Game abstraction typically takes the form of state abstraction and/or action abstrac-
tion. In state abstraction, states of the game are bundled together so the agent(s) whose
turn it is to move cannot distinguish among those states. This means that the abstrac-
tion pretends that the agent does not know some of the history that the agent actually
knows. Therefore, state abstraction is often also referred to as information abstrac-
tion. State abstraction means that the agent has to use the same probability mixture
over actions in each of the states in the bundled, abstract state. So, state abstraction
amounts to a restriction on the agent’s strategy space. Action abstraction means that
the actions available to an agent at any point in the abstracted game are not necessar-
ily the same as (typically fewer in number than) in the original, unabstracted game.

In early uses of game abstraction, the abstraction was generated manually using
domain knowledge (e.g., [Billings et al. 2003]). Similarly, when abstraction is used for
reason (ii) or (iii) above, it is typically done manually [Wellman 2006; Archibald and
Shoham 2009]. When state abstraction is done for reason (i), it is nowadays usually
done automatically using some abstraction algorithm [Gilpin and Sandholm 2007b;
Shi and Littman 2002; Gilpin and Sandholm 2006a, 2007a; Gilpin et al. 2007; Zinke-
vich et al. 2007; Gilpin et al. 2008; Gilpin and Sandholm 2008]. Action abstraction
is still typically done by hand [Gilpin et al. 2008; Schnizlein et al. 2009], but that is
starting to change [Hawkin et al. 2011].

A key question is how good the abstraction is, that is, how good are the equilib-
rium strategies from the abstracted game when evaluated in the real, original game.
A domain-independent lossless state abstraction algorithm was recently developed for
a broad class of games [Gilpin and Sandholm 2007b]. By ‘lossless’ we mean that the
equilibrium from the abstracted game is an exact equilibrium of the original game.
For many real games—such as Texas Hold’em poker—the losslessly abstracted game
is still too large to solve. Therefore, one needs to employ lossy abstraction. Unfortu-
nately, all prior lossy game abstraction algorithms (e.g., [Shi and Littman 2002; Gilpin
and Sandholm 2007b, 2006a, 2007a; Gilpin et al. 2007; Zinkevich et al. 2007; Gilpin
et al. 2008; Gilpin and Sandholm 2008; Waugh et al. 2009a,b]) and manually-generated
game abstractions (e.g., [Billings et al. 2003]) are lossy without bound. That is, they
have no guarantee on how good the equilibrium strategies from the abstracted game
will be in the original game. An important open question in this field—and arguably
in game solving at large—is whether lossy abstraction algorithms with bounds on so-
lution quality can be devised.

In this paper we develop a framework that enables the design of such algorithms.
It simultaneously handles state and action abstraction. It is based on bounding the
errors in payoffs as well as errors in transition probabilities, caused by abstraction.
Specifically, we define a measure of reward approximation error and transition proba-
bility approximation error achieved by state and action abstraction such that the re-
gret of the equilibrium found in the abstract game when implemented in the original,

unabstracted game is upper-bounded by some function of those measures. The analy-
sis is in some ways similar to that of abstraction in Markov decision processes [Givan
et al. 2003; Ravindran 2004; Sorg and Singh 2009], but for the richer—and much more
difficult—setting of games.

We then develop the first lossy game abstraction algorithms with bounds on solution
quality. We consider finite stochastic general-sum games with any number of agents.
We also prove that the abstraction problem is NP-complete even if one looks at one
level of the game and does only action abstraction.

The rest of this paper is organized as follows. First, Section 2 illustrates the difficulty
of game abstraction: even in a simple game with just action abstraction, a strict refine-
ment of the abstraction can lead to worse solution quality. Then, Section 3 presents
our analysis framework. Section 4 proves that state evaluations in the abstract game
are near correct in the original game, and Section 5 proves that equilibria from the ab-
stract game have bounded regret in the original game. Section 6 presents abstraction
algorithms and analyzes the problem complexity. Finally, Section 7 presents conclu-
sions and discusses future research directions.

2. EXAMPLE OF NON-MONOTONICITY IN ABSTRACTING GAMES
Abstraction in games is a much more difficult problem than abstraction in single-
agent settings. In short, the difficulty stems from the fact that the opponent(s) may
not honor the abstraction when playing. In this section we will illustrate the resulting
non-monotonicity in abstracting games.

It is well known that in extensive form games, an equilibrium strategy derived
in a finer-grained abstraction can be more exploitable in the original, unabstracted
game than an equilibrium strategy derived in a coarser abstraction. Such abstraction
pathologies have been demonstrated also experimentally, in relatively small extensive
form (artificial poker) games [Waugh et al. 2009a].

The example below shows that abstraction pathologies can occur already in zero-
sum two-agent one-step stochastic games (i.e., strategic form games). This is the case
even if only action abstraction is used.

Example 2.1. Consider a game between an attacker and a defender, with two lo-
cations, A and B. There is only one state and the agents move simultaneously, after
which the game ends. The attacker has two possible actions, A and B, corresponding to
which location he attacks. The defender has three actions, A, B, and BETWEEN, cor-
responding to where he defends. If the agents choose the same location, the defender
wins, in which case he gets payoff 2 and the attacker gets payoff 0. If the defender
choose A or B and the attacker chooses the opposite location, the attacker wins and
gets payoff 2 while the defender gets payoff 0. If the defender choose BETWEEN, the
game is a draw: both agents get payoff 1.

In each equilibrium, the attacker randomizes 50-50 between the locations. The de-
fender plays A with probability p and B with probability p, and BETWEEN with prob-
ability 1− 2p. There is an equilibrium for each p ∈ [0, 0.5].

Now, consider an abstraction where the attacker only has action A. The defender
would choose A, but that is far from equilibrium in the original, unabstracted game
where the attacker would choose B.

Now, consider a strictly coarser abstraction where the attacker only has action A
and the defender only has actions B and BETWEEN. The defender would choose BE-
TWEEN in the abstracted game. Interestingly, that choice is an equilibrium strategy
in the original, unabstracted game!

3. FRAMEWORK
In this section we will present our analysis framework. We will consider stochastic
games that have a finite number of agents and a finite set of possible actions at each
state for each agent. We will present everything in the finite-horizon undiscounted
setting (we discuss the generalization to the infinite-horizon discounted setting later).

If the stochastic game is given as a directed graph with cycles, then we conceptually
attach time to the states so that if a state can be reached via two different-length paths
in the graph, we consider that state to be two different states. However, if a state can
be reached via different paths of the same length, we do not duplicate the state. (This
guarantees that the number of states in the game is linear in the number of steps
that the game is played.) As a result, our game representation is a layered directed
acyclic graph (LDAG). Layer 1 consists of the start state, layer 2 consists of the states
reachable in one step, and so on. Throughout the paper we will refer to the height of a
state, which is equivalent to layer, except counting from the other direction, so leaves
are at height 1, states just before the leaves are at height 2, and so on. We will use the
word level as a synonym for height.

Consider two stochastic games: the original, unabstracted one, M , and the ab-
stracted one, M ′. Each of the two games has n agents.

We will denote the elements of M as follows. Its state space is S. The set of states
at height j is Sj ⊂ S (note, for all j 6= k, Sj ∩ Sk = φ). In state s ∈ S the action space
for Agent i is Ai(s) and the joint action space of all n agents is A(s). In state x ∈ Sj ,
on taking joint action a ∈ A(x), the payoff to Agent i is Ri(x,a) and the next state is
y ∈ Sj−1 with probability T (x,a, y). Without loss of generality, we assume that all the
payoffs are nonnegative (one can always add a constant to all payoffs while keeping
the game strategically equivalent). The action of Agent i in joint action a is denoted ai.

The elements of M ′ are denoted exactly as for M above except that a “prime” super-
script is used for all the elements, e.g., the state space of M ′ is denoted S′.

3.1. State and action abstraction functions
We will define a state abstraction function h : S → S′. Also, for all Agents i and for
all s ∈ S, we will define an action abstraction function gs,i : Ai(s) → A′i(h(s)). We will
have these functions be surjections, so |S′| ≤ |S| and for all agents i and for all s ∈ S,
|A′i(h(s))| ≤ |Ai(s)|. The intent is that M ′ is smaller than M and thus we will refer to
M ′ as the abstract game. When we wish to emphasize this aspect we will attach the
prefix “abstract” to the elements associated with M ′.

State s in M maps to abstract state h(s) in M ′. The set of states that map to abstract
state s′ is denoted h−1(s′) ⊂ S (i.e., h induces a partition of S).

Action a in state s in M maps to abstract action gs(a) in abstract state h(s) in M ′. In
state s, the set of actions for Agent i that map to abstract action a′i is denoted g−1s,i (a

′
i),

and the set of joint actions that map to abstract joint action a′ is denoted g−1s (a′).
Note that the action abstraction functions are factored by both state and action, i.e.,
g−1s (a′) = ×ni=1g

−1
s,i (a

′
i) (where the symbol × denotes cross-product).

An abstract strategy σ′ maps abstract states of M ′ to abstract joint-actions in M ′.
An abstract strategy for Agent i in M ′ is denoted σ′i.

How does one take a strategy σ′ in the abstract game M ′ and apply it in M? There
are many ways of doing this “lifting”. That is, for state s the probability σ′i(a′i|h(s)) of
abstract action a′i by Agent i can be apportioned arbitrarily among the actions g−1s,i (a

′
i)

in the lifted strategy.

Definition 3.1. (Strategy Lifting) Given an abstract strategy σ′i for Agent i in M ′, a
lifted strategy for Agent i in M , denoted σ

↑σ′i
i is any strategy in M that satisfies the

following conditions: for all s ∈ S, for all i, for all a′i ∈ A′i,∑
ai∈g−1

s,i
(a′
i
)

σ
↑σ′i
i (ai|s) = σ′i(a

′
i|h(s)).

Furthermore, σ↑σ
′

i is the same as σ↑σ
′
i

i , and σ↑σ
′

assigns σ↑σ
′
i

i to each i.

Conversely, how does one take a strategy σ defined in M and apply it in M ′? One
cannot do this in general. However, by construction, the strategy σ↑σ

′
defined in M can

always be applied in M ′.

3.2. Value functions for the original and abstract game
We define value functions for the games as follows. For joint strategy σ in M , for Agent
i the value of a non-terminal state x ∈ Sk>1 is

V σi (x) =
∑

a∈A(x)

σ(a|x)
[
Ri(x,a) +

∑
y∈Sk−1

T (x,a, y)V σi (y)
]

(1)

where for terminal states x ∈ S1, V σi (x) =
∑

a∈A(x) σ(a|x)Ri(x,a). For joint abstract
strategy σ′ in M ′, the value of Agent i in abstract non-terminal state x′ ∈ S′k>1 is

Wσ′

i (x′) =
∑

a′∈A′(x′)

σ′(a′|x′)
[
R′i(x

′,a′) +
∑

y′∈S′
k−1

T ′(x′,a′, y′)Wσ′

i (y′)
]

(2)

where for terminal states x′ ∈ S′1, Wσ′

i (x′) =
∑

a′∈A′(x′) σ
′(a′|x′)R′i(x′,a′). Note that we

will use V ’s to denote values in M and W ’s to denote values in M ′. Finally, define the
largest, over all states in LDAG-level k, value obtained in M ′ under abstract strategy
σ′ as

W
σ′

k,i
def
= max

x′∈S′
k

Wσ′

i (x′) and define W
σ′

k
def
= max

i
W

σ′

k,i and W
σ′ def

= max
k

W
σ′

k .

3.3. Reward-approximation and transition-approximation error bounds
Next we define reward-approximation error bounds in the mapping from M to M ′, as
a function of LDAG-level and agent:

εRk,i
def
= max

s∈Sk,a∈A(s)
|Ri(s,a)−R′i(h(s), gs(a))|, (3)

then as a function of just LDAG-level:

εRk
def
= max

i
[εRk,i], (4)

and finally as a global bound on the entire game:
εR = max

k
εRk . (5)

Similarly we can define transition-approximation error bounds, first as a function of
LDAG-level and next abstract state:

εTk (x
′ ∈ S′k−1)

def
= max

s∈Sk,a∈A(s)
|

∑
x∈h−1(x′)

T (s,a, x)− T ′(h(s), gs(a), x′)|, (6)

then as a function of just LDAG-level:

εTk
def
=

∑
x′∈S′

k−1

εTk (x
′), (7)

and finally as a global bound on the entire game:

εT
def
= max

k
εTk . (8)

4. EVALUATIONS IN THE ABSTRACT GAME ARE NEAR CORRECT IN THE ORIGINAL GAME
Our first result is to show that the evaluation of an abstract strategy inM ′ is not too far
from the evaluation of any corresponding lifted strategy in M . The key insight here is
that we can state such an approximation result for entire, arbitrary strategy profiles
(which contain one strategy for each agent)—rather than, say, studying equilibrium
properties or best-response properties of individual strategies or strategy profiles. We
will leverage this insight (as embodied in Proposition 4.1) when we present our game-
theoretic results in the rest of the paper.

PROPOSITION 4.1. ∀σ′,∀s ∈ Sk,∀i,
|V σ

↑σ′

i (s)−Wσ′

i (h(s))| ≤ fk,i
def
=

k∑
j=1

εRj,i +

k−1∑
j=1

W
σ′

j,iε
T
j+1.

PROOF. By induction on the height of the LDAG.
Base case (terminal nodes of the LDAG): ∀x ∈ S1,

V σ
↑σ′

i (x)
def
=

∑
a∈A(x)

σ↑σ
′
(a|x)Ri(x,a)

≤
∑

a∈A(x)

σ↑σ
′
(a|x)

[
R′i(h(x), gx(a)) + εR1,i

]
; by Equation 3

= εR1,i +
∑

a′∈A′(h(x))

∑
a∈g−1

x (a′)

σ↑σ
′
(a|x)R′i(h(x), gx(a))

= εR1,i +
∑

a′∈A′(x)

σ′(a′|h(x))R′i(h(x),a′); by Definition 3.1

= εR1,i +Wσ′

i (h(x)) (9)

Wσ′

i (h(x))
def
=

∑
a′∈A′(h(x))

σ′(a′|h(x))R′i(h(x),a′)

=
∑

a′∈A′(h(x))

(∑
a∈g−1

x (a′)

σ↑σ
′
(a|x)

)
R′i(h(x),a

′); by Definition 3.1

≤
∑

a′∈A′(h(x))

∑
a∈g−1

s (a′)

σ↑σ
′
(a|x)

[
Ri(x,a) + εR1,i

]
; by Equation 3

= V σ
↑σ′

i (x) + εR1,i (10)

Putting the two pieces (Equations 9 and 10) together, we have Wσ′

i (h(x)) − εR1,i ≤
V σ
↑σ′

i (x) ≤Wσ′

i (h(x)) + εR1,i
Step 2: We assume that the proposition holds for x ∈ S≤k.
Step 3: We prove that the assumption from Step 2 implies that the proposition holds

for x ∈ Sk+1. We will only show one side of the two-sided inequality in the Proposition.
The other side is similarly derived.

V σ
↑σ′

i (x)
def
=

∑
a∈A(x)

σ↑σ
′
(a|x)

[
Ri(x,a) +

∑
y∈Sk

T (x,a, y)V σ
↑σ′

i (y)
]
= term1 + term2 (11)

term1 def
=

∑
a∈A(x)

σ↑σ
′
(a|x)Ri(x,a) ≤

∑
a∈A(x)

σ↑σ
′
(a|x)

[
R′i(h(x),a

′) + εRk+1,i

]
= εRk+1,i +

∑
a′∈A′(h(x))

∑
a∈g−1

x (a′)

σ↑σ
′
(a|x)R′i(h(x),a′)

= εRk+1,i +
∑

a′∈A′(h(x))

σ′(a′|h(x))R′i(h(x),a′) (12)

term2 def
=

∑
a∈A(x)

σ↑σ
′
(a|x)

∑
y∈Sk

T (x,a, y)V σ
↑σ′

i (y)

≤
∑

a∈A(x)

σ↑σ
′
(a|x)

∑
y∈Sk

T (x,a, y)
[
Wσ′

i (h(y)) + fk,i

]
; by induction Step 2

= fk,i +
∑

a∈A(x)

σ↑σ
′
(a|x)

∑
y∈Sk

T (x,a, y)Wσ′

i (h(y))

= fk,i +
∑

a∈A(x)

σ↑σ
′
(a|x)

∑
y′∈S′

k

∑
y∈h−1(y′)

T (x,a, y)Wσ′

i (y′)

≤ fk,i +
∑

a∈A(x)

σ↑σ
′
(a|x)

∑
y′∈S′

k

(
T ′(h(x), gx(a), y

′) + εTk+1(y
′)
)
Wσ′

i (y′)

= fk,i +
∑
y′∈S′

k

Wσ′

i (y′)εTk+1(y
′) +

∑
a∈A(x)

σ↑σ
′
(a|x)

∑
y′∈S′

k

T ′(h(x), gx(a), y
′)Wσ′

i (y′)

≤ fk,i +W
σ′

k,iε
T
k+1 +

∑
a∈A(x)

σ↑σ
′
(a|x)

∑
y′∈S′

k

T ′(h(x), gx(a), y
′)Wσ′

i (y′)

= fk,i +W
σ′

k,iε
T
k+1 +

∑
a′∈A′(h(x))

∑
y′∈S′

k

∑
a∈g−1

x (a′)

σ↑σ
′
(a|x)T ′(h(x),a′, y′)Wσ′

i (y′)

= fk,i +W
σ′

k,iε
T
k+1 +

∑
a′∈A′(h(x))

σ′(a′|h(x))
∑
y′∈S′

k

T ′(h(x),a′, y′)Wσ′

i (y′) (13)

Using Equations 12 and 13 we get the following:

V σ
↑σ′

i (x) ≤ fk,i + εRk+1,i +W
σ′

k,iε
T
k+1

+
∑

a′∈A′(h(x))

σ′(a′|h(x))
[
R′i(h(x),a

′) +
∑
y′∈S′

k

T ′(h(x),a′, y′)Wσ′

i (y′)
]

= Wσ′

i (h(x)) + (εRk+1,i +W
σ′

k,iε
T
k+1) + fk,i. (14)

This sets up the recursion

fk+1,i = εRk+1,i +W
σ′

k,iε
T
k+1 + fk,i

where f0,i = 0, and εT1 = 0, and Wσ′

0,i = 0.

Proposition 4.1 was presented in a manner that allowed the use of level and agent de-
pendent reward and transition error bounds. By using the largest error bounds across
agents within a level, we present a simpler form of the result in the following corollary.

COROLLARY 4.2. ∀σ′,∀s ∈ Sk,∀i, |V σ↑σ
′

i (s)−Wσ′

i (h(s))| ≤ k
[
εR +W

σ′

k ε
T
]
.

Observe that the overall error in value functions is quadratic in the height of the LDAG
(the additional dependence on k comes from the linear dependence on k of Wσ′

k).

5. EQUILIBRIA FROM ABSTRACT GAME HAVE BOUNDED REGRET IN ORIGINAL GAME
Here we apply game-theoretic reasoning while leveraging the approximation results
from the previous section that apply to all strategy profiles. We will show that any
subgame perfect Nash equilibrium (SPNE) in an abstract game M ′ is an approximate
SPNE in the original game M . In particular, we will show how the regret of any SPNE
of M ′ when lifted to M is bounded in terms of the reward and transition abstraction
error bounds of the state and action abstraction functions that map M to M ′.

THEOREM 5.1. For any subgame perfect Nash equilibrium (SPNE) strategy σ
′∗ in

M ′, any corresponding lifted joint strategy σ↑σ
′∗

in M has the property that

∀i,∀s ∈ Sk,∀πi ∈ S → Ai(S) : V
〈πi,σ↑σ

′∗
−i 〉

i (s) ≤ V σ
↑σ
′∗

i (s) + 2kfk,i (15)

where 〈πi, σ↑σ
′∗

−i 〉 is the joint strategy in M that results from Agent i unilaterally deviat-
ing from σ↑σ

′∗
to pure strategy πi, and fk,i is as defined in Proposition 4.1.

PROOF. By induction on the height of the LDAG (as in the proof for Proposition 4.1).
Note that unlike strategy σ↑σ

′∗
, the strategy 〈πi, σ↑σ

′∗

−i 〉 is not implementable in the

abstract game M ′. We will also need the following definition of an adaptation of σ↑σ
′∗

that is consistent with the action of πi on state s and hence is constrained to take the
same action in all states in h(s) to be implementable in M ′, i.e., the only change from
σ↑σ

′∗
is that

σ
↑σ
′∗
πi(s)|s

i (πi(s)|x ∈ h(s)) = 1,

where the corresponding abstract strategy is denoted σ
′∗
πi(s)|s.

Base case (terminal nodes of the LDAG): We prove the theorem holds for s ∈ S1.

Suppose pure strategy πi is such that for some s ∈ S1, V
〈πi,σ↑σ

′∗
−i 〉

i (s) > V σ
↑σ
′∗

i (s) + 2f1,i.
Define σ

′∗
M,πi(s)|s to be the minimal adaptation of σ

′∗
M as in the theorem statement. Now,

V
〈πi,σ↑σ

′∗
−i 〉

i (s) =
∑

a−i∈A−i

σ↑σ
′∗

−i (a−i|s)Ri(s, 〈πi(s),a−i〉) = V σ
↑σ
′∗
πi(s)|s

i (s). (16)

We get a contradiction by the following chain:

W
σ
′∗
πi(s)|s

i (h(s)) ≥ V σ
↑σ
′∗
πi(s)|s

i (s)− f1,i; by Proposition 4.1

= V
〈πi,σ↑σ

′∗
−i 〉

i (s)− f1,i; by Equation 16

> (V σ
↑σ
′∗

i (s) + 2f1,i)− f1,i; by supposition

≥ ((Wσ
′∗

i (h(s))− f1,i) + 2f1,i)− f1,i; by Proposition 4.1

= Wσ
′∗

i (h(s))

which is a contradiction because σ
′∗ is an SPNE in M ′.

Step 2: We assume the theorem holds for s ∈ S≤k.
Step 3: We prove that the assumption from Step 2 implies that the theorem holds

for s ∈ Sk+1.

Suppose πi is such that for some s ∈ Sk+1, V
〈πi,σ↑σ

′∗
−i 〉

i (s) > V σ
↑σ
′∗

i (s) + 2(k + 1)fk+1,i.
Now,

V
〈πi,σ↑σ

′∗
−i 〉

i (s) =
∑

a−i∈A−i

σ↑σ
′∗

−i (a−i|s)
[
Ri(s, 〈πi(s),a−i〉) +

∑
x∈Sk

T (s, 〈πi(s),a−i〉, x)V
〈πi,σ↑σ

′∗
−i 〉

i (x)
]

=
∑

a−i∈A−i

σ↑σ
′∗

−i (a−i|s)Ri(s, 〈σ
↑σ
′∗
πi(s)|s

i (s),a−i〉)

+
∑

a−i∈A−i

σ↑σ
′∗

−i (a−i|s)
∑
x∈Sk

T (s, 〈πi(s),a−i〉, x)V
〈πi,σ↑σ

′∗
−i 〉

i (x)

≤
∑

a−i∈A−i

σ↑σ
′∗

−i (a−i|s)Ri(s, 〈σ
↑σ
′∗
πi(s)|s

i (s),a−i〉)

+
∑

a−i∈A−i

σ↑σ
′∗

−i (a−i|s)
∑
x∈Sk

T (s, 〈πi(s),a−i〉, x)
[
V σ
↑σ
′∗
πi(s)|s

i (x) + 2kfk,i

]
= V σ

↑σ
′∗
πi(s)|s

i (s) + 2kfk,i

≤ W
σ
′∗
πi(s)|s

i (h(s)) + fk+1,i + 2kfk,i. (17)

We get a contradiction by the chain

W
σ
′∗
πi(s)|s

i (h(s)) ≥ V
〈πi,σ↑σ

′∗
−i 〉

i (s)− fk+1,i − 2kfk,i; by Equation 17

>
[
V σ
↑σ
′∗

i (s) + 2(k + 1)fk+1,i

]
− fk+1,i − 2kfk,i; by supposition

= V σ
↑σ
′∗

i (s) + 2k(fk+1,i − fk,i) + fk+1,i

≥
[
Wσ

′∗

i (h(s))− fk+1,i

]
+ 2k(fk+1,i − fk,i) + fk+1,i; by Proposition 4.1

= Wσ
′∗

i (h(s)) + 2k(fk+1,i − fk,i) (18)

which is a contradiction because by construction in Proposition 4.1, fk+1,i ≥ fk,i.
The regret at height k in the regret bound of Theorem 5.1 depends cubically on k

(there is a dependence on k in Equation 15 and a further multiplicative dependence on
k2 in the fk,i term as defined in the statement of Proposition 4.1).

5.1. Extension to infinite-horizon discounted stochastic games
In the single-agent Markov Decision Process (MDP) counterpart to stochastic games
there is a long history (e.g., [Kearns et al. 1999]) of using finite-horizon analyses as
the basis for an analysis of the discounted infinite-horizon MDP. Here we very briefly
sketch the same argument-structure applied to our stochastic game setting. Suppose
we pick a finite horizon of L and find abstractions as specified in our paper so that
the regret at the root node (where the regret is the largest) is ε. Now consider any

extension of the finite horizon strategy profile to an infinite-horizon strategy profile,
e.g., by always selecting the same arbitrary strategy profile at every time step after
time L. What is the maximum additional regret at the root node? The additional regret
is upper bounded by the fraction γLRmax

1−γ , where Rmax is the difference between the
largest reward and smallest reward. Crucially, this additional regret term decreases
exponentially with L and so by making L large enough we can make this additional
regret as small as we want (in particular, we can apportion a fraction of the overall
error guarantee we seek to the error due to the finite-horizon approximation). We leave
the detailed derivation of this result to future work.

6. ABSTRACTION ALGORITHMS
Here we develop algorithms for automatically constructing an abstract game M ′ from
the original game M with the guarantee that an SPNE in M ′ when lifted and imple-
mented in M will be an approximate SPNE in M (cf. Theorem 5.1).

6.1. Bottom-up single-pass level-by-level greedy abstraction algorithm
We start by describing a greedy, bottom-up, single-pass algorithm. Given an overall ap-
proximation bound on the quality of the SPNE to be found by constructing M ′, there
is a challenging and interesting question of how to apportion the approximation bound
into the ε’s needed for the different levels of the game (see Equations 3,4,6,7) and in-
deed more finely to the different state and action abstractions. For now, we assume
that we have done this apportionment by working backwards from our theory in Sec-
tion 4. One simple way to do this would be to assume that the εR’s and εT ’s are the
same for all levels and then solving for these two constants from Equation 15. Regard-
less of how we obtain them, we will present an algorithm which will take as input εRk
and εTk for every level k separately.

Our algorithm for constructing M ′ proceeds bottom-up, layer by layer as shown in
Algorithm 3. For each layer, first the action-abstractions (g’s) are constructed greedily
and then the state-abstractions (h’s) are constructed greedily. This ordering of actions
first and states second was a choice and one could get a similar algorithm by doing this
in the reverse order. The size of M ′ would in general depend on this choice and which
choice is better would depend on the details of M .

Action Abstractions. Algorithm 1 shows the procedure for obtaining action abstrac-
tions for any specific state given the state abstractions at the level below. It takes a
state s as input, cycles through each agent (line 1), for each agent considers every
action in A(s) (line 2), and then buckets the actions with a prototype-action for each
bucket. Buckets get assigned by checking both that the rewards are similar (lines 8-
10) and that transitions are similar (lines 12-14), where similarity is defined by the
ε and ε′ input parameters respectively. The function gs,i(ai ∈ Ai(s)) maps action ai to
the prototype-action for its bucket. Algorithm 1 is called separately for every state (see
lines 3-5 of Algorithm 3).

State Abstractions. Algorithm 2 shows the procedure for obtaining state abstractions
for any level given the action abstractions already obtained at that level as well as
the state abstractions at the level below. It cycles through every state s at that level
(line 1) and compares it to every state x it has already mapped to a bucket before
(line 4). The comparisons involve finding a one-to-one correspondence (line 9) if one
exists between the abstract actions of s and the abstract actions in the prototype state
corresponding to x that satisfies reward similarity (line 10) and satisfies transition
similarity (lines 11-12), where similarity is defined by the ε and ε′ input parameters
respectively. Such a one-to-one correspondence can be found via a bipartite-matching

ALGORITHM 1: Computing Action Abstractions
Input: s ∈ Sk, η, η′, S′k−1, hk−1

1 for i = 1 . . . n do
2 forall the ai ∈ Ai(s) do
3 gs,i(ai)← ai // default assumption that ai will start a new bucket
4 reward-check = false, transition-check = false
5 // next compare ai with all actions that come before it in Ai(s) under the ordering of line 2
6 forall the b ∈ Ai(s) before ai do
7 // check if ai is similar in reward to the action that b maps to (cf. Equation 3)
8 if maxa−i∈A−i(s) |Ri(s, 〈ai,a−i〉)−Ri(s, 〈gs,i(b),a−i〉)| ≤ η then
9 reward-check = true

10 end
11 // check if ai is similar in transitions to the action that b maps to (cf. Equation 7)

12 if
(
k == 1

)
OR
(∑

x′∈S′
k−1

{
maxa−i∈A−i(s) |

∑
x∈h−1

k−1
(x′) T (s, 〈ai,a−i〉, x)−∑

x∈h−1
k−1

(x′) T (s, 〈gs,i(b),a−i〉, x)|
}
≤ η′

)
then

13 transition-check = true
14 end
15 if (reward-check == true AND transition-check == true) then
16 gs,i(ai)← gs,i(b) // map ai to whatever b maps to
17 break
18 else
19 reward-check = false
20 transition-check = false
21 end
22 end
23 end
24 end

Output: gs,1, . . . , gs,n

algorithm and if such a matching exists s is mapped (line 14) to the prototype state
hk(x). Consequently, Algorithm 2 buckets similar states with the h function mapping
each state to a prototype-state for its bucket and is called once for each level (see line
7 of Algorithm 3).

Constructing M ′. The bottom-up single-pass Algorithm 3 first calls the action ab-
straction algorithm (lines 3-5) with approximation parameters εRk

2 and εTk
2 , where the

fractions are used to allow for approximation on both sides of the choice of the proto-
types in each bucket. Then it calls the state abstraction algorithm (line 7) again with
fractional approximation parameters for the same reason as for the action abstraction
algorithm. It returns the action-abstraction function g as well as the state-abstraction
function h. From these the transition probabilities and the reward functions of M ′ can
be defined by using the transition probabilities and the reward functions in M for the
prototype states and actions defined in the buckets in h and g.

6.1.1. Comments on the greedy abstraction algorithm. Algorithm 3 is correct by construc-
tion; it yields an M ′ that satisfies the transition and reward approximation bounds
specified as inputs to the algorithm. Recall that these reward and transition bounds
were chosen to guarantee the upper-bound on the approximation quality of the SPNE
found in M ′ when implemented in M .

If εRk and εTk is set equal to zero for all levels k, any abstractions found by Algorithm 3
would be provably lossless.

ALGORITHM 2: Computing State Abstractions
Input: η, η′, g, S′k−1, hk−1

1 forall the s ∈ Sk do
2 hk(s) = s // default assumption that s will start a new bucket
3 // next compare s with all states that come before it in Sk under the ordering of line 1
4 forall the x ∈ Sk before s do
5 // First check if the same number of abstract actions are available for each agent in s and

hk(x)
6 if ∀i, |range(gs,i(Ai(s)))| == |range(ghk(x),i(Ai(hk(x))))| then
7 // Consider all matchings between the abstract actions of s and hk(x)
8 Z ← all one-to-one correspondences between range(gs(A(s))) and

range(ghk(x)(A(hk(x)))
9 if ∃Z ∈ Z such that,

10

([
maxa∈A(s) maxi |Ri(s,a)−Ri(hk(x), Z(gs(a)))| ≤ η

]
// reward-check

11 AND
[
(k == 1) OR

(∑
x′∈S′

k−1

{
maxa∈A(s) |

∑
y∈h−1

k−1
(x′) T (s,a, y)−

12
∑

y∈h−1
k−1

(x′) T (hk(x), Z(gs(a)), y))|
}
≤ η′

)])
// transition-check

13 then
14 hk(s)← hk(x)
15 break
16 end
17 end
18 end
19 end

Output: hk

ALGORITHM 3: Computing Abstract Game

Input: εR1 , . . . , εRn , εT1 , . . . , εTn
1 for k = 1 to horizon do
2 // compute action abstractions
3 forall the s ∈ Sk do
4 gs ← ALGORITHM 1(s, ε

R
k
2
,
εT
k
2
, S′k−1, hk−1)

5 end
6 // compute state abstractions

7 hk ← ALGORITHM 2(ε
R
k
2
, g,

εT
k
2
, S′k−1, hk−1)

8 S′k ← range(hk(Sk))
9 end

Output: g, h

If only action abstraction were desired, this can be obtained easily by simply not
calling the state abstraction algorithm (i.e., by deleting line 7 and setting the h function
to the identity function). If, on the other hand, only state abstraction were desired, this
can be obtained just as easily by not calling the action abstraction algorithm (i.e., by
deleting lines 3 to 5 and setting the g function to the identity function).

Finally, we expect the actual regret in M from using the lifted strategies correspond-
ing to the SPNE strategies found in M ′ would typically be far smaller than that im-
plied by the theoretical worst-case upper bounds. We plan to evaluate this empirically
in future work.

6.2. Bottom-up single-pass level-by-level integer linear program (ILP) for abstraction
One can ask whether it is possible to write a mathematical program to optimize over
entire abstractions. Unfortunately, the constraints in the program would not be linear.
(Problems where the constraints and objective are linear tend to be dramatically faster
to solve.) For example, the error at level 2 would involve a product of reward error in
level 1 and transition probability error in level 2. In general, with a k-level LDAG, the
constraints in the mathematical program would be kth-order polynomials.

Therefore, in this section we develop an integer linear program (ILP) that tries to
optimize the action and state abstraction within a level, given the abstraction at levels
below, and given an error bound allowed for this level. Note that this approach might
not yield the best (coarsest in some sense) abstraction for the allowed overall error
across levels because, for instance, we do not optimize all levels simultaneously and
we assume that the allowable error for each level is given. Nevertheless, as we will
see, this approach avoids the need to make many of the decision choices used in the
greedy algorithm of the previous section. The ILP is used the same way as the greedy
algorithm: bottom level first, then the level above it, and so on.

This ILP chooses prototypical actions (one for each action bucket for each state and
agent in the abstraction) and prototypical states (one for each state bucket in the
abstraction)—rather than generating new actions or new states to be the prototypes.

By construction, the ILP will generate an abstraction that honors the bounds.
We will present the ILP for optimizing an interior level k. The bottom level is simpler

because there are no transitions left; we will not present the ILP for that.
The following constraint allows the ILP to split the overall allowed error for this

level, εk (which is given as an input to the ILP) between reward error and transition
error. (The greedy algorithm of the previous section requires both of these numbers as
input. In other words, it does not handle this splitting.)

εRk + εTkW ≤ εk

Here, Wk = maxσ′W
σ′

k . (Note that this is a conservative multiplier; by using a less
conservative—i.e., less aggregated—multiplier, it might be possible to get coarser ab-
stractions while still satisfying the overall error bound.)

The following constraints allow the ILP to split the error between action abstrac-
tion and state abstraction. (In contrast, the greedy algorithm of the previous section
hardwires these splits 50-50.)

εstate,Rk + εaction,Rk ≤ εRk and εstate,Tk + εaction,Tk ≤ εTk
Now, we define the following helpful auxiliary variables:

αs = 1 if state s is selected as a state prototype, and 0 otherwise.
βs,a,i = 1 if action a is selected as an action prototype for agent i in state s, and

0 otherwise.

The objective in the ILP can be any linear function of the variables. Our goal is
to generate a coarse abstraction, so the equilibrium finding in the abstracted game
would be scalable. However, what kind of abstraction is good for scalability may depend
on the problem (e.g., whether the game is zero-sum or not) and on the equilibrium-
finding algorithm. One family of proxies for this is the size of the resulting abstraction
as measured by some linear combination of the number of states and actions in the
abstracted game:

min
∑
s

αs + ρ
∑
s,a,i

βs,a,i, for any constant ρ

(Note that we could also have different ρ’s for different agents at different states. Also,
we could use a different ρ when running the ILP at different levels of the LDAG.)

Next, we tie the elements to the prototypes using additional auxiliary variables:

Hs,t = 1 if state s maps to prototype t, and 0 otherwise.
Ga,b,s,i = 1 if action a maps to action prototype b in state s for agent i, and 0 otherwise.

We do the tying in the ILP using the following constraints:

∀s,
∑
t

Hs,t = 1 // Each state maps to exactly one prototype state

(possibly itself).

∀s, i, a ∈ Ai(s),
∑
b

Ga,b,s,i = 1 // Each action maps to exactly one prototype action.

Next, we tie the above mappings to the α’s and β’s:

∀t,
∑
s

Hs,t ≤ αt // Only selected state prototypes can be mapped to.

∀s, i, b ∈ Ai(s),
∑
a

Ga,b,s,i ≤ βs,b,i // Only selected action prototypes can be mapped to.

Then, we have to make sure that in the abstracted game, all actions within an infor-
mation set have the same actions. In other words, states can be bundled only if they
have the same abstracted action set:

∀s, t,
(
Hs,t = 1 ⇒ ∀i, a ∈ Ai(s), b ∈ Ai(s), Ga,b,s,i = Ga,b,t,i

)
.

This can be written in the ILP, for example, using the following two sets of constraints:

∀s, t, i, a ∈ Ai(s), b ∈ Ai(s), Ga,b,s,i ≤ Ga,b,t,i + (1−Hs,t)

∀s, t, i, a ∈ Ai(s), b ∈ Ai(s), Ga,b,t,i ≤ Ga,b,s,i + (1−Hs,t).

Like in the greedy algorithm in the previous section, the action abstraction reward
checks are

∀s, i, a ∈ Ai(s), b ∈ Ai(s),
Ga,b,s,i = 1 ⇒ max

a−i∈A−i(s)
|Ri(s, 〈a,a−i〉)−Ri(s, 〈b,a−i〉)| ≤ εaction,Rk .

(Note that the only variable on the right hand side of the implication is εaction,Rk .) These
conditions can be written as ILP constraints, for example, as follows:

∀s, i, a ∈ Ai(s), b ∈ Ai(s),
max

a−i∈A−i(s)
|Ri(s, 〈a,a−i〉)−Ri(s, 〈b,a−i〉)| ≤ εaction,Rk +M(1−Ga,b,s,i),

where M is a large number (as is standard in integer programming).
Similarly, the action abstraction transition error checks can be written as ILP con-

straints as follows:

∀s, i, a ∈ Ai(s), b ∈ Ai(s),∑
x′∈S′

k−1

{
max

a−i∈A−i(s)
|

∑
s′∈h−1

k−1
(x′)

T (s, 〈a,a−i〉, s′)−
∑

s′∈h−1
k−1

(x′)

T (s, 〈b,a−i〉, s′)|
}

≤ εaction,Tk +M(1−Ga,b,s,i).

In principle, the state abstraction reward error checks are as follows, for each state
s and the prototype state t of the state bucket that s belongs to:

max
a∈A(s)

max
i
|Ri(s,a)−Ri(t, gs(a))| ≤ εstate,Rk .

However, we have to be careful because the action abstraction function g is not a con-
stant now, but endogenous to the ILP. (The helpful side of this is that—unlike in the
greedy state abstraction algorithm in the previous section (ALGORITHM 2)—we do
not have to have a Z-function that studies the one-to-one correspondences between
action in s and t for agent i: the ILP will automatically generate a g where the actions
match.) We can write these checks as ILP constraints as follows. The idea is that we
write the constraints down for all possible abstractions, and then relax them (using
the big-M ’s) for the abstractions that the ILP does not choose:

∀s, t, i,a ∈ A(s),b ∈ A(s),

|Ri(s,a)−Ri(t,b)| ≤ εstate,Rk +M(1−Hs,t) +
∑
j

M(1−Gaj ,bj ,s,j).

Finally, the state abstraction transition error checks are conceptually as follows.
They check whether the transitions are similar for s and the prototype state t of the
state bucket that s belongs to:∑

x′∈S′
k−1

{
max

a∈A(s)
|

∑
s′∈h−1

k−1
(x′)

T (s,a, s′)−
∑

s′∈h−1
k−1

(x′)

T (t, gs(a), s
′)|
}
≤ εstate,Tk .

Now, again, g is endogenous to the ILP. We can write the above conditions as ILP
constraints as follows:

∀s, t,a ∈ A(s),b ∈ A(s),∑
x′∈S′

k−1

{
max

a∈A(s)
|

∑
s′∈h−1

k−1
(x′)

T (s,a, s′)−
∑

s′∈h−1
k−1

(x′)

T (t,b, s′)|
}

≤ εstate,Tk +M(1−Hs,t) +
∑
j

M(1−Gaj ,bj ,s,j).

This completes the construction of the ILP. Note that the ILP handles action and
state abstraction simultaneously, unlike the greedy algorithm of the previous section
that does one of these first without looking at the other, and then does the other.

6.3. Discussion of the abstraction algorithms and problem complexity
Both the ILP and the greedy algorithm satisfy the accuracy bounds by construction.
For any constant number of agents, the ILP is of polynomial size. However, the within-
level abstraction problem that both algorithms are trying to solve is hard in the worst
case:

PROPOSITION 6.1. The (decision version of the) within-level abstraction optimiza-
tion problem that the ILP and the greedy algorithm are trying to solve (where the state
and action prototypes have to be selected from among the actual states and actions, re-
spectively) is NP-complete. This is the case even if we only want to do action abstraction
(i.e., no state abstraction), even if there are only two agents and one state in the game,
and the game is only played for one step.

PROOF. It is easy to check the solution, so the problem is in NP. What remains to
be shown is that it is NP-hard. We reduce from SET COVER, which is NP-complete.

There we are given a set S = (S1, . . . , Sr) and a ground set of elements E = {1, . . . , q}.
Each set Si contains some subset of E. The question is whether all the items in E can
be covered using only k sets from S.

Now, we can solve this problem by considering the abstraction problem of a 2-agent
game where there is only one state and one step. The two agents are an attacker and
a defender. The attacker’s action set is a set of locations E = {1, . . . , q}. The defender’s
action set is S = (S1, . . . , Sr), where each Si ⊆ E and

⋃
i Si = E. The payoffs in this

game are such that the attacker gets M if he attacks a location that the defender does
not defend, and 0 otherwise (here, M is very large). The defender gets 1 if he defends
successfully and 0 otherwise.

We set the target accuracy in the abstraction algorithm so that the defender cannot
be guaranteed to lose, that is, each location is coverable by some action of the defender.
(It is possible to set the target accuracy this way because the attacker’s payoffs dom-
inate the defender’s.) We ask the abstraction algorithm whether such an abstraction
exists with k actions for the defender. This is exactly SET COVER.

In general, the ILP might not return the coarsest abstraction for the overall allowed
target accuracy for at least the following reasons: 1) it optimizes one level at a time, 2)
it assumes that the overall target accuracy is somehow exogenously divided into tar-
get accuracies for all levels, 3) the analysis in the theory part of this paper is not tight
(e.g., there is slack in the inequalities regarding transition probability error such as in
line 5 of Equation 13), and 4) in the ILP, the multiplier W that is used to multiply the
transition probability error is conservative (and this might cause the greedy algorithm
to occasionally produce better abstractions than the ILP). However, the game used in
the proof of Proposition 6.1 has only one level, one state, and no transitions, so none of
these limitations apply to it, and the ILP will find the optimal abstraction for games in
that class. The NP-hardness reduction in the proof is from SET COVER, which cannot
be approximated in worst-case polynomial time to an approximation ratio better than
a constant times ln q unless P = NP [Alon et al. 2006]. Therefore, the gap in solution
quality—in terms of the size of the (action) abstraction for the level—found by the
greedy algorithm (which runs in polynomial time) versus the ILP (which finds an opti-
mal solution in this game class) cannot be bounded by any constant. So, no matter how
many orders of magnitude difference one wants to demonstrate, an input that demon-
strates at least that big a difference exists. Therefore the difference in solution quality
between the two algorithms depends completely on the game that one is interested in.

In general, the abstraction problem being hard in the worst case does not mean that
the ILP will be slow in practice. In fact, it has been shown experimentally that within-
level abstraction optimization ILPs run fast (in less than a second) even in the large
(in a different type of game state abstraction problem) [Gilpin and Sandholm 2007a].
How fast the ILP will run in practice will depend on the game.

Running a polynomial-time abstraction algorithm (such as our greedy algorithm), or
an abstraction algorithm that runs fast in practice though not being polynomial in the
worst case, can be very helpful as a preprocessor. These algorithms run in polynomial
time in the entire stochastic game, while the (Nash) equilibrium-finding algorithm can
take exponential time just to solve one stage game—because solving a normal form
game is PPAD-complete (even with two agents and all payoffs in {0, 1}) [Daskalakis
et al. 2009; Chen et al. 2009; Abbott et al. 2005].

7. CONCLUSIONS AND FUTURE RESEARCH
Abstraction followed by equilibrium finding has emerged as a leading approach to solv-
ing games. Lossless abstraction typically yields games that are still too large to solve,

so lossy abstraction is needed. Unfortunately, prior lossy game abstraction algorithms
have no guarantees on solution quality.

We developed a framework that enables the design of lossy game abstraction algo-
rithms with guarantees on solution quality. It simultaneously handles state and action
abstraction. We defined a measure of reward approximation error and transition prob-
ability error achieved by state and action abstraction in stochastic games such that
the regret of the equilibrium found in the abstract game when implemented in the
original, unabstracted game is upper-bounded by a function of those measures.

We then developed the first lossy game abstraction algorithms with bounds on solu-
tion quality. Both of them work level-by-level up from the end of the game. One of the
algorithms is greedy and the other is an integer linear program. We also proved that
the abstraction problem is NP-complete (even with just action abstraction, 2 agents,
and a 1-step game), but want to point out that this does not mean that the game ab-
straction problems that occur in practice cannot be solved quickly.

The obvious stream of applications of this work is to develop better (faster and/or
higher-accuracy) game-solving algorithms by having better automated abstraction al-
gorithms. However, the work has an additional important potential application stream
in modeling. All models are abstractions of reality. As one models a real-world situa-
tion formally as a game, one faces modeling choices. What aspects of the real world
situation should be captured in the model? How detailed should one make the signal
space? For example, how should one discretize state if the game solver requires dis-
crete states? How should one discretize the action space when there are too many (and
possibly infinitely many) actions in reality but one wants to use a scalable game solver
that assumes a finite action space? Such modeling questions are really questions about
abstraction, and the work in this paper will help pave the way to answering those ques-
tions in a rigorous way, whether the modeling is done by human or by machine.

There is ample scope for future research. Both of our algorithms obtain action and
state abstraction by removing some actions and states and keeping others. Our theo-
retical results do not assume this form of abstraction and other more general forms of
abstraction (with automated state and action generation) may yield smaller abstract
games. We also believe that our results will extend to sequential games, at least as
long as the information sets form a layered directed acyclic graph.

REFERENCES

ABBOTT, T., KANE, D., AND VALIANT, P. 2005. On the complexity of two-player win-
lose games. Annual Symposium on Foundations of Computer Science (FOCS).

ALON, N., MOSHKOVITZ, D., AND SAFRA, S. 2006. Algorithmic construction of sets
for k-restrictions. ACM Trans. Algorithms 2, 2, 153–177.

ARCHIBALD, C. AND SHOHAM, Y. 2009. Modeling billiards games. International Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS).

BILLINGS, D., BURCH, N., DAVIDSON, A., HOLTE, R., SCHAEFFER, J., SCHAUEN-
BERG, T., AND SZAFRON, D. 2003. Approximating game-theoretic optimal strategies
for full-scale poker. International Joint Conference on Artificial Intelligence (IJCAI).

CHEN, X., DENG, X., AND TENG, S.-H. 2009. Settling the complexity of computing
two-player Nash equilibria. Journal of the ACM 56, 3.

DASKALAKIS, C., GOLDBERG, P., AND PAPADIMITRIOU, C. 2009. The complexity of
computing a Nash equilibrium. SIAM Journal on Computing 39, 1, 195–259.

GANZFRIED, S., SANDHOLM, T., AND WAUGH, K. 2012. Strategy purification and
thresholding: Effective non-equilibrium approaches for playing large games. Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).

GILPIN, A. AND SANDHOLM, T. 2006a. A competitive Texas Hold’em poker player via

automated abstraction and real-time equilibrium computation. National Conference
on Artificial Intelligence (AAAI).

GILPIN, A. AND SANDHOLM, T. 2007a. Better automated abstraction techniques for
imperfect information games, with application to Texas Hold’em poker. Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).

GILPIN, A. AND SANDHOLM, T. 2007b. Lossless abstraction of imperfect information
games. Journal of the ACM 54, 5.

GILPIN, A. AND SANDHOLM, T. 2008. Expectation-based versus potential-aware au-
tomated abstraction in imperfect information games: An experimental comparison
using poker. National Conference on Artificial Intelligence (AAAI). Short paper.

GILPIN, A., SANDHOLM, T., AND SØRENSEN, T. B. 2007. Potential-aware automated
abstraction of sequential games, and holistic equilibrium analysis of Texas Hold’em
poker. National Conference on Artificial Intelligence (AAAI).

GILPIN, A., SANDHOLM, T., AND SØRENSEN, T. B. 2008. A heads-up no-limit Texas
Hold’em poker player: Discretized betting models and automatically generated
equilibrium-finding programs. International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS).

GIVAN, R., DEAN, T., AND GREIG, M. 2003. Equivalence notions and model minimiza-
tion in markov decision processes. Artificial Intelligence 147, 1-2, 163–223.

HAWKIN, J., HOLTE, R., AND SZAFRON, D. 2011. Automated action abstraction of
imperfect information extensive-form games. National Conference on Artificial In-
telligence (AAAI).

JIANG, A. X. AND LEYTON-BROWN, K. 2011. Polynomial-time computation of exact
correlated equilibrium in compact games. ACM Conference on Electronic Commerce.

KEARNS, M., MANSOUR, Y., AND NG, A. Y. 1999. A Sparse Sampling Algorithm for
Near-Optimal Planning in Large Markov Decision Processes. International Joint
Conference on Artificial Intelligence.

LIPTON, R., MARKAKIS, E., AND MEHTA, A. 2003. Playing large games using simple
strategies. ACM Conference on Electronic Commerce (EC).

LITTMAN, M. AND STONE, P. 2003. A polynomial-time Nash equilibrium algorithm
for repeated games. ACM Conference on Electronic Commerce (EC).

RAVINDRAN, B. 2004. An algebraic approach to abstraction in reinforcement learning.
Ph.D. thesis, University of Massachusetts, Amherst, MA.

SCHNIZLEIN, D., BOWLING, M., AND SZAFRON, D. 2009. Probabilistic state transla-
tion in extensive games with large action sets. International Joint Conference on
Artificial Intelligence (IJCAI).

SHI, J. AND LITTMAN, M. 2002. Abstraction methods for game theoretic poker. Revised
Papers from International Conference on Computers and Games. Springer.

SORG, J. AND SINGH, S. 2009. Transfer via soft homomorphisms. International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS).

WAUGH, K., SCHNIZLEIN, D., BOWLING, M., AND SZAFRON, D. 2009a. Abstraction
pathologies in extensive games. International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS).

WAUGH, K., ZINKEVICH, M., JOHANSON, M., KAN, M., SCHNIZLEIN, D., AND BOWL-
ING, M. 2009b. A practical use of imperfect recall. Symposium on Abstraction,
Reformulation and Approximation (SARA).

WELLMAN, M. 2006. Methods for empirical game-theoretic analysis (extended ab-
stract). National Conference on Artificial Intelligence (AAAI).

ZINKEVICH, M., BOWLING, M., JOHANSON, M., AND PICCIONE, C. 2007. Regret min-
imization in games with incomplete information. Annual Conference on Neural In-
formation Processing Systems (NIPS).

