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ABSTRACT

LEARNING TO SOLVE MARKOVIAN DECISION
PROCESSES
FEBRUARY 1994

SATINDER P. SIiNGgH

B.Tech., INDIAN INSTITUTE OF TECHNOLOGY NEW DELHI
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew . Barto

This dissertation is about building learning control architectures for agents em-
bedded in finite, stationary, and Markovian environments. Such architectures give
embedded agents the ability to improve autonomously the efficiency with which
they can achieve goals. Machine learning researchers have developed reinforcement
learning (RL) algorithms based on dynamic programming (DP) that use the agent’s
experience in its environment to improve its decision policy incrementally. This is
achieved by adapting an evaluation function in such a way that the decision policy
that is “greedy” with respect to it improves with experience. This dissertation
focuses on finite, stationary and Markovian environments for two reasons: it allows
the development and use of a strong theory of RL, and there are many challenging
real-world RL tasks that fall into this category.

This dissertation establishes a novel connection between stochastic approximation
theory and RL that provides a uniform framework for understanding all the different
RL algorithms that have been proposed to date. It also highlights a dimension that
clearly separates all RL research from prior work on DP. Two other theoretical results
showing how approximations affect performance in RL provide partial justification
for the use of compact function approximators in RL. In addition, a new family of
“soft” DP algorithms is presented. These algorithms converge to solutions that are
more robust than the solutions found by classical DP algorithms.

Despite all of the theoretical progress, conventional RL architectures scale poorly
enough to make them impractical for many real-world problems. This dissertation
studies two aspects of the scaling issue: the need to accelerate RL, and the need to
build RL architectures that can learn to solve multiple tasks. It presents three RL
architectures, CQ-L, H-DYNA., and BB-RL, that accelerate learning by facilitating

transfer of training from simple to complex tasks. Each architecture uses a different

vi



method to achieve transfer of training; CQ-L uses the evaluation functions for simple
tasks as building blocks to construct the evaluation function for complex tasks, H-
DYNA uses the evaluation functions for simple tasks to build an abstract environment
model, and BB-RL uses the decision policies found for the simple tasks as the primitive
actions for the complex tasks. A mixture of theoretical and empirical results are
presented to support the new RL architectures developed in this dissertation.
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CHAPTER 1
INTRODUCTION

This dissertation is about building learning control architectures for agents em-
bedded in finite, stationary, and Markovian environments. Such architectures give
embedded agents the ability to improve autonomously the efficiency with which
they can achieve goals. Machine learning researchers have developed architectures
based on reinforcement learning (RL) methods that use the agent’s experience in its
environment to improve its decision policy incrementally. This dissertation presents
a novel theory that provides a uniform framework for understanding and proving
convergence for all the different R algorithms that have been proposed to date.
New theoretical results that lead to a better understanding of the strengths and
limitations of conventional RL architectures are also developed. In addition, this
dissertation presents new RL architectures that extend the range and complexity of
applications to which RL algorithms can be applied in practice. These architectures
use knowledge acquired in learning simple tasks to accelerate the learning of more
complex tasks. A mixture of theoretical and empirical results are provided to validate
the proposed architectures.

1.1 Learning and Autonomous Agents

An important long-term objective for artificial intelligence (Al) is to build intel-
ligent agents capable of autonomously achieving goals in complex environments. Re-
cently, some Al researchers have turned attention away from studying isolated aspects
of intelligence and towards studying intelligent behavior in complete agents embedded
in real-world environments (e.g., Agre [1], Brooks [24, 23], and Kaelbling [60]). Much
of this research on building embedded agents has followed the approach of hand-coding
the agent’s behavior (Maes [68]). The success of such agents has depended heavily on
their designers’ prior knowledge of the dynamics of the interaction between the agent
and its intended environment and on the careful choice of the agent’s repertoire of
behaviors. Such hand-coded agents lack flexibility and robustness.

To be able to deal autonomously with uncertainty due to the incompleteness of
the designer’s knowledge about complex environments, embedded agents will have to
be able to learn. In addition, learning agents can determine solutions to new tasks
more efficiently than hardwired agents, because the ability to learn can allow the
agent to take advantage of unanticipated regularities in the environment. Although
learning also becomes crucial if the environment changes over time, or if the agent’s
goals change over time, this dissertation will be focussed on the most basic advantage
that learning provides to embedded agents: the ability to improve performance over
time.



1.2 Why Finite, Stationary, and Markovian Environments?

This dissertation focuses on building learning control architectures for agents that
are embedded in environments that have the following characteristics:

Finite: An environment is called finite if the number of different “situations”
that the agent can encounter is finite. While many interesting tasks have infinite
environments, there are many challenging real-world tasks that do have finite envi-
ronments, e.g., games, many process control tasks, job scheduling. Besides, many
tasks with infinite environments can be modeled as having finite environments by
choosing an appropriate level of abstraction. The biggest advantage of focusing on
finite environments is that it becomes possible to derive and use a general and uniform
theory of learning for embedded agents. This dissertation presents such a theory
based on RL that extends and builds upon previous research. Learning architectures
developed for finite environments may also extend to infinite environments by the
use of sampling techniques and function approximation methods that generalize to
unsampled situations appropriately. Some empirical evidence for the last hypothesis
is presented in this dissertation.

Stationary: An environment is called stationary if its dynamics are independent
of time, i.e., if the outcome of executing an action in a particular situation is not a
function of time. Note that stationary does not mean static. Studying stationary
environments makes it possible to construct a general and simple theory of RL.
At the appropriate level of abstraction a large variety of real-world environments,
especially man-made environments, are stationary, or change very slowly over time.
It is hoped that if the rate of change in the environment is small then with very
minor modifications a RI architecture will be able to keep up with the changes in
the environment.

Markovian: An agent’s environment is Markovian if the information available
to the agent in its current situation makes the future behavior of the environment
independent of the past. The Markovian assumption plays a crucial role in all of
the theory and the learning architectures presented in this dissertation. For many
problem domains, specialists have already identified the minimal information that
an agent needs to receive to make its environment Markovian. Researchers building
learning control architectures for agents embedded in such environments can use
that knowledge. In domains where such knowledge is not available, some researchers
have used statistical estimation methods or other machine learning methods to con-
vert non-Markovian problems to Markovian problems. Nevertheless, the Markovian
assumption may be more limiting than the previous two assumptions, because RL
methods developed for finite, stationary, and Markovian environments degrade more
gracefully for small violations of the previous two assumptions relative to small
violations of the Markovian assumption.

1.3 Why Reinforcement Learning?

A set of training examples is required if a problem is to be formulated as a
supervised learning task (Duda and Hart [38]). For agents embedded in dynamic
environments, actions executed in the short term can impact the long term dynamics



of the environment. This makes it difficult, and sometimes impossible, to acquire
even a small set of examples from the desired behavior of the agent without solving
the entire task in the first place. Therefore, problems involving agents embedded in
dynamic environments are difficult to formulate as supervised learning tasks.

On the other hand, it is often easy to evaluate the short term performance of the
agent to provide an approximate (and perhaps noisy) scalar feedback, called a payoff
or reinforcement signal. In the most difficult case, it can at least be determined if
the agent succeeded or failed at the task, thereby providing a binary failure/success
reinforcement signal. Therefore, tasks involving agents embedded in dynamic environ-
ments are naturally formulated as optimization tasks where the optimal behavior is
not known in advance, but is defined to be the behavior that maximizes (or minimizes)
some function of the agent’s behavior over time. Such tasks are called reinforcement
learning tasks.

The objective function maximized in RL tasks can incorporate many different
types of performance criteria, such as minimum time, minimum cost, and minimum
jerk. Therefore, a wide variety of tasks of interest in operations research, control
theory, robotics, Al, can be formulated as RL tasks. Researchers within these di-
verse fields have developed a number of different methods under different names
for solving RL tasks, e.g., dynamic programming (DP) algorithms (Bellman [16]),
classifier systems (Holland et al. [51]), and reinforcement learning algorithms (Barto
et al. [14], Werbos [121]).} The different algorithms assume different amounts of
domain knowledge and work under different constraints, but they can all solve RL
tasks and should perhaps all be called RL. methods. However, for the purposes of
this dissertation, it will be useful to distinguish between classical DP algorithms
developed in the fields of operations research and control theory and the more recent
RL algorithms developed in Al

This dissertation studies two issues that arise when building autonomous agent
architectures based on RL methods: the differences between RL algorithms and
classical DP algorithms for solving RL tasks, and building RL architectures that
can learn complex tasks more efficiently than conventional RL architectures. These
issues are introduced briefly in the next two sections.

1.3.1 Reinforcement Learning Algorithms vis-a-vis Classical Dynamic Pro-
gramming Algorithms

The problem of determining the optimal behavior for agents embedded in finite,
stationary, and Markovian environments can be reduced to the problem of solving

!Combinatorial optimization methods, such as genetic algorithms (Goldberg [43]), can also be
used to solve RL tasks (Grefenstette [45]). However, unlike DP and RL algorithms that use the
agent’s experience to adapt directly its architecture, genetic algorithms have to evaluate the fitness
of a “population” of agents before making any changes to their architectures. Evaluating an agent
embedded in a dynamic environment is in general a computationally expensive operation and it seems
wasteful to ignore the “local” information acquired through that evaluation. This dissertation will
focus on DP and RL algorithms. Nevertheless, it should be noted that no definitive comparison has
yet been made between optimization methods based on genetic algorithms and RL or DP algorithms.
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a system of nonlinear recursive equations (Ross [87], Bertsekas [17]). Dynamic pro-
gramming (DP) is a set of iterative methods, developed in the classical literature on
control theory and operations research, that are capable of solving such equations
(Bellman [16]).2 Control architectures that use DP algorithms require a model of the
environment, either one that is known a priori, or one that is estimated on-line.

One of the main innovations in RL algorithms for solving problems traditionally
solved by DP is that they are model-free because they do not require a model of the
environment. Examples of such model-free RL algorithms are Sutton’s [106] temporal
differences (TD) algorithm and Watkins [118] Q-learning algorithm. RL algorithms
and classical DP algorithms are related methods because they solve the same system of
equations, and because RL algorithms estimate the same quantities that are computed
by DP algorithms (see Watkins [118], Barto et al. [14], and Werbos [123, 124]). More
recently, Barto [8] has identified the separate dimensions along which the different RL
algorithms have weakened the strong constraints required by classical DP algorithms
(see also Sutton [108]).

Despite all the progress in connecting DP and RI algorithms, the following
question was unanswered: can TD and Q-learning be derived by the straightforward
application of some classical method for solving systems of equations? Recently this
author and others (Singh et al. [102], Jaakkola et al. [53], and Tsitsiklis [115]) have
answered that question. In this dissertation it is shown that RIL algorithms, such as
TD and Q-learning, are instances of asynchronous stochastic approximation methods
for solving the recursive system of equations associated with RL tasks. The stochastic
approximation framework is also used to delineate the specific contributions made
by RL algorithms, and to provide conditions under which RL architectures may
be more efficient than architectures that use classical DP algorithms. Simulation
studies are used to validate these conditions. The stochastic approximation framework
leaves open several theoretical questions and this dissertation identifies and partially
addresses some of them.

1.3.2 Learning Multiple Reinforcement Learning Tasks

Despite possessing several attractive properties, as outlined in Sections 1.3 and 1.3.1,
RL algorithms have not been applied on-line to solve many complex problems.® One
of the reasons is the widely held belief that RL algorithms are unacceptably slow for
complex tasks. In fact, the common view is that RL algorithms can only be used as
weak learning algorithms in the Al sense, i.e., they can use little domain knowledge,
and hence like all weak learning algorithms are doomed to scale poorly to complex

tasks (e.g., Mataric [72]).

2Within theoretical computer science, the term DP is applied to a general class of methods for
efficiently solving recursive systems of equations for many different kinds of structured optimization
problems (e.g., Cormen et al. [32]), not just the recursive equations derived for agents controlling
external environments. In this dissertation, however, the term DP will be used exclusively to refer
to algorithms for solving optimal control problems.

3While Tesauro’s [112] backgammon player is certainly a complex application, it is not an on-line
RL system.



However, the common view is misleading in two respects. The first misconception,
as pointed out by Barto [8], is that while RL algorithms are indeed slow, there is little
evidence that they are slower than any other method that can be applied with the
same generality and under similar constraints. Indeed, there is some evidence that
RL algorithms may be faster than their only known competitor that is applicable with
the same level of generality, namely classical DP methods (Barto and Singh [12, 11],
Moore and Atkeson [79], Gullapalli [48]).

The second misconception is the view that RL algorithms can only be used as
weak methods. This misconception was perhaps generated inadvertently by the early
developmental work on RI that used as illustrations applications with very little
domain knowledge (Barto et.al. [13], Sutton [106]). However, RL architectures can
easily incorporate many different kinds of domain knowledge. Indeed, a significant
proportion of the current research on RL is about incorporating domain knowledge
into RL architectures to alleviate some of their problems (Singh [99], Yee et al. [129],
Mitchell and Thrun [75], Whitehead [125], Lin [66], Clouse and Utgoff [28]).

Despite the fact that under certain conditions RI algorithms may be the best
available methods, conventional RL architectures are slow enough to make them
impractical for many real-world problems. While some researchers are looking for
faster learning algorithms, and others are investigating ways to improve computing
technology in order to solve more complex tasks, this dissertation focuses on a fun-
damentally different way of tackling the scaling problem. This dissertation studies
transfer of training in agents that have to solve multiple structured tasks. It presents
RL architectures that use knowledge acquired in learning to solve simple tasks to
accelerate the learning of solutions to more complex tasks.

Achieving transfer of training across an arbitrary set of tasks may be difficult,
or even impossible. This dissertation explores three different ways of accelerating
learning by transfer of training in a class of hierarchically-structured RL tasks. Chap-
ter 6 presents a modular learning architecture that uses solutions for the simple
tasks as building blocks for efficiently constructing solutions for more complex tasks.
Chapter 7 presents a RL architecture that uses the solutions for the simple tasks
to build abstract environment models. The abstract environment models accelerate
the learning of solutions for complex tasks because they allow the agent to ignore
unnecessary temporal detail. Finally, Chapter 8 presents a RL architecture that uses
the solutions to the simple tasks to constrain the solution space for more complex
tasks. Both theoretical and empirical support are provided for each of the three new
RL architectures.

Transfer of training across tasks must play a crucial role in building autonomous
embedded agents for complex real-world applications. Although studying architec-
tures that solve multiple tasks is not a new idea (e.g. Korf [64], Jacobs [55]), achieving
transfer of training within the RIL framework requires the formulation of, and the
solution to, several unique issues. To the best of my knowledge, this dissertation
presents the first attempt to study transfer of training across tasks within the RL
framework.



1.4 Organization

Chapter 2 presents the Markovian decision task (MDT) framework for formulating
RL tasks. It also compares and contrasts the MDT framework for control with the
AT state-space search framework for problem solving. The complementary aspects
of the research in Al and control theory are emphasized. Chapter 2 concludes by
formulating the two mathematical questions of prediction and control for embedded
agents that will be addressed in this dissertation.

Chapter 3 presents the abstract framework of iterative relaxation algorithms that
is common to both DP and RL. It presents a brief survey of classical DP algorithms
for solving RL tasks. A new asynchronous DP algorithm is presented along with a
proof of convergence. Chapter 4 presents RL algorithms as stochastic approximation
algorithms for solving the problems of prediction and control in finite-state MDTs.
Conditions under which RIL algorithms may be more efficient than DP algorithms
are derived and tested empirically. Several other smaller theoretical questions are
identified and partially addressed. Detailed proofs of the theorems presented in
Chapters 3 and 4 are presented in Appendices A and B.

Chapter 5 uses the abstract mathematical framework developed in the previous
chapters to review prior work on scaling RL algorithms. The different approaches are
divided into five abstract classes based on the particular aspect of the scaling problem
that is central to each approach. Chapter 6 formulates the class of compositionally-
structured MDTs in which complex MDTs are formed by sequencing a number of
simpler MDTs. It presents a hierarchical, modular, connectionist architecture that
addresses the scaling issue by achieving transfer of training across compositionally-
structured MDTs. The modular architecture is tested empirically on a set of discrete
navigation tasks, as well as on a set of more difficult, continuous-state, image-based
navigation tasks. Theoretical support for the learning architecture is provided in
Appendix D. Chapter 7 presents a RL architecture that builds a hierarchy of abstract
environment models. It is also tested on compositionally-structured MDTs.

Chapter 8 focuses on a different aspect of the scaling problem for on-line RL ar-
chitectures; that of maintaining acceptable performance while learning. This chapter
is focused on solving motion planning problems. It presents a RL architecture that
not only maintains an acceptable level of performance while solving motion planning
problems, but is also more efficient than conventional RL architectures. The new
architecture’s departure from conventional RL architectures for solving motion plan-
ning problems is emphasized. Empirical results from two complex, continuous state,
motion planning problems are presented. Finally, Chapter 9 presents a summary of
the contributions of this dissertation to the theory and practice of building learning
control architectures for agents embedded in dynamic environments.



CHAPTER 2

LEARNING FRAMEWORK

This chapter presents a formal framework for formulating tasks involving embed-
ded agents. Embedded agents are being studied in a number of different disciplines,
such as Al, robotics, systems engineering, control engineering, and theoretical com-
puter science. This dissertation is focussed on embedded agents that use repeated
experience at solving a task to become more skilled at that task. Accordingly,
the framework adopted here abstracts the task to that of learning a behavior that
approximates optimization of a preset objective functional defined over the space of
possible behaviors of the agent. The framework presented here closely follows the

work of Barto et al. [14, 10] and Sutton [108, 110].

2.1 Controlling Dynamic Environments

In general, the environment in which an agent is embedded can be dynamic, that
is, can undergo transformations over time. An assumption and idealization that is
often made by dynamical system theorists as well as by Al researchers is that all the
information that is of interest about the environment depends only on a finite set
of variables that are functions of time x(), x2(t), x3(¢), ..., 2,(¢t). These variables
are often called state variables and form the components of the n-dimensional state
vector x(t). Mathematical models of the transformation process, i.e., models of the
dynamics of the environment, relate the time course of changes in the environment
to the state of the environment.

If the agent has no control over the dynamics of the environment, the funda-
mental problem of interest is that of prediction. Solving the prediction problem
requires ascertaining an approximation to the sequence {x(#)}, or more generally an
approximation of some given function of {x(#)}. A more interesting situation arises
when the agent can influence the environment’s transformation over time. In such a
case, the fundamental problem becomes that of prescription or control, the solution
to which prescribes the actions that the agent should execute in order to bring about
the desired transformations in the environment. We will return to these two issues of
prediction and control throughout this dissertation.

For several decades control engineers have been designing controllers that are able
to transform a variety of dynamical systems to a desired goal state or that can track a
desired state trajectory over time (e.g., Goodwin and Sin [44]). Such tasks are called
regulation and tracking tasks respectively. Similarly researchers in Al have developed
problem solving methods for finding sequences of operators that will transform an
initial problem (system) state into a desired problem state, often called a ‘goal’ state.



2.2 Problem Solving and Control

Despite underlying commonalities, the separate development of the theory of
problem solving in AT and the theory of regulation and tracking in control engineering
led to differences in terminology. For example, the transformation to be applied to
the environment is variously called an operator, an action, or a control. The external
system to be controlled is called an environment, a process, or a plant. In addition,
in control engineering the agent is called a controller. The terms agent, action, and
environment will be used in this dissertation.

There are also differences in the algorithms developed by the two communities
because of the differing characteristics of the class of environments chosen for study.
Traditionally, AI has focussed almost exclusively on deterministic, discrete state
and time problems, whereas control theorists have embraced stochasticity and have
included continuous state and time problems in their earliest efforts. Consequently,
the emphasis in Al has been on search control with the aim of reducing the average
proportion of states that have to be searched before finding a goal state, while in
control theory the emphasis has been on ensuring stability by dealing robustly with
disturbances and stochasticity.

The focus on deterministic environments within Al has led to the development of
planning and heuristic search techniques that develop open-loop solutions, or plans.
An open-loop solution is a sequence of actions that is executed without reference to
the ensuing states of the environment. Any uncertainty or model mismatch can cause
plan failure, which is usually handled by replanning.! On the other hand, most control
design procedures within control theory have been developed to explicitly handle
stochasticity and consequently compute a closed-loop solution that prescribes actions
as a function of the environment’s state and possibly of time. Note that forming
closed-loop solutions confers no advantage in purely deterministic tasks, because for
every start state the sequence of actions executed under the closed-loop solution is
an open-loop solution for that start state.

A common feature of most of the early research in Al and in control theory
was their focus on off-line design of solutions using environment models. Later,
control theorists developed indirect and direct adaptive control methods for dealing
with problems in which a model was unavailable (e.g., Astrom and Wittenmark [3]).
Indirect methods estimate a model of the environment incrementally and use the
estimated model to design a solution. The same interleaving procedure of system
identification and off-line design can be followed in Al problem solving. Direct
methods on the other hand directly estimate the parameters of a single, known,
parametrized control solution without explicitly estimating a model. As stated before,
part of the motivation for RL researchers has been to develop direct methods for
solving learning tasks involving embedded agents.

!Some of the recent work on planning produces closed-loop plans by performing a cycle of sensing
and open-loop planning (e.g., McDermott [74]).



2.3 Learning and Optimal Control

Of more relevance to the theory of learning agents embedded in dynamic envi-
ronments is a class of control problems studied by optimal control theorists in which
the desired state trajectory is not known in advance but is part of the solution to
be determined by the control design process.? The desired trajectory is one that
extremizes some external performance criteria, or some objective function, defined
over the space of possible solutions. Such control problems are called optimal control
problems and have also been studied for several decades. The optimal control per-
spective provides a suitable framework for learning tasks in which an embedded agent
repeatedly tries to solve a task, caching the partial solution and other information
garnered in such attempts, and reuses such information in subsequent attempts to
improve performance with respect to the performance criteria.

This perspective of optimal control as search is the important common link to
the view of problem solving as search developed within the Al community. For
some optimal control problems, gradient-based search techniques, such as calculus
of variations (e.g., Kirk [62]), can be used for finding the extrema. For other optimal
control problems, where non-linearities or stochasticity make gradient-based search
difficult, dynamic programming (DP) is the only known general class of algorithms
for finding an optimal solution.

The current focus on embedded agents in Al has fortunately come at a time
when a confluence of ideas from artificial intelligence, machine learning, robotics,
and control engineering is taking place (Werbos [124], Barto [7], Barto et al. [10],
Sutton et al. [108, 110], Dean and Wellman [36]). Part of the motivation behind this
current research is to combine the complementary strengths of research on planning
and problem solving in Al and of research on DP in optimal control to get the best
of both worlds (e.g., Sutton [108], Barto et al. [10], and Moore and Atkeson [79]).
For example, techniques for dealing with uncertainty and stochasticity developed in
control theory are now of interest to Al researchers developing architectures for agents
embedded in real-world environments. At the same time, techniques for reducing
search in AT problem solving can play a role in making optimal control algorithms
more efficient in their exploration of the solution space (Moore [77]).

Another feature of Al problem solving algorithms, e.g., A* (Hart et al. [50],
Nilsson [80]), that should be incorporated into optimal control algorithms is that of
determining solutions only in parts of the problem space that matter. Algorithms from
optimal control theory, such as DP, find complete optimal solutions that prescribe
optimal actions to every possible state of the environment. At least in theory, there
is no need to find optimal actions for states that are not on the set of optimal paths
from the set of possible start states (see Korf [65], and Barto et al. [10]).

Following Sutton et al. [110] and Barto et al. [14], in this dissertation the adaptive
optimal control framework is used to formulate tasks faced by autonomous embedded
agents. The next section presents the specific formulation of optimal control tasks
that is commonly used in machine learning research on building learning control
architectures for embedded agents.

2Regulation and tracking tasks can also be defined using the optimal control framework.
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2.4 Markovian Decision Tasks

Figure 2.1 shows a block diagram representation of a general class of tasks faced
by embedded agents.® It shows an agent interacting with an external environment
in a discrete time perception-action cycle. At each time step, the agent perceives
its environment, executes an action and receives a payoff in return. Such tasks
are called multi-stage decision tasks, or sequential decision tasks, in control theory
and operations research. A simplifying assumption often made is that the task is
Markovian which requires that at each time step the agent’s immediate perception
returns the state of the environment, i.e., provides all the information necessary to
make the future perceptions and payoffs independent of the past perceptions. The
action executed by the agent and the external disturbances determine the next state
of the environment. Such multi-stage decision tasks are called Markovian decision

tasks (MDTs).

Figure 2.1  Markovian Decision Task. This figure shows a block diagram represen-
tation of an MDT. It shows an agent interacting with an external environment in a
perception-action cycle. The agent perceives the state of the environment, executes
an action, and gets a payoff in return. The action executed by the agent and the
external disturbances change the state of the environment.

MDTs are discrete time tasks in which at each of a finite, or countably infinite,
number of time steps the agent can choose an action to apply to the environment. Let
X be the finite set of environmental states and A be the finite set of actions available
to the agent.* At time step ¢, the agent observes the environment’s current state,
denoted x; € X, and executes action a; € A. As a result the environment makes

3Note that Figure 2.1 is just one possible block diagram representation; other researchers have
used more complex block diagrams to capture some of the more subtle intricacies of tasks faced by

embedded agents (e.g., Whitehead [125], Kaelbling [60]).

4For ease of exposition it is assumed that the same set of actions are available to the agent in
each state of the environment. The extension to the case where different sets of actions are available
in different states is straightforward.
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a transition to state x,41 € X with probability P*(x, x:11), and the agent receives
an expected payoff® R*(x;) € R. The process {z,} is called a Markovian decision
process (MDP) in the operations research literature. The terms MDP and MDT will
be used interchangeably throughout this dissertation.

The agent’s task is to determine a policy for selecting actions that maximizes
some cumulative measure of the payoffs received over time. Such a policy is called
an optimal policy. The number of time steps over which the cumulative payoff is
determined is called the horizon of the MDT. One commonly used measure for policies
is the expected value of the discounted sum of payoffs over the time horizon of the
agent as a function of the start state (see Barto et al [14]). ¢ This dissertation
focuses on agents that have infinite life-times and therefore will have infinite horizons.
Fortunately, infinite-horizon MDTs are simpler to solve than finite-horizon MDTs
because with an infinite horizon there always exists a policy that is independent of
time, called a stationary policy, that is optimal (see Ross [87]). Therefore, throughout
this dissertation one need only consider stationary policies 7 : X — A that assign an
action to each state. Mathematically, the measure for policy 7 as a function of the
start state xq is

Vi) = B[S, (21)

where E indicates expected value, and 7(x;) is the action prescribed by policy 7 for
state x;. The discount factor v, where 0 < v < 1, allows the payoffs distant in time
to be weighted less than more immediate payoffs. The function V7 : X — R is called
the value function for policy w. The symbol V7 is used to denote both the value
function and the vector of values of size | X|. An optimal control policy, denoted 7*,
maximizes the value of every state.

For MDTs that have a horizon of one, called single-stage MDTs, the search for
an optimal policy can be conducted independently for each state because an optimal
action in any state is simply an action that leads to the highest immediate payoft,
le.,

7" (z) = argmax,¢ 4 R*(x) (2.2)
MDTs with a horizon greater than one, or multi-stage MDTs, face a difficult temporal
credit assignment problem (Sutton [105]) because actions executed in the short-term
can have long-term consequences on the payoffs received by the agent. Hence, to
search for an optimal action in a state it may be necessary to examine the conse-
quences of all action sequences of length equal to the horizon of the MDT.

Most physical environments have infinite state sets and are continuous time sys-
tems. However, tasks faced by agents embedded in such environments can frequently

> All of the theory and the architectures developed in this dissertation extend to the formulation

of MDTs in which payoffs are also a function of the next state, and are denoted r%(z;, z¢41). In
such a case, R%(xy) = E{r*(x:, #+41)}.

5The average payoff per time step received by an agent is another measure for policies that is used
in the classical DP literature (Bertsekas [17]), and more recently in the RL literature (Schwartz [94],
Singh [100]). This dissertation will only deal with the discounted measure for policies.
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be modeled as MDTs by discretizing the state space and choosing actions at some
fixed frequency. However, it is important to keep in mind that an MDT is only
an abstraction of the physical task. Indeed, it may be possible to represent the
same underlying physical task by several different MDTs, simply by varying the
resolution of the state space and/or by varying the frequency of choosing actions.
The choices made can impact the difficulty of solving the task. In general, the coarser
the resolution in space and time, the easier it should be to find a solution. But at
the same time better solutions may be found at finer resolutions. This tradeoff is a
separate topic of research (e.g., Bertsekas [17]) and will only be partially addressed
in this dissertation (see Chapter 8).

The MDT framework for control tasks is a natural extension to stochastic envi-
ronments of the ATl state-space search framework for problem solving tasks. A rich
variety of learning tasks from diverse fields such as Al robotics, control engineering,
and operations research can be formulated as MDTs. However, some care has to be
taken in applying the MDT framework because it makes the strong assumption that
the agent’s perception returns the state of the environment, an assumption that may
not be satisfied in some real-world tasks with embedded agents (Chapter 9 discusses
this is greater detail).

Figure 2.2 The policy evaluation problem. This figure shows the two spaces of
interest in solving MDTs: the policy space and the value function space. Evaluating
a policy # maps it into a vector of real numbers V™. Fach component of V7 is the
infinite-horizon discounted sum of payoffs received by an agent when it follows that
policy and starts in the state associated with that component.
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Figure 2.3  The Optimal Control Problem. Solving the optimal control problem
requires finding a policy 7* that when evaluated maps onto a value function V* that
is componentwise larger than the value function of any other policy. The optimal
policies are the only stationary policies that are greedy with respect to the unique
optimal value function V*.

2.4.1 Prediction and Control

For infinite-horizon MDT's the two fundamental questions of prediction and con-
trol can be reduced to that of solving fixed-point equations.

e Policy Evaluation: The prediction problem for an MDT, shown in Figure 2.2,
is called policy evaluation and requires computing the vector V7 for a fixed policy
7. Let R™ be the vector of payoffs under policy 7 and let [P]™ be the transition
probability matrix under policy 7. It can be shown that the following system of
linear fixed-point equations of size | X|, written in vector form:

V = R 4PV (2.3)

always has a unique solution, and that the solution is V™, under the assumption

that R is finite (Ross [87]).

e Optimal Control: The control problem for an MDT, shown in Figure 2.3, is
that of finding an optimal control policy #*. The search for an optimal policy
has to be conducted only in the set of stationary policies, denoted P, that is
of size |A|X]. The value function for an optimal policy 7* is called the optimal
value function and is denoted V*. There may be more than one optimal policy,
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but the optimal value function is always unique (Ross [87]). It is known that the
following system of nonlinear fixed-point equations, Vx € X:

Vie) = max(R(e) +7 Y Pe,y)V(n), (2.4)

yeX

of dimension |X| always has a unique solution, and that the solution is V*,
under the assumption that all the payoff vectors are finite. The set of recurrence
relations, Vo € X,

V() = max(R'(2)+7 3 P y)V (),

yeX

is known in the DP literature as the Bellman equation for infinite-horizon MDT's

(Bellman [16]).

A policy 7 is greedy with respect to any finite value function V' if it prescribes
to each state an action that maximizes the sum of the immediate payoff and the
discounted expected value of the next state as determined by the value function
V. Formally, 7 is greedy with respect to V iff Va € X, and Va € A:

B'(z)+4 > P"(a,y) > RYx)+7 Y P, y)V(y).

yeX yeX

Any policy that is greedy with respect to the optimal value function is optimal
(see Figure 2.3). Therefore, once the optimal value function is known, an optimal
policy for infinite-horizon MDTs can be determined by the following relatively
straightforward computation:”

m(x) = argmax,c, R“(:z;)—l—’yZP“(x,y)V*(y) ) (2.5)

yeX

In fact, solving the optimal control problem has come to mean solving for V*
with the implicit assumption that #* is derived by using Equation 2.5.

2.5 Conclusion

The MDT framework offers many attractions for formulating learning tasks faced
by embedded agents. It deals naturally with the perception-action cycle of embedded
agents, it requires very little prior knowledge about an optimal solution, it can be
used for stochastic and non-linear environments, and most importantly it comes with
a great deal of theoretical and empirical results developed in the fields of control
theory and operations research. Therefore, the MDT framework incorporates many,
but not all, of the concerns of Al researchers as their emphasis shifts towards studying

“The problem of determining the optimal policy given V* is a single-stage MDT with (R™ +
¥[P]"V™*) playing the role of the immediate payoff function R™ (cf. Equation 2.2). If the size of the
action set A is large, finding the best action in a state can itself become computationally expensive
and is the subject of current research (e.g., Gullapalli [48]).
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complete agents in real-life environments. This dissertation will deal exclusively with
learning tasks that can be formulated as MDTs. In particular, the next two chapters
will present theoretical results about the application of DP and RL algorithms to
abstract MDTs without reference to any real application. Subsequent chapters will
use applications to test new RL architectures that address more practical concerns.



CHAPTER 3

SOLVING MARKOVIAN DECISION TASKS:
DYNAMIC PROGRAMMING

This chapter serves multiple purposes: it presents a framework for describing algo-
rithms that solve Markovian decision tasks (MDTs), it uses that framework to survey
classical dynamic programming (DP) algorithms, it presents a new asynchronous
DP algorithm that is based on policy iteration, and it presents a new family of
DP algorithms that find solutions that are more robust than the solutions found
by conventional DP algorithms. Convergence proofs are also presented for the new
DP algorithms. The framework developed in this chapter is also used in the next
chapter to describe reinforcement learning (RL) algorithms and serves as a vehicle
for highlighting the similarities and the differences between DP and RL. Section 3.2 is
solely a review while Sections 3.3 and 3.4 present new algorithms and results obtained
by this author.

3.1 TIterative Relaxation Algorithms

In Chapter 2 it was shown that the prediction and control problems for embedded
agents can be reduced to the problem of solving the following systems of fixed-point
equations, Vo € X:

Policy Evaluation (r): Vie) = R”(l’)(:p) + Z P”(QU)(:I;, y)V(y) (3.1)

yeX
Optimal Control: Vie) = mezg((]%a(x) + Z P x,y)V(y)). (3.2)
a yeX

This chapter and the next focuses on algorithms that produce sequences of approxi-
mations to the solution value function — V7™ for Equation 3.1 and V* for Equation 3.2
— by iterating an “update” equation that takes the following general form:

new approximation = old approximation + rate parameter ( new estimate

—old approximation ), (3.3)

where the rate parameter defines the proportion in which a new estimate of the
solution value function and the old approximation are mixed together to produce
a new approximation. This new approximation becomes the old approximation at the
next iteration of the update equation. Such algorithms are called iterative relaxzation
algorithms.
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The sequence of value functions produced by iterating Equation 3.3 is indexed
by the iteration number and denoted {V;}. Therefore the update equation can be
written as follows:

Vi = Vit pi(U(Vi) = Vi) (3.4)

where p; is a relaxation parameter, V; is the approximation of the solution value
function after the ( —1)* iteration, and U : V; — RX1is an operator that produces a
new estimate of the solution value function by using the approximate value function
V;.!' In general, the value function is a vector, and at each iteration an arbitrary
subset of its components can be updated. Therefore, it is useful to write down each
component of the update equation as a function of the state associated with that
component of the vector. Let the component of the operator U corresponding to
state « be denoted U, : V; — R. The update equation for state x is

Vipr(w) = Vilx) + pi2)(Ua(Vi) = Vi(x)) (3.5)
where the relaxation parameter is now a function of .

In this chapter classical DP algorithms are derived as special cases of Equation 3.5.
In the next chapter RL algorithms, such as Sutton’s temporal differences (TD) and
Watkins’ Q-learning, will also be derived as special cases of Equation 3.5. The
differences among the various iterative algorithms for solving MDTs are: 1) the
definition of the operator U, and 2) the order in which the state-update equation
is applied to the states of the MDT.

Following Barto [8], it is convenient to represent MDTs, both conceptually and
pictorially, as directed stochastic graphs. Figure 3.1 shows the outgoing transitions
for an arbitrary state x from a stochastic graph representation of an MDT that in turn
is an abstraction of some real-world environment. The nodes represent states and the
transitions represent possible outcomes of executing actions in a state. A transition
is directed from a predecessor state, e.g., x, to a successor state, e.g., y (Figure 3.1).
Because the problem can be stochastic, a set of outgoing transitions from a state can
have the same action label. Each transition has a payoff and a probability attached
to it (not shown in Figure 3.1). For any state-action pair the probabilities across all
possible transitions sum to one. Figure 3.1 shows that there can be more than one
transition between any two states.

In this chapter and the next, stochastic graphs resembling Figure 3.1 will be used
to help describe the update equations, and in particular to describe the computation
performed by the operator U/. A common feature of all the algorithms presented in
this dissertation is that the operator U is local, in that it produces a new estimate of
the value of a state = by accessing information only about states that can be reached
from 2 in one transition.?

!More generally the operator U could itself be a function of the iteration number i. However, for
the algorithms discussed in this dissertation, U is assumed fixed for all iterations.

20ne can define both DP and RL algorithms that use operators that do more than a one-step
search and access information about states that are not one-step neighbors, e.g., the multi-step
Q-learning of Watkins [118]. Most of the theoretical results stated in this dissertation will also hold
for algorithms with multi-step operators.
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Figure 3.1 Directed Stochastic Graph Representation of an MDT. This figure shows
a fragment of an MDT. The nodes represent states and the arcs represent transitions
that are labeled with actions.

3.1.1 Terminology

This section presents terminology that will be used throughout this dissertation
to describe iterative relaxation algorithms for solving MDTs. The state transition
probabilities and the payoff function constitute a model of the environment.

e Synchronous: An algorithm is termed synchronous if in every k| X | applications
of the state-update equation the value of every state in set X is updated exactly
k times. If the values of all the states are updated simultaneously, called Jacobi
iteration, the algorithm given in Equation 3.5 can be written in the vector form
of Equation 3.4. If the states are updated in some fixed order and the operator U
always uses the most recent approximation to the value function, the algorithm
is said to perform a Gauss-Sidel iteration.

e Asynchronous: Different researchers have used different models of asynchrony
in iterative algorithms (e.g., Bertsekas and Tsitsiklis [18]). In this dissertation
the term asynchronous is used for algorithms that place no constraints on the
order in which the state-update equation is applied, except that in the limit
the value of each state will be updated infinitely often. The set of states whose
values are updated at iteration ¢ is denoted S; (as in Barto et al. [10]).

e On-line An on-line algorithm is one that not only learns a value function but
also simultaneously controls a real environment. An on-line algorithm faces the
tradeoff between exploration and exploitation because it has to choose between
executing actions that allow it to improve its estimate of the value function and
executing actions that return high payoffs.
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e Off-line The term off-line implies that the algorithm is using simulated expe-
rience with a model of the environment. Off-line algorithms do not face the
exploration versus exploitation tradeoff because they design the control solution
before applying it to the real environment.

e Model-Based A model-based algorithm uses a model of the environment to
update the value function, either a model that is given a priori, or one that is
estimated on-line using a system identification procedure. Note that the model
does not have to be correct, or complete. A model-based algorithm can select
states in the model in ways that need not be constrained by the dynamics of the
environment, or the actions of the agent in the real environment. Algorithms that
estimate a model on-line and do model-based control design on the estimated

model are also called indirect algorithms (see, e.g., Astrom and Wittenmark [3],
and Barto et al. [14]).

e Model-Free A model-free algorithm does not use a model of the environment
and therefore does not have access to the state transition matrices or the payoff
function for the different policies. A model-free algorithm is limited to applying
the state-update equation to the state of the real environment. Model-free
algorithms for learning control are also referred to as direct algorithms.

It is not possible to devise algorithms that satisfy an arbitrary selection of the
above characteristics; the constraints listed in Table 3.1 apply. For on-line algorithms

Table 3.1  Constraints on Iterative Relaxation Algorithms

Algorithm Type Characteristics

off-line = | model-based

synchronous = | off-line, and therefore model-based
on-line = | asynchronous

model-free = | on-line, and therefore asynchronous

that are model-free it may be difficult to satisfy the conditions required for conver-
gence of asynchronous algorithms because it may be difficult, or even impossible,
to ensure that every state is visited infinitely often. In practice, either restrictive
assumptions are placed on the nature of the MDT, such as ergodicity, or appropriate
constraints are imposed on the control policy followed while learning, such as using
probabilistic policies (Sutton [107]). A model-based relaxation algorithm can be either
synchronous or asynchronous. An algorithm that does not require a model of the
environment can always be applied to a task in which a model is available simply
by using the model to simulate the real environment. In general, an algorithm that
needs knowledge of the transition probabilities cannot be applied without a model of
the environment.
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3.2 Dynamic Programming

DP is a collection of algorithms based on Bellman’s [16] powerful principle of
optimality which states that “an optimal policy has the property that whatever
the initial state and action are, the remaining actions must constitute an optimal
policy with regard to the state resulting from the first action.” The optimal control
equation 3.2 can be derived directly from Bellman’s principle. Part of the motivation
for this section is to develop a systematic “recipe-like” format for describing DP-based
algorithms, and the reader will notice its repeated use throughout this dissertation
to describe both old and novel algorithms.

3.2.1 Policy Evaluation

As shown by Equation 3.1, evaluating a fixed stationary policy & requires solving
a linear system of equations. Define the successive approximation backup operator,
B7, in vector form as follows:

B™(V) = R +~4[P]"V. (3.6)
From Equation 3.1, V7 is the unique solution to the following vector-equation
V =B"(V). (3.7)
The backup operator for state x is
BI(V) = R (z)+5 3 P"(x,y)V(y). (3.8)
yeX

Operator B] is called a backup operator because it “backs up” the value of the
successor states (y’s) to produce a new estimate of the value of the predecessor state
x. Operator B requires a model because it requires knowledge of the state transition
probabilities.

The computation involved in B can be explained with the help of Figure 3.2
which only shows the transitions for action () = a; from state x. Operator BJ
involves adding the immediate payoff to the expected value of the next state that can
result from executing action 7(x) is state x. Operator B is a full backup operator
because computing the expected value of the next state involves accessing information
about all of the possible next states for state-action pair (z,7(x)). Operator B™ can
be applied synchronously or asynchronously to yield the following algorithms:

(Jacobi) Synchronous successive approximation:

Vir = B7(V),  and
Asynchronous successive approximation:
Vipi(z) = { Vi(z) Va € (X — 5)). (3.9)

Equation 3.9 takes the form of the general iterative relaxation equation 3.5 with

p. =1 and U, = B].
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Figure 3.2 Full Policy Evaluation Backup. This figure shows the state transitions
on executing action 7(x) in state . Doing a full backup requires knowledge of the
transition probabilities.

Convergence: If v < 1, the operator B™ is a contraction operator because
vV e RELIB™(V) = V7 leo < AV = V7|oe, where ||.||o is the I, or max norm.
Therefore, the synchronous successive approximation algorithm converges to V™ by
the application of the contraction mapping theorem (see, e.g., Bertsekas and Tsit-
sklis [18]). Convergence can be proven for asynchronous successive approximation by
applying the asynchronous convergence theorem of Bertsekas and Tsitsiklis [18].

3.2.2 Optimal Control

Determining the optimal value function requires solving the nonlinear system of
equations 3.2. Define the nonlinear value iteration backup operator, B, in vector-form
as:

BV) = max(R" +4[P]V). (3.10)
where throughout this dissertation the max over a set of vectors is defined to be the
vector that results from a componentwise max. From Equation 3.2, the optimal value

function V* is the unique solution to the equation V = B(V). The z-component of
B is written as follows:

BV) = max(B(x) +5 Y Pay)V(y)) (3.11)
yeX
Operator B also requires a model because it assumes knowledge of the state transition
probabilities.
The computation involved in operator B can be explained with the help of
Figure 3.3 which shows state « and its one-step neighbors. Operator B, involves
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Figure 3.3  Full Value Iteration Backup. This figure shows all the actions in state
x. Doing a full backup requires knowledge of the state transition probabilities.

computing the maximum value over all actions of the sum of the immediate payoff
and the expected value of the next state for each action. Operator B, is a full
backup operator because it involves accessing all of the possible next states for all
actions in state x. As in the policy evaluation case, the operator itself can be applied
synchronously or asynchronously to yield the following two algorithms:

(Jacobi) Synchronous Value Iteration:
Vi = B(Vy), and
Asynchronous Value Iteration:

B.(V, Vz € SZ',
Vipa () = { w(gc) ) Ve € (X — ). (3.12)
Equation 3.12 takes the form of the general iterative relaxation equation 3.5 with
pr = 1 and U, = B,. The asynchronous value iteration algorithm allows the agent to
sample the state space by randomly selecting the state to which the update equation
is applied.

Convergence: For v < 1, B is a contraction operator because YV € RIXI,
|B(V)=V*|leo <7]|V—=V*||s. Therefore, the synchronous value iteration algorithm
can be proven to converge to V* by the application of the contraction mapping
theorem. Convergence can be proven for asynchronous value iteration with v < 1
by applying the asynchronous convergence theorem of Bertsekas and Tsitsiklis [18].
The rate of convergence is governed by v and the second largest eigenvalue, Ay, of the
transition probability matrix for the optimal policy. The smaller the value of v and
the smaller the value of Ay, the faster the convergence.
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Stopping Conditions: For Jacobi value iteration, V;1; = B(V;), it is possible
to define the following error bounds (Bertsekas [17]):

R N1
h = = miplBe (Vi) = Vilw)];
o 7 NV
h;, = 1_71516%?([395(‘/2) Vi(x)].

such that Vo € X, B,(Vi) + by < V*(z) < B,(Vi) + h;. The maximum and the
minimum change in the value function at the ¢** iteration bounds the max-norm
distance between V; and V*. For asynchronous value iteration, these error bounds
can be computed using the last visit to each state. Ensuring convergence to V* may
require an infinite number of iterations. In practice, value iteration can be terminated
when (h; — h;) is small enough.

3.2.3 Discussion

This section presented a review of classical DP algorithms by casting them as
iterative relaxation algorithms in a framework that allowed us to highlight the two
aspects that differ across the various algorithms: the nature of the backup operator
and the order in which it is applied to the states in the environment. The main
difference between solving the policy evaluation and the optimal control problems
is that in the first case a linear backup operator is employed while in the second
a nonlinear backup operator is needed. In both problems the advantage of moving
from synchronous to asynchronous is that the asynchronous algorithm can sample
in predecessor-state space. The subject of the next section is a novel algorithm
for solving the optimal control problem that is more finely asynchronous than the
algorithms reviewed in this section because it can sample both in predecessor-state
space and in action space.

3.3 A New Asynchronous Policy Iteration Algorithm

An alternative classical DP method for solving the optimal control problem that
converges in a finite number of iterations is Howard’s [52] policy iteration method.?
In policy iteration one computes a sequence of control policies and value functions as
follows:

PE greedy PE
H

reed
T — VM 7r2—>V7T2...7rnPE & Y

— Vi T = T,
were % is the policy evaluation operator that solves Equation 3.1 for the policy on

the left-hand side of the operator. Notice that the bE operator is not by itself a local
operator, even though it can be solved by repeated application of local operators as

3Puterman and Brumelle [83] have shown that policy iteration is a Newton-Raphson method for
solving for the Bellman equation.
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. . d . . .
shown in Section 3.2.1. The operator grecey computes the policy that is greedy with

respect to the value function on the left-hand side.

Stopping Condition: The stopping condition for policy iteration is as follows: if
at stage ¢, m;_y = m;, then m;_y = 7, = #*, and V™1 = V* and no further iterations
are required. The stopping condition assumes that in computing a new greedy policy
ties are broken in favor of retaining the actions of the previous greedy policy.

3.3.1 Modified Policy Iteration

Despite the fact that policy iteration converges in a finite number of iterations,
it 1s not suited to problems with large state spaces because each iteration requires
evaluating a policy completely. Puterman and Shin [84] have shown that it is more
appropriate to think of the two classical methods of policy iteration and value iteration
as two extremes of a continuation of iterative methods, which they called modified
policy iteration (M-PI). Like policy iteration, k-step M-PI is a synchronous algorithm
but the crucial difference is that one evaluates a policy for only k steps before applying
the greedy policy derivation operator. With k£ = 0, k-step M-PI becomes value
iteration and with & = oo it becomes policy iteration. While both policy iteration
and value iteration converge if the initial value function is finite, Puterman and Shin
had to place strong restrictions on the initial value function to prove convergence of
synchronous k-step M-PI (see Section 3.3.4).

The motivation behind this section is to derive an asynchronous version of k-step
M-PI that can sample both in predecessor-state and action spaces, and at the same
time converge under a set of initial conditions that are weaker than those required by
k-step M-PI. The algorithm presented here is closely related to a set of asynchronous
algorithms presented by Williams and Baird [127] that were later shown by Barto [6]
to be a form of k-step M-PI.

3.3.2 Asynchronous Update Operators

For ease of exposition, let us denote the one-step backed-up value for state x
under action a, given a value function V, by QY (x,a). That is,

Qv(x,a) = R'(x) 4+~ Z Pz, y)V(y). (3.13)

yeX

The asynchronous policy iteration algorithm defined in this section takes the following
general form:

(Vk+177fk+1) = Uk(VkﬂTk)

where (Vj, ;) is the k' estimate of (V*,7*), and Uy is the asynchronous update
operator applied at iteration k. A significant difference between the algorithms
based on value iteration defined in the previous section and the algorithms based on
policy iteration presented in this section is the following: algorithms based on value
iteration only estimate and update a value function; the optimal policy is derived
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after convergence of the value function, while algorithms based on policy iteration
explicitly estimate and update a policy in addition to the value function.

Define the following asynchronous update operators (cf. Williams and Baird [127]):

1. A single-sided policy evaluation operator T,(Vy, 7y), that takes the current value
function Vj and the current policy 7, and does one step of policy evaluation for
state x. Formally, if U, =T,

Vier () { max(Q"(y, mx(y)), Vily)) ify =2

Tk+1 = Tk

Vi(y) otherwise, and

The policy evaluation operator T, is called single-sided because it never causes
the value of a state to decrease.

2. A single-action policy improvement operator L%(Vy,wy), that takes the current
value function V, and the current policy 7 and affects them as follows:

‘/k-l-l = ‘/kvand
_ { a if y =z and Q" (y,a) > Q"*(y, m(y))

Tre(Y) 7r(y) otherwise.

The policy improvement operator LZ is termed single-action because it only
considers one action, a, in updating the policy for state z.

3. A greedy policy improvement operator L,(Vj, 7)) that corresponds to the sequen-
tial application of the operators {L% L%, ..., L'}, Therefore, (Vigq, Thi1) =
Ly (Vi,7) implies that

‘/k-l-l = ‘/kvand
if
7Tk-|—1(y) = { Fk(y) by 7& w

argmax, ¢ ,Q"*(x,a) otherwise.

The operator L,(V, ) updates 7(z) to be the greedy action with respect to V.

3.3.3 Convergence Results

Initial Conditions: Let V), be the set of non-overestimating value functions, {V €
RIXNV < V*). The analysis of the algorithm presented in this section will be based
on the assumption that the initial value-policy pair (Vo, 7o) € (V. X P), where as
before P is the set of stationary policies.

The Single-Sided Asynchronous Policy Iteration (SS-API) algorithm is

defined as follows:

Verr, me1) = Ura(Ve, 7r),

where Upyr € {1, |2 € XTU{L: | 2 € X,a € A}.
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Lemma 1: VkVi 1 > V.
Proof: By the definitions of operators T, and L%, the value of a state is never
decreased.

Lemma 2: If (Vy, 7o) is such that V5 € V,, then VEV, € V,.
Lemma 2 implies that if the initial value function is non-overestimating, the sequence
{Vi} will be non-overestimating for all operator sequences {Uj}.

Proof: Lemma 2 is proved by induction. Given Vy € V,, assume that V& < m,
Vi € V. There are only two possibilities for iteration m + 1:

1. Operator U,, = LZ for some arbitrary state-action pair in X x A. Then, V41 =
Vi < V7.

2. Operator U,, = T}, for some arbitrary state + € X. Then U,, will only impact
Vm+1($).

Vg1 () = maX(QVm(x,Wm(x)),Vm(x))
= maX([RW’"(x)(:I?) + 7 Z Pﬂm(x)(xay)vm(y)]v Vin(2))

< maX([RW’"(x)(:I:) +> Pﬂm(w)(l'ay)‘/*(y)]v Vin(2))
< maX([R”*(x)(:Ii) +> PW*(x)(l'a V()] Vin(2))
< V*(a).

Hence V,,,11 € V,,.

Q.E.D.

Theorem 1: Given a starting value-policy pair (Vo, 7o), such that Vo € Vy, the
SS-APT algorithm (Vig1, 7xy1) = Ur(Vi, 71) converges to (V*, 7*) under the following
conditions:

Al) Yo € X, T, appears in {Uy} infinitely often, and

A2) Y(x,a) € (X x A), L% appears in {U} infinitely often.

Proof: It is possible to partition the sequence {U;} into disjoint subsequences

of finite length in such a way that each partition itself contains a subsequence for
each state that applies the local policy improvement operator for each action followed
by the policy evaluation operator. Fach such subsequence leads to a contraction
in the max-norm of the error in the approximation to V*. There are an infinity
of such subsequences and that fact coupled with Lemma 2 and the contraction
mapping theorem constitutes an informal proof. See Appendix A for a formal proof
of convergence.
Corollary 1A: Given a starting value-policy pair (Vp, 7o), such that Vo € Vy, the
iterative algorithm (Viy1, mgy1) = Ur(Vi, 7x) where Uy € {T, | 2 € X}U{L. | = €
X}, converges to (V*,7*) provided for each € X, T, and L, appear infinitely often
in the sequence {Uy}.

Proof: Each L, can be replaced by a string of operators L1 L% ... Ly Then

Theorem 1 applies.
Q.E.D.
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Corollary 1B: Define the operator T = {1,171, .. ‘Tﬂb’le} and the operator [ =
{Lay Loy - o« Ly} Let the sequence {Uy} = (1™ L) consist of infinite repetitions of
m > 2 applications of T" operators followed by an L operator. Then, given a starting
value-policy pair (Vy,mg), such that Vo € Vy, the iterative algorithm (Viiq1, mpq1) =
Uk(Vi, 71) converges to (V*, 7*).

Proof: Each T operator can be replaced by a string of operators 1o, Ty, ... Ty
and each L operator by the string L, Ly, ... Ly . Then Corollary 1A applies.

The algorithm presented in Corollary 1B does m steps of greedy policy evaluation
followed by one step of single-sided policy improvement. It is virtually identical to
m-step Gauss-Sidel M-PI except in that each component of the value function is

updated only if it is increased as a result.

3.3.4 Discussion

While S5-API is as easily implemented as the M-PI algorithm of Puterman and
Shin, it converges under a larger set of initial value functions and with no constraints
on the initial policy. Modified policy iteration of Puterman and Shin requires that
(Vo, 7o) be such that V5 € {V € RIXl|max,(R™ 4+ v[P]"V) > 0}, which is a strict
subset of V,. Similarly the initial condition required by Williams and Baird is that
Vo € X, QY (x,mo(x)) > Vo(z), which is again a proper subset of (V, x P).

The SS-API algorithm is more “finely” asynchronous than conventional asyn-
chronous DP algorithms e.g., asynchronous value iteration (AV 1), in two ways:

1. SS-API allows arbitrary sequences of policy evaluation and policy improvement
operators as long as they satisfy the conditions stated in Theorem 1. AV'I, on the
other hand, is more coarsely asynchronous because it does not separate the two
functions of policy improvement and policy evaluation. In effect AV[ iterates
a single operator that does greedy policy improvement followed immediately by
one step of policy evaluation. Of course, the policy evaluation operator used by

AV'T is not single-sided.

2. Because AVI uses the greedy policy improvement operator, it has to consider
all actions in the state being updated. SS-API on the other hand can sample a
single action in each state to do a policy improvement step.

The policy evaluation and the policy improvement operators, T, and L%, were
developed with the knowledge that Vi would be non-overestimating. However, if V;
is known to be non-underestimating, then it is easy to define analogous operators so
that all of the results presented in this section still hold. The only difference for the
non-underestimating case is that the max function in the definition of the single-sided
policy evaluation operator T, (see Section 3.3.2) is replaced by the min function.

Theorem 1 shows that if you start with a single-sided error in the estimated value
function, then any arbitrary application of the single-sided policy evaluation and the
single-action policy improvement operators defined in Section 3.3.2, with the only
constraint that each be applied to all states infinitely often, will result in convergence
to the optimal value function and an optimal policy.
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3.4 Robust Dynamic Programming

In many optimal control problems, the optimal solution may be brittle in that
it may not leave the controller any room for even the slightest non-stationarity or
model-mismatch. For example, the minimum time solution in a navigation problem
may take an expensive robot over a narrow ridge where the slightest error in executing
the optimal action can lead to disaster. This section presents new DP algorithms
that find solutions in which states that have many “good” actions to choose from are
preferred over states that have a single good action choice. This robustness is achieved
by potentially sacrificing optimality. Robustness can be particularly important if the
there is mismatch between the model and the real physical system, or if the real
system is non-stationary, or if availability of control actions varies with time.

In searching for the optimal control policy, DP-based algorithms employ the maz
operator that is a “hard” operator because it only considers the consequences of
executing the best action in a state and ignores the fact that all the other actions
could be disastrous (see Equation 3.12). This section introduces a family of iterative
approximation algorithms constructed by replacing the hard max operator in DP-
based algorithms by “soft” generalized means [49] of order p (e.g., a non-linearly
weighted [, norm). These soft DP algorithms converge to solutions that are more
robust than those of classical DP. For each index p > 1, the corresponding iterative
algorithm converges to a unique fixed point, and the approximation gets uniformly
better as the index p is increased, converging in the limit (p — oo) to the DP solution.
The main contribution of this section is the new family of approximation algorithms
and their convergence results. The implications for neural network researchers are
also discussed.

3.4.1 Some Facts about Generalized Means

This section defines generalized means and lists some of their properties that are
useful in the convergence proofs for the soft DP algorithms that follow. Let A =
{a1,as,...,a,}, and A" = {a},d},...,a}. Define A(max) = max{ay,az,...,a,},
and [|A||« = max {|a;|,|az],...,|a,|}. Define A(p) = [+ Z?:l(ai)p]z%, called a gener-
alized mean of order p. The following facts are proved in Hardy et al. [49] under the
conditions that a;,a’ € R* for alli, 1 <i < n.

Fact 1. (Convergence) lim,_., A(p) = A(max).

Fact 2. (Differentiability) While aAéTiaX) is not defined, 8,845?9) =1
p < oQ.

Fact 3. (Uniform Improvement) 0 < p < ¢ = A(p) < A(q) < A(max); further if
4,7, 8.t a; # a;, then 0 < p < ¢ = A(p) < A(q) < A(max).
Fact 4. (Monotonicity) if Vi,a; < af, then A(p) < A'(p). In addition, if 3, s.t
a; < al, then A(p) < A'(p).

Fact 5. (Boundedness) If p > 1, and if ||A — A'l|.c < M, i.e., the two different

sequences of n numbers differ at most by M, then |A(p) — A'(p)] < M. In addition,
if p>1,and A # A then ||A — A||.c < M = |A(p) — A'(p)| < M.

A“;)]p_l for 0 <
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3.4.2 Soft Iterative Dynamic Programming

A family of iterative improvement algorithms, indexed by a scalar parameter p,
can be defined as Viiy = B(p)(V;), where the backup operator B(p) : (RH)Fl —
(R

B.(p)(Vi) {|17|

a€A yeX

DR (x)+v ) P“(x,y)Vt(y)]p}p : (3.14)

3.4.2.1 Convergence Results

Fact 7. By the “Convergence” (Fact 1) property of the generalized mean operator,
lim,—. B(p) = B(max) = B, where B is the value iteration backup operator defined
in Section 3.2.2.

Fact 8. For a discrete MDT the finite set of stationary policies form a partial order
under the relation >: 7 > 7' = Ve € X, V™(z) > V™ (z). If 0 < v < 1, and a finite
constant A € R is added uniformly to all the payoffs, the partial order of the policies
does not change.

The development of the convergence proofs closely follows Bertsekas and Tsitsik-
lis [18].
Condition 1. 0 < v < 1

Condition 2. Vo € X,Va € A, R*(x) > 0. This is not a restriction for MDTs with
0 <~ < 1, because of Fact 8.

Throughout this section Conditions 1 and 2 are assumed true. Note that condition
2 guarantees that the optimal value function will be non-negative.

Proposition 1. For all p > 1, the following hold for the operator B(p):
(a) (Monotonicity) B(p) is monotone in the sense that ¥V, V' € (R+)X1:

V<V = B(p)V) < B@p)(V),

Proof: Follows trivially from the monotonicity of the generalized mean (Fact 4).

(b) (Contraction Mapping) For all finite V, V' € (R+)IX1]
1B(p)(V) = B(p)(V')llee < ||V = V]|,

for some o < 1.
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Proof: Clearly, 3M such that 0 < M < oo and ||V = V'||oc < M. Then Va € X,
—M < (V(z) = V'(x)) < M. Substituting V'(y) + M for V(y) in Equation 3.14, we
get

1

B.n)(V) < {wZ[R“(xmZP&(x,y><V'<y>+M>]p}p,

a€A yeX

and using the fact that P is a stochastic matrix,

1

B.p)(V) < {| A|z[mmmvme,y)wy)]p}p. (3.15)

a€A yeX

By symmetry, it is also true that:

1

Bp)(V') < {| A|Z[R“(x)ﬂMﬂZP“(x,yW(y)]p}p. (3.16)

a€A yeX

Using the boundedness of the generalized mean (Fact 5), Equations 3.15 and 3.16
imply that Y € X, Bo(p)(V) < Bu(p)(V') +M, and that B(p)(V') < Bu(p)(V) +
vM.

Q.E.D.

Theorem 2: Under Conditions 1 and 2, if the starting estimate V5 € (RT)* then
Vp > 1, the iteration Viy; = B(p)(V;) converges to a unique fixed point V.

Proof: Using Proposition 1 and the contraction mapping theorem, the iterative
algorithm defined by Equation 3.14 converges to a unique fixed point.

Corollary 2A: Let V" be the optimal value function. Then lim, .., V" = V*.
Proof: Bertsekas and Tsitsiklis [18] show that the iteration V.41 = B(V;), where the
operator B is as defined in Equation 3.12, converges to the optimal value function
V*. Therefore, lim,_., B(p) = B = lim,_. V=V~

Theorem 3: 1 <p<qg= V"<V <V~

Proof: Consider the iteration by iteration estimates for a parallel implementation of
the two algorithms: V, ;11 = B(p)(Vp:) and V41 = By(V,:), where the successive
estimates have been subscripted with the additional symbols p and ¢ in order to
distinguish between the two algorithms. Assume that V,o = V, o < | and
Voo = Vi < Vy < V™

Voo = V,o by construction,
Vor < Vo1 by Uniform Improvement (Fact 3); applied to each state,
Voe < V2 by Monotonicity (Fact 4); applied to each state,

°9

Vor < V,: by Monotonicity (Fact 4); applied to each state.

It is known that V.. = V7, and Voo = V*. As shown above, 314 € (RH)IX
st. Vi >0,V,, <V,; < V*. By Theorem 2, the fixed point is independent of V.
Therefore, V> <V <V* (Vg € (%+)|X|).

Corollary 3A: For any ¢ > 0, 3p > 1, such that V¢ > p, [V = V*|[ < e
Proof: From Theorems 2 and 3 the sequence of vectors {V*} are bounded and
converge to V*. Corollary 3A is a property of bounded and convergent sequences.
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3.4.3 How good are the approximations in policy space?

The operator sequence {B(p)} defines a family of iterative approximation algo-
rithms to the value iteration algorithm. Asthe index p is increased, the approximation
to the optimal value function becomes uniformly better. However, the true measure
of interest is not how closely the optimal value function is approximated, but how
good is the greedy policy derived from the approximations.

Fact 9. For any given finite action MDT, 3§ > 0, such that VV € (RHHXI st
||‘N/ — V*lee < 6, any policy that is greedy with respect to V is optimal. See
Section 4.5.3 for a proof.

Fact 9 implies that as long as the estimated value function is within ¢ of the
optimal value function, the policy derived from the approximation will be optimal.
Define IT, to be the set of stationary policies that are greedy with respect to V*. 1If
7 € 1, then Vo € X, and Va € A, the immediate payoff for executing action = (x)
summed with the expected discounted value of the next state is greater than or equal
to that for any other action a € A, i.e..:

RN @) +4 37 PO, y)Vyi(y) = B'(x)+7 3 PV (y).

yeX yeX

Let II* be the set of stationary optimal policies. Define I, = II, N II*.
Theorem 4: For any finite MDT, dp, where 1 <p < o0, s.t. V¢ > p, I, C II*.
Proof: Follows directly from Corollary 34 and Fact 9.

Theorem 4 implies that in practice there is no need for p T oo for the algorithm
defined by B(p) to yield optimal policies.

3.4.4 Discussion

DP-based learning algorithms defined using the max operator update the value
of a state based on the estimate derived from the “best” action from that state.
Algorithms based on the generalized mean, on the other hand, update the value of a
state using some non-linearly weighted average of the estimates derived from all the
actions available in that state. Thus, the latter will assign higher values to states that
have many good actions over states that have just one good action, and conversely
will also penalize states for having any bad action at all. Learning algorithms that
increase the index p as more information accrues can smoothly interpolate between
considering the estimates from all the actions to considering the estimate from the
best action alone.

Another advantage of using the operator B(p) instead of B is that unlike B,
B(p) is differentiable, which makes it possible to compute the following derivative for
neighboring states x and y:

W) _ 1 o [0+ Syex PV = pu OV
V) |A|Z“ V@) 2 >av<y>}‘

a€A

Note that one can use the chain rule to compute the above derivatives for states
that are not neighbors in the state graph of the MDT in much the same way as the



32

backpropagation (Rumelhart et al. [88], Werbos [120]) algorithm for multi-layer con-
nectionist networks. Being able to compute derivatives allows sensitivity analysis and
may lead to some new ways of addressing the difficult exploration versus exploitation
issue [107] in optimal control tasks. Indeed, the motivation for Rivest’s work [85],
which inspired the development of the algorithms presented in this section, was to use
sensitivity analysis to address the analogous exploration issue in game tree search.
Note that derivatives of the values of states with respect to the transition probabilities
and the immediate payoffs can also be derived.

As discussed by Rivest [85], other forms of generalized means exist, e.g., for any
continuous monotone increasing function, f, one can consider mean values of the
form f~'(X3", f(a;)). In particular, the exponential function can be used to derive

an interesting alternative sequence of operators, B(\) = M, where A > 0.
As the parameter A is increased the approximation to the max gets strictly better.
Using B(A), a family of alternative iterative fixed point algorithms can be defined:
Viger = B(A)(V). An advantage of using B(A) is that it requires less computation than
the operator B(p). The operator B(\) is similar in spirit to the “soft-max” function
(Bridle [21]) used by Jacobs et al. [56] and may provide a probabilistic framework for
action selection in DP-based algorithms.

Several researchers are investigating the advantages of combining nonlinear neural
networks with traditional adaptive control techniques (e.g., [57, 42]). The algorithms
presented in this section have the dual advantages of leading to more robust solutions
and of employing a differentiable backup operator. It is hoped that these changes will
pave the way for further progress in adapting DP algorithms and nonlinear neural
network techniques for learning to solve optimal control tasks.

3.5 Conclusion

All of the algorithms presented in this chapter are model-based algorithms because
they require a model of the environment to implement the update equations. The
asynchronous algorithms based on value iteration move one step towards reducing the
need for a model by sampling in predecessor-state space. The asynchronous policy
iteration algorithm moved an additional step by sampling in action space as well. The
final step towards developing model-free algorithms is to also sample in successor-state
space and that is the subject of the next chapter.



CHAPTER 4

SOLVING MARKOVIAN DECISION TASKS:
REINFORCEMENT LEARNING

The main contribution of this chapter is in establishing a hitherto unknown
connection between stochastic approximation theory and reinforcement learning (R1L).
The stochastic approximation framework for RL provides a fairly complete theory
of asymptotic convergence with lookup-table representations for some well known
RL algorithms. A mixture of theory and empirical results are also provided to
address partially the following question: which method, RL or dynamic programming
(DP), should be applied to a particular problem if given a choice? The stochastic
approximation framework leaves open several theoretical questions of great practical
interest, and the second half of this chapter identifies and addresses some of them.

4.1 A Brief History of Reinforcement Learning

Early research in R developed non-associative algorithms for solving single-stage
Markovian decision tasks (MDTs) in environments with only one state, and had its
roots in the work of psychologists working on mathematical learning theory (e.g., Bush
and Mosteller [25]), and in the work of learning automata theorists (e.g., Narendra
and Thatachar [63]). Later Barto et al. [9] developed an associative RL algorithm,
they called the Agrp algorithm, that solves single-stage MDTs with multiple-state
environments. Single-stage MDTs do not involve the temporal credit assignment
problem. Therefore algorithms for solving single-stage MDTs are unrelated to DP
algorithms (except in the trivial sense). In the early 1980s, in a landmark paper
Barto et al. [13] described a technique for addressing the temporal credit assignment
problem that culminated in Sutton’s [106] paper on a class of techniques he called
temporal difference (TD) methods (see also Sutton [105]).

In the late 1980s, Watkins [118] observed that the TD algorithm solves the linear
policy evaluation problem for multi-stage MDTs (see, also Dayan [33], Barnard [5]).
Further, Watkins developed the Q-learning algorithm for solving MDTs and noted
the approximate relationship between TD, Q-learning, and DP algorithms (see also
Barto et al. [15, 10], and Werbos [122]). In this chapter, the connection between RL
and MDTs is made precise. But first, a brief detour has to be taken to explain
the Robbins-Monro [86] stochastic approximation method for solving systems of
equations. Stochastic approximation theory forms the basis for connecting RL and

DP.
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4.2 Stochastic Approximation for Solving Systems of Equations

Consider the problem of solving a scalar equation G(V) = 0, where V is a scalar
variable. The classical Newton-Raphson method for finding roots of equations iterates
the following recursion:

Virer = Vi = G(Vi)/G'(Va), (4.1)

where V] is some initial guess at the root, Vj, is the approximation after £—1 iterations,
and G'(Vy) is the first derivative of the function evaluated at V. It is known that the
sequence {V;} converges under certain conditions.

Now suppose that the function GG is unknown and therefore its derivative cannot
be computed. Further suppose that for any V' we can observe Y (V) = G(V) + ¢,
where ¢ represents some random error with mean zero and variance o > 0. Robbins
and Monro [86] suggested using the following recursion

Viert = Ve = pY'(Va), (4.2)

where {py} are positive constants, such that 3 p? < oo, and Y pr = oo, and proved
convergence in probability for Equation 4.2 to the root of G under the conditions that
G(V)>0if V >0, and G(V) < 0if V < 0. The condition that € have zero mean
implies that E{Y(V,)} = G(V,), i.e., Y(V,) is an unbiased sample of the function ¢
at V,. It is critical to note that Y (V,) is not an unbiased estimate of the root of G(V),
but only an unbiased estimate of the value of function GG at V,,, the current estimate
of the root. Equation 4.2 will play an essential role in establishing the connection

between RI. and DP in Section 4.3.

Following Robbin and Monro’s work, several authors extended their results to
multi-dimensional equations and derived convergence with probability one under
weaker conditions (Blum [19], Dvoretzky [39], Schmetterer [92]). Appendix B presents
a theorem by Dvoretzky [39] that is more complex but more closely related to the
material presented in the following sections.

4.3 Reinforcement Learning Algorithms

This section uses Equation 4.2 to derive stochastic approximation algorithms to
solve the policy evaluation and optimal control problems. In addition, the general
framework of iterative relaxation algorithms developed in Chapter 3 is used to high-
light the similarities and differences between RL and DP. As in Chapter 3 the aspects
of the algorithms that are noteworthy are 1) the definition of the backup operator,
and 2) the order in which the states are updated.
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4.3.1 Policy Evaluation

The value function for policy =, V™, is the unique solution to the following policy
evaluation equation:

V = R 44[P]'V (4.3)

Define the multi-dimensional function G(V) =V — (R™ + 4[P]"V). The dimension

corresponding to state = of function G(V') can be written as follows:

Ga(V) = Vi(e) = (B (@) +7 3 P2, y)V(y)).

yeX

The solution to the policy evaluation problem, V7™, is the unique root of G(V).

Assume that the agent does not have access to a model of the environment and
therefore cannot use the matrix [P]™ in its calculations. Define Y,(V) = V(z) —
(R™) () + vV (y)), where the next state y € X occurs with probability P™)(z, y).
Define the random matrix [T]™ as an |X| x | X| matrix whose rows are unit vectors,
with a 1 in column j of row i with probability P™(s,5). Clearly, E{[T]"} = [P]",
and the vector form of Y, (V) can be written as follows: Y(V) =V — (R™ +~[T]"V).
Note that E{Y(V)} = G(V).

A stochastic approximation algorithm to obtain the root of G/(V') can be derived
from Equation 4.2 as follows:

(Jacobi) Synchronous Robbins-Monro Policy Evaluation:

Vien = Vi —peY (Vi)
= Vi —pe(Vi = (BT +1[T]"V)),

or for state x,

Virr() = Vile) = pu(a) (Vi(e) = (B™9 (2) +4Vi(y))) (4.4)

where pi(x) is a relaxation parameter for state 2. To compute Y, (V'), the agent does
not need to know the transition probabilities; as depicted in Figure 4.1 it can simply
execute action w(x) in the real environment and then observe the immediate payoff
R™@)(z) as well as the next state y. The value of the next state y can be retrieved
from the data structure storing the V values.

The algorithm defined in Equation 4.4 is also an iterative relaxation algorithm of
the form defined in Equation 3.5 with a backup operator B7(V) = R™)(z) ++V (y).
The full backup operator of the successive approximation (DP) algorithm: BI(V) =
R™@)(z) + Y oyex P™@) (2, y)V(y), computes the expected value of the next state
to derive a new estimate of V™. The operator B”, on the other hand, samples one
next-state from the set of possible next states and uses the sampled state’s value
to compute a new estimate of V™ (shown in Figure 4.1). Therefore B” is called the
sample backup operator. Note that Vo € X, E{B7}(V) = BI(V). The RL algorithm
represented in Equation 4.4 can be derived directly from the successive approximation
(DP) algorithm (Chapter 3) by replacing the full backup operator, B™, by a random,
but unbiased, sample backup operator, B™.
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Figure 4.1 Policy Evaluation: Sample Backup. This figure shows the possible tran-
sitions for action m(x) in state x. The transition marked with a solid line represents
the actual transition when action w(x) is executed once in state x. Therefore, the
only information that a sample backup can consider is the payoff along that transition
and the value of state 2.

Equation 4.4 is a Jacobi iteration, and its asynchronous version can be written
as follows:
Asynchronous Robbins-Monro Policy Evaluation:

Virr(e) = Vile) - m(Va(e) — (B () + 1)) fore € Sy
Vit1(2) = Vi(z); forz € (X — S). (4.5)

The on-line version of Equation 4.5, i.e., where the sets S; = {z;} contain only
the current state of the environment is identical to the TD(0) algorithm commonly
used in RL applications (Sutton [106]). An asymptotic convergence proof for the
synchronous algorithm (Equation 4.4) can be easily derived from Dvoretzky’s theorem
presented in Appendix B. However, more recently, Jaakkola, Jordan and Singh [53]
have derived the following theorem for the more general asynchronous case (of which
the synchronous algorithm is a special case) by extending Dvoretzky’s stochastic
approximation results:

Theorem 5: (Jaakkola, Jordan and Singh [533]) For finite MDPs, the algorithm
defined by Equation 4.5 converges with probability one to V™ under the following
conditions:

1. every state in set X is updated infinitely often,
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2. Vg is finite, and
3. Vo € X; 2202 pi(x) = oo and 3.2, p? () < oo.

Sutton [106] has defined a family of temporal difference algorithms called TD()),
where 0 < A <1 is a scalar parameter. The TD algorithm discussed above is just one
algorithm from that family, specifically the TD(0) algorithm. See Jaakkola et al. [53]
for a discussion of the connection between stochastic approximation and the general
class of TD(A) algorithms. Also, see Section 5.1.4 in Chapter 5 of this dissertation for
further discussion about TD(A) algorithms. Hereafter, the name TD will be reserved
for the TD(0) algorithm.

4.3.2 Optimal Control

The optimal value function, V*, is the unique solution of the following system of
equations: Vz,

V(z) = max(R'(x)+7 ) P'(z.y)V(y)). (4.6)

a€A yex

Define the component corresponding to state = of a multi-dimensional function G(V)
as follows:

G.(V) = V(x)— max(R*(x) + 7 Z Pa,y)V(y))

a€A yex

The solution to the optimal control problem, V*, is the unique root of the nonlinear

function G(V).

Again, as for policy evaluation, assume that the agent does not have access to
a model of the environment and therefore cannot use the transition probabilities
in its calculations. The attempt to define a stochastic approximation algorithm
for solving the optimal control problem by following the procedure used in Sec-
tion 4.3.1 fails because the function G(V') is nonlinear. Specifically, if Y, (V) =
V(z) — maxzea(R*(2) + vV (y)), then E{Y,(V)} # G.(V), because the expectation
and the max operators do not commute. The solution to this impasse lies in a clever
trick employed by Watkins in his Q-learning algorithm.

Watkins proposed rewriting Equation 4.6 in the following expanded notation:
instead of keeping one value, V(x), for each state x € X, the agent stores | A| values for
each state, one for each action possible in that state. Watkins proposed the notation
Q(x,a) as the @Q-value for state-action pair (x,a). Figure 4.2 shows the expanded
representation. The optimal control equations can be written in (Q-notation as:

Qr.a) = B(0)+ X Pey)(max@(u.a)): Yiw.a) € (X x A). (17)

yeX

The optimal Q-values, denoted @)*, are the unique solution to Equation 4.7, and
further V*(x) = max,ea Q*(x, a).
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Figure 4.2 Q-values. This figure shows that instead of keeping just one value V(x)
for each state x, one keeps a set of Q-values, one for each action in a state.

An iterative relaxation DP algorithm can be derived in terms of the Q-values by
defining a new local full backup operator,

BAQ) = R'(@)+7 X P(e,y)(maxQly, ). (1.8)

yeX

Operator B%((Q)) requires a model of the environment because it involves computing
the expected value of the maximum Q-values of all possible next states for state-action
pair (2, a). Let (X, A)r € (X X A) be the set of state-action pairs updated at iteration
k. An algorithm called Q)-value iteration, by analogy to value iteration, can be defined
by using the new operator B(Q) as follows:

Asynchronous Q-value Iteration:

Qryr(z,a) = Bi(Qk)
= R%(z)+~ %P“(m,y)(ggz@k(y,a’)); for (z,a) € (X, A)x

Qr+1(z,0) = Qi(z,b); for (z,b) € (X x A) — (X, A)x). (4.9)

One advantage of asynchronous Q-value iteration over asynchronous value itera-
tion is that it allows the agent to select randomly both the state as well as the action
to be updated (asynchronous value iteration only allows the agent to select the state
randomly). A convergence proof for synchronous Q-value iteration takes the same
form as a proof of convergence for synchronous value iteration because the operator
B(Q) is also a contraction (see Appendix C for proof). For the asynchronous case the
proof requires the application of the asynchronous convergence theorem in Bertsekas
and Tsitsiklis [18].

Another advantage of using Q-values is that it becomes possible to do stochastic
approximation by sampling not only the state-action pair but the next state as well.
Define G2(Q) = R* () +7 X ex (P (2, y) maxyea Q(y,a’)). Further, define Y(Q) =
Q(z,a)— (RY(x)+~ymaxyea Q(y,a’)), where the next state y occurs with probability
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Figure 4.3  Sample Backup Operator. This figure shows the possible transitions
for action a in state x. The transition marked in a solid line represents the actual
transition that occurred on one occasion. The only information available for a sample
backup then is the payoff along that transition and the Q-values stored for state 2.

P(x,y). Note that E{Y*(Q)} = G%(Q). Following the stochastic approximation
recipe defined in Equation 4.2, the following algorithm can be defined:
Asynchronous Robbins-Monro Q-value Iteration:

Qk-l-l(xva) = Qk(xva) - pk(xva)yxa(Qk); for (xva) € (Xv A)k)
= Qk(xva) - pk(xva)(Qk(xva)
—(B*(2) + 7 max Qx(y, '),
Qr+1(z,0) = Qi(z,b); for (z,b) € (X x A) — (X, A)r). (4.10)

The agent does not need a model to compute Y,(Q)) because it can just execute action
a in state x and compute the maximum of the set of )-values stored for the resulting
state y (Figure 4.3).

Equation 4.10 is also an iterative relaxation algorithm of the form specified in
Equation 3.5 with a random sample backup operator B4(Q)) = R*(x)+y maxyea Q(y, a’)
that is unbiased with respect to B%(Q). The sample backup operator B2(Q)) is
shown pictorially in Figure 4.3, where instead of computing the expected value of
the maximum Q-values of all possible next states, it samples a next state with
the probability distribution defined by the state-action pair (x,a), and computes
its maximum Q-value. Note that F{B(Q)} = B(Q).
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The on-line version of Equation 4.10, i.e., where (X, A)ip1 = {(2¢,a4)} is the
QQ-learning algorithm invented by Watkins. As in the case of policy evaluation, an
asymptotic convergence proof for the synchronous version of Equation 4.10 can be
derived in a straightforward manner from Dvoretzky’s results. However, more re-
cently, Jaakkola, Jordan, and Singh [53] have proved convergence for the asynchronous
algorithm that subsumes the synchronous algorithm:

Theorem 6: (Jaakkola, Jordan and Singh [53]) For finite MDPs, the algorithm de-
fined in Equation 4.10 converge with probability one to Q* if the following conditions
hold true:

1. every state-action pair in (X x A) is updated infinitely often,
2. (g is finite, and
3. V(x,a) € (X x A); 2, pi(w,a) = 0o and 52, p2(z,a) < 0o.

4.3.3 Discussion

Convergence proofs for TD and Q-learning that do not use stochastic approxima-
tion theory already existed in the RL literature (Sutton [106] and Dayan [33] for TD,
and Watkins [118] and Watkins and Dayan [119] for Q-learning). But these proofs,
especially the one for Q-learning, are based on special mathematical constructions
that obscure the underlying simplicity of the algorithms. The connection to stochas-
tic approximation provides a uniform framework for proving convergence of all the
different RL algorithms. It also provides a conceptual framework that emphasizes the
main innovation of RL algorithms, that of using unbiased-sample backups, relative
to previously developed algorithms for solving MDTs.

Figure 4.4 graphs the relationship between iterative DP and RL algorithms that
solve the policy evaluation problem along the following two dimensions: synchronous
versus asynchronous, and full backups versus sample backups. Figure 4.5 does the
same for DP and RL algorithms that solve the optimal control problem. All of the
algorithms developed in the DP literature lie on the upper corners of the squares
in Figures 4.4 and 4.5. By adding the “sample versus full backup” dimension, RL
researchers have added the lower two corners to these pictures. Only the lower left-
hand corner (asynchronous and sample backup) contains model-free algorithms; all
the other corners must contain model-based algorithms (marked M).

Figure 4.6 shows a “constraint-diagram” representation of DP and RL algorithms
that makes explicit the increased generality of application of RL algorithms. It is a
Venn-diagram that shows the constraints required for applicability of the different
classes of algorithms presented in Chapters 3 and 4. It shows that on-line RL
algorithms are the “weakest” in the sense that they are applicable whenever any of
the other algorithms are applicable. The next level of off-line RL algorithms require
a model and can be applied whenever asynchronous DP and synchronous DP are
applicable. Of course, it is not clear that one would ever want to do off-line RL
instead of asynchronous DP. Section 4.4 studies that question. Asynchronous DP,
the next level, requires full backups and can be applied whenever synchronous DP
algorithms can be applied. Synchronous DP is the most restrictive class of algorithms.



41

Figure 4.4  Tterative Algorithms for Policy Evaluation. This figure graphs the
different DP and RL algorithms for solving the policy evaluation problem along two
dimensions: full backup versus sample backup, and asynchronous versus synchronous.
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Figure 4.5 Iterative Algorithms for Solving the Optimal Control Problem. This
figure graphs the different DP and RIL algorithms for solving the optimal control
problem along two dimensions: full backup versus sample backup, and asynchronous
versus synchronous.
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Figure 4.6 A Constraint-Diagram of Iterative Algorithms for Solving MDTs. This
figure is a Venn-diagram like representation of the constraints required for all the
different DP and RL algorithms reviewed in Chapters 3 and 4. Synchronous DP has
the largest box because it places the most constraints.
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Table 4.1 Tradeoff Between Sample Backup and Full Backup.

H Sample Backup ‘ Full Backup H
Cheap Expensive ‘

Noisy Informative ‘

4.4 'When to Use Sample Backups?

A sample backup provides a noisy and therefore less informative estimate than a
full backup. A natural question that arises then is: are there conditions under which
it can be computationally advantageous to use an iterative algorithm based on sample
backups over an algorithm based on full backups to solve the optimal control problem?
To simplify the argument somewhat, the basis of comparison between algorithms is
assumed to be the number of state transitions, whether real or simulated, required for
convergence. The number of state transitions is a fair measure because both sample
and full backups require one multiplication operation for each state transition (see

Equations 3.12, 4.10, 3.9 and 4.5).

The number of state transitions involved in a full backup at state-action pair (z, a)
is equal to the number of possible next states, or the branching factor for action a. A
sample backup always involves a single transition. In general, the number of possible
next states could be as high as |X|, and therefore a sample backup can be as much
as | X| times cheaper than a full backup. In summary, the increased information
provided by a full backup comes at the cost of increased computation, raising the
possibility that for some MDTs doing |X| sample backups may be more informative
than a single full backup (see Table 4.1). Note that the estimate derived from a single
sample backup (B(V')) is unbiased with respect to the estimate derived from a single
full backup (B(V)).

If multiple sample backups are performed without changing the Q-value function
@ (or V), it would reduce the variance of the resulting estimate, and thereby make
it a closer approximation to the estimate returned by a single full backup. However,
in general the value function changes after every application of a sample backup, and
therefore multiple updates with a sample backup could lead to a better approximation
to the optimal value function than one update with a full backup. Let us consider this
possibility in the following two situations separately: one where the agent is given
an accurate environment model to start with, and the other where the agent is not
provided with an environment model.

4.4.1 Agent is Provided With an Accurate Model

The relative speed of convergence of an algorithm based on sample backups
versus an algorithm based on full backups will in general depend on the order in
which the backups are applied to the state-action space. To keep things as even
as possible, this section presents results comparing synchronous off-line Q-learning
that employs sample backups and synchronous Q-value iteration that employs full
backups. Therefore the only difference between the two algorithms is in the nature
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of the backup operator applied to produce new estimates; both algorithms apply the
operators in sweeps through the state-action space.

Clearly if the MDT is deterministic, sample backups and full backups are identical,
and therefore Q-learning and Q)-value iteration are identical. For stochastic MDT's the
variance of the estimate based on a sample backup, say B%(Qx), about the estimate
returned by a full backup, BZ(Qk), is a function of the variance in the product
P(x,y)Vi(y), where the next state y is chosen randomly with uniform probability.
For the empirical studies presented in this section, it is assumed that the effect of
the value function on the variance is negligible and therefore only the effect of the
non-uniformity in the transition probabilities is important.

The relative performance of synchronous off-line QQ-learning and synchronous
Q-value iteration was studied on artificially constructed MDTs that are nearly deter-
ministic, but whose branching factor is exactly |X| for every state-action pair. The
MDTs were constructed so that for each state-action pair the transition probabilities
form a Gaussian on some permutation of the next-state set X. Because the problems
are artificial, the amount of determinism, or inversely the variance of the Gaussian
transition probability distribution, could be controlled to study the effect of decreasing
determinism on the relative speeds of convergence of the following two algorithms:

1. Algorithm 1 (Gauss-Sidel Q-value iteration):
for (2 =0; ? < number-of-sweeps; ¢+ +)
for each state-action pair
do a full backup

2. Algorithm 2 (Gauss-Sidel off-line Q-learning):
for (: =0; ¢ < (number-of-sweeps X |X|); ¢+ +)
for each state-action pair
do a sample backup

Figures 4.7, 4.8, 4.9 and 4.10 show the relative performance of Algorithms 1 and
2 for MDTs with 50 states, 100 states, 150 states, and 200 states respectively. Each
figure shows three graphs: the left-hand graph in the top panel shows the relative
performance when the transition probability Gaussian has 95% of its probability
mass concentrated on 3 states, the right-hand graph in the top panel shows the
relative performance when the transition probability Gaussian has 95% of its mass
concentrated on about 32% of the states, and the graph in the lower panel shows
the relative performance when the variance of the transition probability Gaussian is
designed so that 95% of the mass is concentrated on 65% of the states. For a fixed | X,
the increasing variance of the transition probability Gaussian is intended to reveal
the decreasing advantage of Algorithm 2 over Algorithm 1 as the problem becomes
less deterministic.

Each graph presents results averaged over 10 different runs with 10 different seeds
for a random number generator. The x-axis shows the number of sweeps for Algorithm
1. For each sweep of Algorithm 1, | X| sweeps of Algorithm 2 were performed. The
performance of the two algorithms was computed as follows. After each sweep through
the state space for Algorithm 1, and after every |X| sweeps for Algorithm 2, the
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Figure 4.7  Full versus Sample Backups for 50 state MDTs. This figure shows three
graphs: the upper left graph for MDTs that have 95% of the transition probability
mass concentrated on 3 randomly chosen next states, the upper right graph for MDT's
that have the transition probability mass concentrated on 32% of the states, and the

lower graph for MDT's that have the transition probability mass concentrated on 65%

of the states. The z-axis is the number of sweeps of Algorithm 1 (full backups). Note
that for each sweep of Algorithm 1, 50 sweeps of Algorithm 2 (sample backups) are
performed. The y-axis shows the average loss of the greedy policy. As expected the
sample backup algorithm outperforms the full backup algorithm. Also as the amount

of determinism is decreased the relative advantage of sample over full backups gets

smaller.
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Figure 4.8  Full versus Sample Backups for 100 state MDTs. This figure shows three
graphs: the upper left graph for MDTs that have 95% of the transition probability
mass concentrated on 3 randomly chosen next states, the upper right graph for MDT's
that have the transition probability mass concentrated on 32% of the states, and the
lower graph for MDT's that have the transition probability mass concentrated on 65%
of the states. The z-axis is the number of sweeps of Algorithm 1 (full backups). Note
that for each sweep of Algorithm 1, 50 sweeps of Algorithm 2 (sample backups) are
performed. The y-axis shows the average loss of the greedy policy. As expected the
sample backup algorithm outperforms the full backup algorithm. Also as the amount
of determinism is decreased the relative advantage of sample over full backups gets

smaller.
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greedy policy was derived and fully evaluated. The error value after each sweep is
the cumulative absolute difference between the value function of the greedy policy
and the pre-computed optimal policy, averaged over the 10 different runs. The y-axis
shows the error value.

Figures 4.7 4.8, 4.9 and 4.10 each show that Algorithm 2. which uses sample
backups, clearly outperforms Algorithm 1, which uses full backups, by a big margin.
Another expected result is that as the variance in the Gaussian transition probabilities
is increased, the relative advantage of Algorithm 2 reduces in each case. For example,
the ratio of the error value after the first sweep in Algorithm 1 to the error value
after | X| sweeps in Algorithm 2 in the 100-state MDT is about 60.0 for the most
deterministic problem, about 8.0 in the middle problem, and about 5.0 in the least
deterministic problems. A similar decline is noticed in the other three sets of MDTs.
Another effect to notice is that the relative advantage of Algorithm 2 over Algorithm
1 increases in ratio as the size of the MDT is increased, at least for the problem sizes
studied here.

4.4.2 Agent is not Given a Model

If the agent is not given a model a priori, an algorithm that uses full backups would
have to be adaptive, i.e., estimate a model on-line by using information about state
transitions achieved in the real environment. In such a case, because an algorithm that
uses full backups is still model-based, the relative advantages presented in the previous
section in favor of algorithms that use sample backups will continue to hold. However,
because the model is being estimated on-line, there are two additional reasons to
prefer an algorithm that uses sample backups. First, an algorithm that uses sample
backups can avoid the computational expense of building a model. Second, during
the early stages of learning, the model will be highly inaccurate and can interfere
with learning the value function by adding a “bias” to the full backup operator (see

Barto and Singh [12, 11]).

Nevertheless, in general it is difficult to predict which of the two algorithms,
one based on sample backups, and the other based on full backups on an estimated
model, will outperform the other. The term adaptive full backup is used to denote a
full backup performed on simulations from an estimated model. It is instructive to
contrast both the sample backup algorithm and the adaptive full backup algorithm
with a second non-adaptive full backup algorithm that is assumed to have access to
the correct model, that is, to compare the following three backup operators:

Sample backup: = R*(x) + 7 max Qy,a)
a'e
Adaptive full backup: = R*(z)+7 > []5“(:1?, v) WSXQ(ZJ, a')]
yeX ¢
Non-adaptive full backup: = R*(2)+v > [P*(z,y) WSXQ(ZJ, a')]
yeX ¢

where P are the estimated transition probabilities that are learned on-line by the
adaptive full backup algorithm.
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Figure 4.9 Full versus Sample Backups for 150 state MDTs. This figure shows three
graphs: the upper left graph for MDTs that have 95% of the transition probability
mass concentrated on 3 randomly chosen next states, the upper right graph for MDT's

that have the transition probability mass concentrated on 32% of the states, and the
lower graph for MDT's that have the transition probability mass concentrated on 65%

of the states. The z-axis is the number of sweeps of Algorithm 1 (full backups). Note
that for each sweep of Algorithm 1, 50 sweeps of Algorithm 2 (sample backups) are

performed. The y-axis shows the average loss of the greedy policy. As expected the
sample backup algorithm outperforms the full backup algorithm. Also as the amount
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Figure 4.10 Full versus Sample Backups for 200 state MDTs. This figure shows three
graphs: the upper left graph for MDTs that have 95% of the transition probability
mass concentrated on 3 randomly chosen next states, the upper right graph for MDT's

that have the transition probability mass concentrated on 32% of the states, and the
lower graph for MDT's that have the transition probability mass concentrated on 65%
of the states. The z-axis is the number of sweeps of Algorithm 1 (full backups). Note
that for each sweep of Algorithm 1, 50 sweeps of Algorithm 2 (sample backups) are
performed. The y-axis shows the average loss of the greedy policy. As expected the
sample backup algorithm outperforms the full backup algorithm. Also as the amount

of determinism is decreased the relative advantage of sample over full backups gets

smaller.
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Table 4.2  Bias-Variance Tradeoff in RL and Adaptive DP

H Stage ‘ Sample backup ‘ Adaptive full backup H

early | no bias high bias
low-high variance | no variance

middle | no bias medium bias
low-high variance | no variance

late no bias low bias

low-high variance | no variance

The following table summarizes the relative error in the estimates provided by
the sample backup and the adaptive full backup with respect to a non-adaptive full
backup as function of the stage of learning. Table 4.2 states that the sample backup is
always unbiased with respect to the estimate provided by a full backup on a correct
model. The variance in the sample backup can be low to high depending on the
“skew” in the value function as well as in the transition probabilities. On the other
hand, the adaptive full backup will have a high bias with respect to the non-adaptive
case in the early stages of learning because of the large error in the estimated model,
but as the estimate model becomes better over time, the bias will go away. Since the
full backup operator computes expected values there is no variance in the estimate
provided by the adaptive full backup operator.

The entries in Table 4.2 can lead to the conclusion that an algorithm that esti-
mates a model, but uses sample backups during the early stages of learning, and then
switches to doing full backups using simulated experience with the estimated model
when its bias gets small enough, could get the best of both worlds. This conclusion is
based on the fact that depending upon the bias and variance values it can be better
to sample from a biased source with low variance than an unbiased source with high
variance. However, it is unclear as to how the crossover point, i.e., the point at which
to switch from sample backups to full backups, could be determined in practice,
since the bias and the variances of the backup operators are not known. It may be
possible to compute estimates of the bias and variance of the backup operators on-line
to determine the crossover point, but in general it is unclear whether the potential
savings will be more than the computational expense involved in doing so. In any
case, the potential savings of such a hybrid method will be determined in large part
by how early in the learning process the crossover point is reached.

4.4.3 Discussion

It was shown in this section that sample backup algorithms are likely to have
significant advantage over full backup algorithms in MDTs that are nearly determin-
istic and yet have a large branching factor averaged over state-action pairs. While
this does not conclude the ongoing debate over the relative merits of model-free
versus model-based RL methods, it does provide additional evidence that there exist
problems where model-free algorithms are more efficient than model-based ones.
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4.5 Shortcomings of Asymptotic Convergence Results

A major limitation of most! current theoretical research on RL, including the
research presented in this chapter, is its dependence on the following two assumptions:

1. that a lookup-table is used to represent the value (or Q-value) function,
2. that each state (or state-action pair) is updated infinitely often.

Both of these assumptions are unrealistic in practice.

Several researchers, including this author, have used function approximation
methods other than lookup-tables, e.g., neural networks, to represent the value (or
Q-value) function. With non lookup-table representations the following two factors
could prevent convergence to V* (or Q*):

e V* (or ) may not be in the class of functions that the chosen function ap-
proximation architecture can represent. This is not possible to know in advance
because V* (and (*) is not known in advance. However, constructive function
approximation approaches (e.g., Fahlman and Lebiere [40]) may be able to
alleviate this problem.

e A more fundamental issue is that a non lookup-table function approximation
method can generalize an update in such a way that the essential “contraction-
based” convergence of DP-related algorithms may be thwarted.

This raises the following important question: if practical concerns dictate that value
functions be approximated, how might performance be affected®? Is it possible that,
despite some empirical evidence to the contrary (e.g., Barto et al. [13], Anderson [2],
Tesauro [112]), small errors in approximations could result in arbitrarily bad per-
formance in principle? If so, this could raise significant concerns about the use of
function approximation in DP-based learning.

4.5.1 An Upper Bound on the Loss from Approximate Optimal-Value
Functions

This section extends a result by Bertsekas [17] which guarantees that small errors
in the approximation of a task’s optimal value function cannot produce arbitrarily
bad performance when actions are selected greedily. Specifically, the extension is in
deriving an upper bound on performance loss which is slightly tighter than that

!Sutton [106] and Dayan [33] have proved convergence for the TD algorithm when linear
networks are used to represent the value functions. Bradtke [20] adapted Q-learning to solve
linear quadratic regulation (LQR) problems and proved convergence under the assumption that
a linear-in-the-parameters network is used to store the Q-value function.

2Even with lookup-table representations, in practice it may be difficult to visit every state-action
pair often enough to ensure convergence to the optimal value function. Thus the issue of how
performance gets affected by using approximations to V* is relevant even to lookup-tables.
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Figure 4.11 Given V', an approximation within € > 0 of V*, derive the corresponding
greedy policy 7. The resulting loss in value, Ly = V* — V'V is bounded above by

(27e)/(1 — ).

in Bertsekas [17], and in deriving the corresponding upper bound for the newer
QQ-learning algorithm. These results also provide a theoretical justification for a
practice that is common in RL. The material presented in this section was developed
in collaboration with Yee and is reported in Singh and Yee [103].

Policies can be derived from value functions in a straightforward way. Given value
function V, a greedy policy 7y can be defined as

(1) = argmax,c, | R'(x) +5 3 P*(a,y) V(y)|
yeX

where ties for the maximum action are broken arbitrarily. Figure 4.11 illustrates the
relationship between the evaluation of policies and the derivation of greedy policies.
A greed policy 7y gives rise to its own value function V™7, denoted simply as VV. In
general, 1 £ V'V, ie., the value function used for deriving a greedy policy is different
from the value function resulting from the policy’s evaluation. Equality between 1%
and VV occurs if and only if V is optimal, in which case any greedy policy will be
optimal.

For a greedy policy 7y derived from V, an approximation to V*, define the loss
function L such that Vo € X,

Ly(x) = V(z) = V().

Ly () is the expected loss in the value of state x resulting from the use of policy
7y instead of an optimal policy. Note that Ly(x) > 0 because V*(x) > Vip(z). The
following theorem gives an upper bound on the loss L.

Theorem 7: Let V* be the optimal value function for a discrete-time MDT having
finite states and actions and an infinite, geometrically discounted horizon, v € [0, 1).

If V is a function such that Vo € X,
for V, then Vz,

V*(x) — ‘N/(l')‘ <€, and 7y is a greedy policy

2ve
Ly(z) < e
The upper bound of Theorem 7 is tighter than the result in Bertsekas [17] by a factor of
v (Cf. [p. 236, #14(c)]). One interpretation of this result is that if the approximation
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to the optimal value function is off by no more than ¢, then the average worst-case
loss per time step cannot be more than 2ve, under a greedy policy.

Proof: There exists a state z that achieves the maximum loss: dz € X, Va €
X, Ly(2z) > Ly(x). For state z consider an optimal action, a = 7*(z), and the action
of 7y, b = 7y (2). Because 7y is a greedy policy for V, b must appear at least as good
as a:

R (2) 4+~ PUzy)V(y) < R(2)4+7 Y P(zy) V(y) (4.11)

yeX yeX

R'(z) = R'(2) < 73 [P'(=zy) (Vi) + €)= Pilz,y) (V¥(y) —©)]

Y

R'(2) = R'(2) < 2ye+4 ) [P2.)Viy) = P'(2,y) V()] (412)

IA

The maximal loss is

Ly(z) = Vi(z)=VY(2)

Substituting from (4.12) gives

Lo(2) < 2ye+9 Y [PP(2,9) Vi(y) = P'(z,y) VA(y)

+P(2,) VA(y) = P(2,9) VY ()]
Ly(z) < 2ye+7 Y Plzy) Vi) - VY (y)]

Ly(z) < 2ye+73 P'(zy) Ly(y)
v
Because, by assumption, Yy € X, Ly (2) > Ly(y),

Liy(z) < 2yed ) P'(zy) Ly(2)
Yy
2ve

Ly(z) < -

Q.E.D.

This result extends to a number of related cases.

4.5.1.1 Approximate payoffs

Theorem 7 assumes that the expected payoffs are known exactly. If the true
expected payoffs R*(z) are approximated by R*(x), the upper bound on the loss is
as follows.



Corollary 7A: If Ve € X,
then Vz,

(x) — ‘N/(l')‘ < ¢ and Va € A,

27ve 4+ 2c

Lyle) s ——

Y

where 7 is the greedy policy for V.
Proof: Inequality (4.11) becomes

R4 Py Vi) S B () +4 3 Pilzy) Vi),

yeX yeX

and (4.12) becomes
R(2) = R'(2) < 2ye + 20 + 4 Y [P(2,9) Vi(y) — P(2,9) V'(y)]
y
Substitution into (4.13) yields the bound. Q.E.D.

4.5.1.2 Q-learning

If neither the payoffs nor the state-transition probabilities are known, then the
analogous bound for Q-learning is as follows. Evaluations are defined by

Q" (z1,a) = R (x¢) + yEA{ V(211 },

where V. (z) = max, Q™ (x,a). Given function Q, the greedy policy T is defined by

() = argmax, e, Q(z, a).

The loss is then expressed as
Lylz) = Q(x, 7*(2)) — Qla, mg(2)).

Corollary 7B: If Va € X, Va € A(x),

(x,a) — Q(:Jc,a)‘ < e, then Vz,

LQ(:L') < T

Proof: Inequality (4.11) becomes Q(Z, a) < Q(Z, b), which gives

Q(z,a) —
+VZP“ (z,y) V*(y) —

R'(2) = R'()

(Zb) €
Z—I—Z (z,y) V*(y) + €

2e+9 Y [Plz,y) Viy) — Pz y) VZ(y)].

(VANPVAN

IA

Substitution into (4.13) yields the bound. Q.E.D.
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4.5.2 Discussion

The bounds of Theorem 7 and its corollaries guarantee that the performance of
DP-based learning approaches will not be far from optimal if (a) good approximations
to optimal value functions are achieved, (b) a corresponding greedy policy is followed,
and (c) the discount factor, ~, is not too close to 1.0. The analogous result holds for
indefinite horizon, undiscounted MDTs (as defined in Barto et al.[10]). Although this
result does not address convergence, it nevertheless helps to validate many practical
approaches to DP-based learning that use approximations.

Theorem 7 does not directly address policy-derivation methods other than the
indicated greedy one. For other methods, it is not clear, in general, what criteria to
place on approximations of value functions because the criteria may depend upon the
specifics of a derivation method. Greedy policy derivation allows one to specify an
error-criterion on approximations, i.e., that they be within ¢ of optimal, under the
max norm.

4.5.3 Stopping Criterion

Another unrealistic requirement to ensure convergence to V* (or Q*) is that each
state (or state-action pair) be visited infinitely often. However, the real goal is not
to converge to the optimal value function, but to derive an optimal policy. Indeed,
as stated in the following theorem, for every finite MDT there is a spherical region
(ball) around the optimal value function such that the greedy policy with respect to
any value function in that ball is optimal.

Theorem 8: For any given finite action MDT, 3¢ > 0, such that YV e (R+)X,
where ||‘N/ — V*|e < ¢, any policy that is greedy with respect to V is optimal.

Proof: For all x € X, and Va € A, define,

m(z,a) = (R™O(2)+5 3 P72, y)V(y)) — (R (2) +7 3 P(a,y)V7(y)),

yeX yeX
= Q% (z,7"(2)) — Q" (x,a).

Note that m(x,a) > 0 by definition. Let II*(x) be the set of optimal actions in state
x. Define

2ve = ggrél)?{ae(j{llr[%(gg)){m(x’a)}}' (4.14)
Clearly € will only be zero iff all stationary policies are optimal, in which case € can
be set to any value greater than zero. Therefore by the definition of ¢, Vo € X,
and Ya € (A —1I"(2)), Q*(x,7*(x)) — Q*(x,a) > 2ve > 0. Let () be the Q-value
function derived from the approximation V' that is assumed to satisfy the following:
|V — V*||e < €. Therefore, for a € (A — II*(x)):
Q(z,a) = RY(z)+~ > Pz, y)V(y)

yeX

< RYx)+7 Y PYz,y)(V*(y) +¢)

yeX
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< [RY@) 4y 2 P ) V()] + e

yeX
< Q7 (x,a)+ e
< Qe (x)) e
< R"O(z)+4 Z;(P“(xay)‘/*(y) — e
ye

< RTO(@) 443 P'(,y)(V(y) + €) — e

< Qz,77(2)),

which implies that the greedy actions with respect to V with e defined in Equation 4.14
will be elements of the set IT*(x).
Q.E.D.

Figure 4.12  Mappings between Policy and Value Function Spaces. The greedy
policy derivation mapping from value function space to policy space is many-to-one,
nonlinear, and highly discontinuous. The policy evaluation mapping from policy
space to value function space is many-to-one but linear. This makes it very difficult
to discover stopping conditions.

It is possible that long before infinite visits to every state, the policy greedy with
respect to the estimate of the optimal value function becomes optimal, e.g., when the
estimated value function is the ball specified in Theorem 8. Unfortunately, in RL
algorithms there is no general way to detect the iteration at which the greedy policy
becomes optimal. It would be very beneficial to discover “stopping conditions” for RL
algorithms which if met would indicate that with high probability the greedy policy
derived from the current estimate of the value function would be optimal or close to
optimal.
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As seen in Section 4.5.1, the process of characterizing the possible loss from an
approximation in value function space requires mapping the approximation into policy
space and back into value function space (cf. Figures 4.11 and 4.12). This makes the
discovery of stopping conditions hard because the mapping from the space of value
functions to the space of stationary policies is many-to-one (Figure 4.12), and because
it is non-linear and full of discontinuities. While the policy evaluation mapping from
policy space to value function space is linear, it is also many-to-one. Another factor
that complicates matters is that RL algorithms use sample backups, which are noisy
and therefore only a probabilistic argument can be made in the first place.

4.6 Conclusion

This chapter establishes an important connection between stochastic approxima-
tion theory and RL and shows how RL researchers have added the sample backup
versus full backup dimension to the class of iterative algorithms for solving MDTs.
It provides empirical evidence that at least for certain MDTs, specifically those that
are nearly deterministic and yet have a high branching factor, doing sample backups
may be more efficient than doing full backups. Some preliminary theoretical work is
presented on two of the pressing questions left unanswered by asymptotic convergence
results: how do approximations affect convergence, and what are suitable stopping
conditions. It is shown that minimizing max-norm distance to V* is a good error
criteria for function approximation, both because getting close to V* will mean that
the resulting greedy policy cannot be arbitrarily bad, and because there is a ball
around V* within which all greedy policies are optimal. The rest of this dissertation
is focused on developing new RL architectures that address more practical concerns:
learning multiple RL tasks efficiently, and ensuring safe performance while learning
on-line.



CHAPTER 5

SCALING REINFORCEMENT LEARNING:
PRIOR RESEARCH

While RL algorithms have many attractive properties, such as incremental learn-
ing, a strong theory, and proofs of convergence, conventional RL architectures are
slow enough to make them impractical for many real-world applications. Much of
the early developmental work in R focused on establishing an abstract and general
theoretical framework. In this early phase, RL architectures that used very little
task-specific knowledge were developed and applied to simple and abstract problems
to illustrate and help understand RL algorithms (e.g., Sutton [106], Watkins [118]).

In the 1990s RL research has moved out of the developmental phase and is increas-
ingly focused on complex and diverse applications. As a result several researchers
are investigating techniques for reducing the learning time of RIL architectures to
acceptable levels. Some of these acceleration techniques are based on incorporating
task-specific knowledge into RL architectures. This chapter presents a brief survey
of prior research on scaling RL algorithms followed by a preview of three approaches
developed in this dissertation. The term “scaling RL” is used broadly to include any
technique that extends the range of applications to which RL architectures can be
applied in practice.

5.1 Previous Research on Scaling Reinforcement Learning

This section presents a review of research on scaling RL from the abstract perspec-
tive developed in Chapters 3 and 4. Specifically, the view of RL. and DP algorithms
as iterative relaxation algorithms allows us to focus on the properties of the update
equation to the exclusion of all other detail. Five aspects of the prototypical update
equation

Vir(2) = Vi(@) + pi(@) (B (Vi) = Va()),

are important for discussing the issue of scaling in lookuptable-based RI architectures.
For the update equation, these five aspects are:

1. The “quality” of information provided by the backup B,.
2. The order chosen in which the update equation is applied to the states x.

3. The fact that in each application of the update equation the value of only the
predecessor state x (or state-action pair) is updated.
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4. The fact that in each application of the update equation information is trans-
ferred only to a one-step neighbor (from the successor state to the predecessor
state).!

5. The learning rate sequence {py(z)}.

The five aspects are also relevant for any algorithm that updates Q-values. The
different approaches to scaling RL that are reviewed in this chapter are divided
into five classes based on which of the five aspects listed above is addressed in each
approach. Some of the algorithms reviewed in this section fall into more than one
class.

5.1.1 Improving Backups

Researchers have studied at least three different ways of improving the quality of
information provided by a backup: combining multiple estimators in a single backup,
making the payoff function more informative, and learning models so that the full
backup operator can be used instead of the sample backup operator. The DP and
RL algorithms defined in Chapters 3 and 4 use one-step estimators in their backup
operators. Sutton [106] extended the TD algorithm defined in Section 4.3.1 to a family
of algorithms called TD(A), where 0 < A < 1 is a scalar parameter. For 0 < A < 1,
TD(A) combines an infinite sequence of multi-step (n) estimators in a geometric sum
(cf. Watkins [118]). In general, as one increases n in the n-step estimator, the value
returned has a lower bias but may have a larger variance. Empirical results have
shown that TD(X) can outperform TD if A is chosen carefully (Sutton [106]).

Whitehead [125] developed an approach he called learning with an external critic
that assumes an external critic that knows the optimal policy in advance. The external
critic occasionally rewards the agent when it executes an optimal action. This reward
is in addition to the standard payoff function. The combined payoff function is more
informative, and in fact it reduces the multi-stage MDT to a single-stage MDT.
Whitehead demonstrated that this technique can greatly accelerate learning. Building
RL architectures that are capable of using multiple sources of payoffs is an important
research direction, particularly in light of the fact that human beings and animals
can, and routinely do, use a rich variety of global and local evaluative feedback in
addition to supervised training information.

Another technique for improving the quality of information returned by a backup
is to use system identification methods to estimate a model on-line and to use
algorithms that employ full backups on the estimated model. Several researchers
have used such indirect control methods to solve RL tasks (e.g., Moore [78]) and
it is also the usual method in classical Markov chain control (e.g., Sato et al. [91]).
However as argued in Chapter 4 (Section 4.4.1), architectures that start by doing
sample backups and switch to doing full backups using the estimated model at an
appropriate time may be able to exploit the bias-variance trade off between sample
and adaptive full backups.

!The TD(A) algorithm is an exception.
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5.1.2 The Order In Which The States Are Updated

The order in which the state-update equation is applied to the state space of an
MDT does not effect asymptotic convergence of RL and asynchronous DP algorithms
as long as every state (state-action pair) is updated infinitely often. The order in
which the states are updated can, however, dramatically affect the rate of conver-
gence. There are two separate cases to consider here: the model-based case and the
model-free case. In the model-based case the agent can apply the update equation to
an arbitrary state in the environment model. On the other hand, in the model-free
case the agent is constrained to apply the update equation to the current state of the
environment. At best, the agent can influence the future states of the environment
by the actions it executes — the actual state trajectory will however also depend
on chance and on the unknown transition probability distributions for the selected
actions. These constraints make it difficult to optimize the order in which states
should be visited in the model-free case.

5.1.2.1 Model-Free

Another complicating factor in the model-free case is that the agent is not only
trying to approximate the optimal value function but also simultaneously controlling
the real environment. The agent has to tradeoff the need to select non-greedy actions
that could accelerate learning with the need to exploit the greedy solution to maximize
current payoffs. Therefore, the agent cannot choose actions from the sole perspective
of learning the value function in as few updates as possible. This dilemma is called
the exploration versus exploitation tradeoff (Barto et al. [10], Thrun [113, 114]). The
exploration strategy adopted by an agent determines the order in which the states
are visited and updated.

Exploration:

A simple strategy adopted by many researchers is to execute a non-stationary and
probabilistic policy defined by the Gibbs distribution over the Q-values (Watkins [118],
Sutton [107]). The probability of executing action a in state = at time step ¢ is:

P(a|z,t) = %, where I'; is the temperature at time index ¢. The algorithm

starts with a low temperature and gradually increases the temperature over time. The
ratio of the number of exploration steps to the number of exploitation steps is high
in the beginning and falls off with increasing temperature. This author has found
that the above simple strategy can be improved by implementing a version in which
the temperature schedule is not preset, but adapted on-line based on the agent’s
experience.

Another simple, yet effective, approach in the model-free case has been to use
optimistic initial value functions (Sutton [107], Kaelbling [60]). In such a case, parts
of the state space that have not been visited will have higher values than those
that have been visited often. The greedy policy will then automatically explore
unvisited regions of the state space. Barto and Singh [12] developed an algorithm
that keeps a frequency count of how often each action is executed in each state (see
also Sato et al. [91]). If an action is neglected for too long its execution probability
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is increased. The effect is to ensure that every action is executed infinitely often in
each state for ergodic MDTs. Kaelbling [60] has developed an algorithm based on
interval-estimation techniques that maintains confidence intervals for all actions. The
action with the highest upper bound on expected payoft is selected for execution.

Bias in Policy Selection:

Some model-free RL architectures control the order in which states are updated
by using task-specific knowledge to bias the policy selection in such a way as to direct
the state trajectories into a useful and informative part of the state space. Clouse
and Utgoff [28] have developed an architecture in which a human expert monitors the
performance of the RL agent. If the agent is performing badly, the expert replaces
the agent’s action by an optimal action. They demonstrated that if the human expert
carefully selects the states in which to offer advice to the agent, very little supervised
advice may be needed to improve dramatically the learning speed (see, also Utgoff

and Clouse [116]).

Another technique for biasing the policy selection mechanism is to use a nominal
controller that implements the best initial guess of the optimal control policy. Ex-
ploration can then be confined to small perturbations around the nominal trajectory
thereby reducing the number of state-updates performed in regions of the state space
that are unlikely to be part of the optimal solution. Whitehead [125] has developed
an architecture called learning by watching where an agent observes the behavior of
an expert agent and shares its experiences. The learning agent does state-updates on
the states experienced by the expert. Lin’s [66] architecture stores the experience of
the agent from the start to the goal state and performs repeated state-updates on the
stored states. The above algorithms focus state-updates on parts of the state space
that are likely to be a part of the optimal solution.

5.1.2.2 Model-Based

There are two subcases of the model-based RL case: a) the agent estimates a
model on-line, and b) the agent is provided with a complete and accurate model of
the environment. In subcase a, the the agent must explore the real environment
to construct the model efficiently and that can conflict with exploitation, raising a
different kind of exploration versus exploitation tradeoff. Schmidhuber [93] and Thrun
and Moller [114] have developed methods that explicitly estimate the accuracy of the
learned model and execute actions taking the agent to those parts of the state space
where the model has a low accuracy.

In both subcases a and b there is still the question of exploration, only unlike
the model-free case the agent is not constrained by the dynamics of the environment.
Moore and Atkeson [79] and Peng and Williams [82] independently developed an
algorithm that estimates an inverse model and uses it to maintain a priority queue of
states. The states in the priority queue are ordered by the estimated magnitude by
which their value would change if the update equation were applied to those states.
The agent uses whatever time it has between executing any two consecutive actions
in the real environment to update the values of as many states as it can by using
simulated experience from the estimated model. This architecture can significantly
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outperform conventional RL architectures because it focuses the updates on states
where they have the most effect.

5.1.3 Structural Generalization

The third group of approaches for scaling RL: address the structural generalization
problem, i.e., the problem of generalizing the value estimates across the state space.
Such approaches use the information derived in a single backup to update the value
of a set of states that are "similar in structure” to the predecessor state. Several
researchers have achieved this by using function approximation methods other than
lookup-tables, e.g., neural networks, to store and maintain the value function (cf.
Chapter 6, see, also Lin [66]). Supervised learning methods such as the backprop-
agation algorithm (Rumelhart et al. [88]) can be used to update the parameters of
the function approximator. Because these function approximators have fewer free
parameters than do lookup-tables, each application of the update equation affects
the value of a set of states. The set will depend on the generalization bias of the
function approximator. The main disadvantage of this approach is that there is no
theory for picking a function approximator with the right generalization bias for the
RL task at hand. The wrong generalization bias can prevent convergence to the
optimal value function and lead to sub-optimal solutions.

Other researchers are exploring techniques for generalizing the values in state
space in a way that takes the dynamics of the environment and the payoff function into
account. Yee et al. [129] developed a method that uses a symbolic domain theory to do
structural generalization. After every training episode, a form of explanation-based
generalization (Mitchell et al. [76]) is used to determine a set of predecessor states that
should have the same value. Any errors in generalization are handled via a mechanism
for storing exceptions to concepts. Mitchell and Thrun [75] extended this approach
to situations where a symbolic domain theory may be unavailable. They use on-line
learning experiences to estimate a neural-network based environment model. Network
inversion techniques are used to determine the slope of the value function in a local
region around the predecessor state. The value function network is then trained to
implement that slope. Both Yee et al. and Mitchell and Thrun demonstrate greatly
accelerated learning.

Other researchers have developed approaches that start with a coarse resolution
model of the environment and selectively increase the resolution where it is needed.
Moore [78] uses the trie data structure to store a coarse environment model. A DP
method is used to find a good solution to the abstract problem defined by the coarse
model. The trajectory that the agent would follow if that solution were implemented
is determined and the states around that trajectory are further subdivided. This
two-step process is repeated until the agent finally finds a good solution for the
underlying physical problem. Moore showed that his approach develops a model
that has a high resolution around the optimal trajectory in state space and a coarse
resolution elsewhere (see, also Yee [128]). Chapman and Kaelbling [26] developed
an algorithm that builds a tree structured Q-table. Each node splits on one bit of
the state representation, and that bit is chosen based on its relevance in predicting
short-term and long-term payoffs. Relevance is measured via statistical tests. Both
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the above architectures can lead to a much smaller state space and therefore to great
savings in the number of updates needed for deriving a good approximation to the
optimal policy.

5.1.4 Temporal Generalization

The depth of an MDT can be defined as the average over the set of start states
of the expected number of actions executed to reach a goal state when the agent
follows an optimal policy. For problems that have a high “depth”, conventional
RL architectures can take too long to propagate information from the goal states
backwards to states that are far from the goal states. The fourth scaling issue
concerns the temporal generalization problem, i.e., the problem of doing backups that
transfer information among states that are not one-step neighbors. Few researchers
have developed RL architectures that explicitly address the need to do temporal
generalization. Barto et al.’s [13] used eligibility traces to update states visited many
steps in the past. Sutton [106] developed a family of algorithms called TD() that use
multi-step backup operators. Watkins [118] defined a multi-step version of Q-learning.
All these approaches are model-free.

Dayan [34] and Sutton and Pinette [111] developed an algorithm that tackles
the temporal generalization problem in policy evaluation problems by changing the
agent’s state representation. It learns to represent the ¢'* element of the state set by
the ¢ row of the matrix (I —4[P]™)~'. With this new representation of the state
set, the value of a state under policy 7 is equal to the inner product of the vector
representation of that state with the payoff vector because V™ = (I — ~[P]")"'R".
This achieves “perfect” temporal abstraction because the depth of the new problem
defined on the altered state representations is always one. Unfortunately, the above
method is limited to the policy evaluation problem.

Several of the architectures that do structural generalization by building coarse
environment models also implicitly do some temporal abstraction. One of the con-
tributions of Chapter 7 of this dissertation is to separate the distinct but often
confounded issues of structural and temporal abstraction. Chapter 7 presents a hier-
archical architecture that achieves temporal abstraction without doing any structural
abstraction.

5.1.5 Learning Rates

The fifth aspect of the update equation that affects rate of convergence is the
learning rate sequence {pg(x)} for each state x. The only necessary conditions on
the learning rate sequence for RL algorithms are those derived from the stochastic
approximation theory, namely that Va, 3, pr(z) = oo, and that 3=, pi(z) < oo (cf.

Section 4.3). Most researchers use py(z) = f(nkl(x)), where f(-) is a linear function,

and ng(x) is the number of times state = got updated before the &' iteration. Most
researchers optimize the parameters of the function f by trial and error. Another
approach would be to use the experience of the agent to adapt the learning rate on-
line. Kesten’s [61] method for accelerating stochastic approximation can be adapted
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to do on-line adaptation of individual learning rates. For each state, the sign of the
last change in its value is stored. For each state, the learning rate is kept constant
until the sign of the change in that state’s value, flips, say at iteration ¢, at which
point the learning rate is dropped to f(%)2 This author’s experience has been
that Kesten’s method accelerates the rate of convergence of RI algorithms, and that
it removes some of the burden of the trial and error search for the best learning rate

parameters.

5.1.6 Discussion

Only the approaches to scaling RL that fell into one of the five abstract categories
stated at the beginning of this section were reviewed above. By necessity, this chapter
does not do justice to the algorithms mentioned, not is it an exhaustive survey of all
the different approaches to scaling RL. There are other general approaches to scaling
RL outside the categories considered here, e.g., using “shaping” techniques to guide
the agent through a sequence of tasks of increasing difficulty culminating with the
desired task (e.g., Gullapalli [48]), and hierarchical and modular RL architectures that
use the principle of divide and conquer. Some of these approaches are discussed in
later chapters because they are more closely related to the RL architectures developed
in this dissertation.

5.2 Preview of the Next Three Chapters

The research presented in Chapters 6, 7 and 8 is motivated by two related
concerns: the need to accelerate learning in RL architectures, and the need to develop
RL architectures for agents that have to learn to solve multiple control tasks. The
effort to build more sophisticated learning agents for operating in complex environ-
ments will require handling multiple complex tasks/goals. While building multi-task
agent architectures may introduce new hurdles, it also offers the opportunity to
use knowledge acquired while learning to solve the early tasks to accelerate the
learning of solutions for later tasks. It is the thesis of the next three chapters that
techniques allowing transfer of training across tasks will be indispensable for building
sophisticated autonomous learning agents.

5.2.1 Transfer of Training Across Tasks

It is possible to build a RL agent that has to learn to solve multiple tasks by simply
having a separate RL architecture learn the solution to each new task. However, given
the fact that conventional RL architectures are too slow for many single complex tasks,
it is unlikely that the “learn each task separately” architecture can learn multiple
complex tasks fast enough to be of general use. Therefore, the ability to achieve
transfer of training across tasks must play a crucial role in building useful multi-task

2Sutton [109] has adapted Kesten’s method for adapting learning rates for individual parameters
in a function approximator (see, also Jacobs [54]).
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agent architectures based on RIL. Multi-task agents can also achieve computational
and monetary savings over multiple single-task agents simply by sharing hardware
and software across tasks.

Transfer of training across tasks is different from the phenomenon of general-
ization as it is commonly studied in supervised learning tasks (Denker et al. [37]).
Generalization refers to the ability of a learner to produce (hopefully correct) outputs
when tested on inputs that are not part of the training set. Typically generalization
is studied within a single task that can be thought of as a mapping from some input
space to an output space. Transfer of training across multiple tasks refers to the ability
of a learner to approximate the correct outputs for new tasks, i.e., new input-output
mappings.® In the context of RL, transfer of training would enable an agent to use
previous experience to better approximate optimal behavior in new RL tasks.

Building learning control architectures to achieve transfer of training across an
arbitrary set of tasks is difficult, if not impossible. Consequently the approach taken
in this dissertation is to focus on a constrained but useful class of RL tasks. All three
modular architectures presented in the remainder of this dissertation transfer training
from simple to complex tasks. Chapter 6 presents an architecture that uses the
value functions of the simple tasks as building blocks for efficiently constructing value
functions for more complex tasks. Chapter 7 uses the solutions of simple tasks to build
abstract environment models. These abstract models can predict the consequences of
executing multi-step actions and thereby achieve temporal generalization. Transfer
of training is achieved by using these abstract models to learn the value functions for
subsequent complex tasks. Finally, Chapter 8 uses the closed-loop policies found for
the simpler tasks to redefine the actions for subsequent complex tasks. By suitably
designing the simple tasks, the policy space for the complex tasks can be constrained
to accelerate learning and to exclude “undesired” policies.

5.8 Conclusion

Most, if not all, the research work of other authors reviewed here was developed
in the context of agents that have to learn to solve single tasks. The issue of achieving
transfer of training is not even present in the single task context. In the multi-task
context, transfer of training is orthogonal to the five abstract dimensions along which
prior research on scaling RL. was discussed. Therefore, many of the ideas behind the
reviewed algorithms can also be used in multi-task agent architectures to derive the
same benefits that they provide in the single task context.

3While “static” generalization as it is commonly studied can certainly be a mechanism for
achieving transfer of training across tasks, the focus in this dissertation is on achieving transfer
by constructing solutions to new tasks by “stringing together in time” pieces of solutions from other
tasks.



CHAPTER 6

COMPOSITIONAL LEARNING

The subject of this chapter is a modular, multi-task, RL architecture that acceler-
ates learning by achieving transfer of training across a set of hierarchically structured
tasks. The architecture achieves transfer of training by constructing the value function
for a complex task by computationally efficient modifications to the value functions
of tasks that are lower in the hierarchy. The material presented in this chapter is also

published in Singh [99, 96, 95].

6.1 Compositionally-Structured Markovian Decision Tasks

Much of everyday human activity involves multi-stage decision tasks that have
compositional structure, i.e., complex tasks are built up in a systematic way from
simpler subtasks. As an example consider the routine task of driving to work. It
could involve many simpler tasks such as opening a door, walking down the stairs,
walking to the car, opening the car door, driving, and opening the office door. Notice
that the choice of “simpler” subtasks above is somewhat arbitrary because each of
these subtasks can be decomposed into even simpler subtasks. However, the chosen
subtasks are at a level of abstraction that suffices to illustrate that many of them are
part of other complex tasks, such as driving to the grocery store, and going to the
doctor’s office.

Clearly we do not learn to solve the task of opening a door separately for all the
above complex tasks. We are somehow able to piece together the solution to a new
complex task from parts of solutions to other complex tasks, and perhaps by learning
to solve some additional novel subtasks. Compositionally-structured tasks offer a
precise and well-defined framework for studying the possibility of sharing knowledge
across tasks that have common subtasks. While there may be many other interesting
classes of tasks for studying transfer of training, achieving transfer of training across
an arbitrary set of tasks is difficult, if not impossible. This chapter deals with the
challenge of autonomously achieving transfer of training across a set of MDTs that
have compositional structure.

To formulate the problem abstractly consider an agent that has to solve a set
of simple and complex MDTs. Suppose that there are n simple MDTs labeled
Ty,T,,...,T,, that are called elemental MDTs because they are not decomposed
into simpler MDTs. Further, suppose that there are m complex MDTs labeled
Cri1,Cryoyeo oy Cham, that are called composite MDTs because they are produced
by temporally concatenating a number of elemental MDTs. For example, C; =

T, )T (5,2)---T(j, k)], is composite MDT j made up of k elemental MDTs that
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have to be performed in the order listed. For 1 <i < k, subtask T'(j,¢) € {T1,Ts,...,T,},
is the i elemental MDT in the list for task C;. Notice that the indices for composite
tasks start at nm + 1. The sequence of elemental MDTs in a composite MDT will
be called the decomposition of the composite MDT. Throughout this chapter it is
assumed that the decomposition of a composite MDT is not made available to the
learning agent.

Figure 6.1 A single elemental MDT. This figure shows an agent interacting with
an environment. The payoff function is divided into a cost function and the reward
function.

6.1.1 Elemental and Composite Markovian Decision Tasks

In this chapter attention is restricted to the broad class of MDTs that have
absorbing goal states, i.e., those requiring the agent to bring the environment to a
desired final state. Figure 6.1 shows a block diagram representation of an elemental
MDT. Note that the payoff function is assumed to be composed of two components:
a cost function, ¢, where ¢*(x) is the cost of executing action a in state x, and a
reward function r;, where r;(x) is the reward associated with state @ when executing
task j. The payoff function for task j, Ri(x) = E{r;(y) —c*(x)}, where y is the state
reached on executing action a in state x.

Several different elemental tasks can be defined in the same environment (Fig-
ure 6.2). Each elemental task has its own goal state. All elemental tasks are MDTs
that have the same state set X, the same action set A, and the same transition
probabilities P. The payoff function, however, can be different across the elemental
tasks. It is assumed that the elemental tasks share the same cost function but have
their own reward functions, i.e., the cost function is task independent, while the
reward function is task dependent. As an example, consider a robot that has multiple
goal locations in the same room — the energy or time cost of executing an action, say
one-radius-north, is independent of whether the robot’s goal is the door or the window.
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Figure 6.2 Multiple elemental MDTs defined in the same environment. Elemental
MDTs, A,B,C ..., can be defined by simply switching in the associated reward
function.

The reward however, say for entering state “next-to-door”, will clearly depend on the
goal.

A composite MDT is defined as an ordered sequence of elemental MDTs. The
state set, X, of the elemental MDTs has to be augmented to define the state set
for the composite MDTs because the payoff for a composite MDT is a function of
which elemental task is being performed. The set X can be extended as follows:
imagine a device that for each elemental task detects when the desired final state of
that elemental task is visited for the first time and then remembers this fact. This
device can be considered part of the learning system or equivalently as part of a new
environment for the composite task. Formally, the new state set for a composite task,
X', is formed by augmenting the elements of set X by n bits, one for each elemental
task.! It is assumed that the number of elemental tasks is known in advance.

For each 2’ € X’ the projected state * € X is defined as the state obtained
by removing the augmenting bits from z’. The transition probabilities and the cost
function for a composite task are defined by assigning to each #/ € X’ and a € A
the transition probabilities and cost assigned to the projected state x € X and for
the action? a. The reward function for composite task C;, r;, is defined as follows:
r;(2’) > 0 if the projected state x is the final state of some elemental task in the

IThe theory developed in this proposal does not depend on the particular extension of X to
X'’ chosen in this chapter, as long as an appropriate mapping between the elements of X’ and the
elements of X can be defined.

?Deriving the transition probabilities for the composite tasks is a little more involved than that
because care has to be taken in assigning the augmented bits to the next state.
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decomposition of C;, say task T;, and if the augmenting bits of 2’ corresponding to
elemental tasks coming earlier in the decomposition and including subtask 7; in the
decomposition of C; are one, and if the rest of the augmenting bits are zero; r;(z') = 0
everywhere else.

6.1.2 Task Formulation

Consider a set of undiscounted (v = 1) MDTs that have compositional structure
and satisfy the following conditions:
(A1) Each elemental MDT has a single desired goal state.
(A2) For all elemental and composite MDTs, the optimal value function is finite for
all states.
(A3) The cost associated with each state-action pair is independent of the task being
accomplished.
(A4) For each elemental task 7T; the reward function r; is zero for all states except the
desired final state for that task. For each composite task C;, the reward function r;
is zero for all states except possibly for the final states of the elemental tasks in its
decomposition.

The learning agent has to learn to solve a number of elemental and composite
tasks in its environment. At any given time, the task faced by the agent is determined
by a device that can be considered to be part of the environment or to be a part of
the agent. As an example, consider a robot in a house-like environment. If the device
is considered to be part of the environment it provides a task command to the agent,
e.g., a human could command the agent to fetch water, or fetch food. On the other
hand, if the device is part of the agent it provides a context or internal state for the
agent. Such a case would arise if the agent has a “need” for food or water depending
on whether it is thirsty or hungry. The above two views are formally equivalent; the
crucial property is that they determine the reward function but do not affect the
transition probabilities in the environment.

The representation used for the task command determines the difficulty of solving
the composition problem, that is of learning which elemental subtasks compose a given
composite task. At one extreme, using task-command representations that encode
the decomposition of composite tasks in their representation can reduce the problem
of solving the composition problem to that of “decoding” the task command. At
the other extreme, unstructured task command representations force the system to
learn the composition of each composite task separately. In this chapter unit-basis
vector representations are used for task commands, thereby focusing on the issue of
transfer of training by “sharing” solutions of elemental tasks across multiple composite
tasks, and ignoring the possibilities that could arise from using richer task-command
representations.

If the task command is considered to be part of the state description, the entire
set of MDTs faced by an agent becomes one large unstructured MDT with a state
set larger than any one MDT. While an optimal policy for the unstructured MDT
can be learned by using Q-learning or any other DP-based learning algorithm, the
structure inherent in the set of compositionally structured MDTs allows a more
efficient solution, namely that of compositional learning.
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6.2 Compositional Learning

Compositional learning involves solving a composite task by learning to compose
the solutions of the elemental tasks in its decomposition. The technique presented in
this chapter is to use a modular RL architecture that accomplishes the following:

1. Learns the solution to each elemental task in a separate RI. module.

2. Learns which elemental-task modules to compose in what order to form solutions
to composite tasks.

It should be emphasized that in the framework presented above the agent does not
face the most general task decomposition problem. In particular, the agent does not
face the difficult task of automatically discovering useful subtasks of arbitrary complex
tasks. Instead the agent faces the composition problem whereby it has to discover
which particular ordered subset of the set of elemental subtasks can be composed
together to solve a composite task. Nevertheless, given the short-term, evaluative
nature of the payoff from the environment (often the agent receives informative payoff
only at the successful completion of the composite task), solving the composition
problem remains a formidable task.

6.2.1 Compositional Q-learning

Compositional Q-learning (CQ-learning) is a method for computing the Q-values
of a composite task from the Q-values of the elemental tasks in its decomposition.
CQ-learning is advantageous because it takes significantly less effort than learning the
QQ-values of a composite task from scratch. The savings in computational effort arise
from the special relationship that exists between the Q-values of a composite task and
the Q-values of the elemental tasks in its decomposition. Let Qi(z, a) be the Q-value
of state-action pair (z,a) € (X x A) for elemental task T;, and let Q% (2',a) be the
Q-value of (2/,a) € (X' x A), for task T; when performed as part of the composite
task C; = [T'(j,1)---T(j,k)]. Let T(j,1) = T;. Note that the superscript on @ refers
to the task and the subscript refers to the elemental task currently being performed.
The absence of a subscript implies that the task is elemental.

Proposition 2: For any elemental task 7; and for all composite tasks C'; containing
elemental task T}, the following holds for all 2’ € X’ and a € A:

Qy (' a) = QT (x,a)+ K(Cy,1), (6.1)

where © € X is the projected state (see Section 6.1.1), and K(C},[) is a function of
the composite task C; and the position of elemental task 7}, /, in the decomposition
of C]‘.

A proof of Proposition 2 is given in Appendix D. Using Equation 6.1 to compute
the Q-values of a composite task requires much less computation than computing
them from scratch because K(C;,1) is independent of both the state and the action.
Therefore, given solutions for the elemental tasks, learning the solution for a compos-
ite task with n elemental subtasks requires learning only the values of the function A
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for the n different elemental subtasks. However, implementing Equation 6.1 requires
knowledge of the decomposition of the composite tasks. In the next Section, a modular
RL architecture is presented that simultaneously solves the composition problem for
composite tasks and implements Equation 6.1.

6.2.1.1 CQ-L: The CQ-Learning Architecture

The compositional Q-learning architecture, or CQ-L, is a modification and ex-
tension of Jacobs et.al.’s associative Gaussian mixture model (GMM) architecture
described in Jacobs et al. [56, 55]. GMM consists of several expert modules and a
gating module that has an output for each expert module. When presented with
training patterns (input-output pairs) from multiple tasks, the expert modules com-
pete with each other to learn the training patterns, and this competition is mediated
by the gating module. It has been shown empirically that when trained on a set
containing input-output pairs from multiple tasks, different expert modules learn the
different tasks, and that the gating module is able to activate the correct expert for
each task. GMM models the training set as a mixture of associative parametrized
Gaussians and learning is achieved by tuning the parameters by gradient descent in
the log likelihood of generating the desired training patterns.

Only a brief and high level description of the details that are common to the GMM
and CQ-L architectures is provided in this section®. In CQ-L, shown in Figure 6.3,
the expert modules of the GMM architecture are replaced by Q-learning modules.
The Q-modules receive state-action pairs as input. A bias module is added to learn
the function K defined in Equation 6.1. The gating and bias modules (see Figure 6.3)
receive as input the augmenting bits and the task command (see Section 6.1.1) used
to encode the current task being performed by the architecture. The stochastic switch
in Figure 6.3 uses the outputs of the gating module to select one -module at each
time step. CQ-L’s output is the output of the selected -module added to the output
of the bias module.

At each time step, each QQ-module competes with the other Q-modules to represent
the value function of the current task at the current time step. The output of the
selected Q-module at time 41 is used to determine the estimate of the desired output
at time £. Note that this is a crucial difference between GMM and CQ-L; in GMM
the desired output is always available as part of the training set, while in CQ-L only
an estimate of the desired output can be computed with a delay of one time step.
The rest of the calculations are similar to those for the GMM architecture. Learning
takes place by adjusting the parameters of each (Q-module so as to reduce the error
between its output and the estimated desired output in proportion to the probability
of that Q-module having produced the desired output. Hence the Q-module whose
output would have produced the least error is adjusted the most.

Simultaneously, the gating module is adjusted so that the a prior: probability of
selecting each (Q-module becomes equal to the a posterior: probability of selecting that

3The interested reader is referred to the descriptions and derivations of GMM in Jacobs et al. [56],
Nowlan [81], and Jordan and Jacobs [58].
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QQ-module, given the estimated desired output. Because of the different initial values
of the free parameters in the different Q-modules, over time, different Q-modules start
winning the competition for different elemental tasks, and the gating module learns to
select the appropriate Q-module for each elemental task. For composite tasks, while
performing a particular subtask, say T;, the Q-module that has best learned task 7;
will have smaller expected error than any other Q-module and will increasingly be
selected by the gating module when that subtask is to be performed as part of the
composite task. The bias module is also adjusted to reduce the error in the estimated
Q-values.

T i

T T

Figure 6.3 CQ-L: The CQ-Learning Architecture. This figure is adapted from
Jacobs et al. [56]. The Q-modules learn the Q-values for elemental tasks. The gating
module has an output for each Q-module and determines the probability of selecting
a particular Q-module. The bias module learns the function K (see Equation 6.1).

6.2.1.2 Algorithmic details

At time step ¢, let the current state of the environment be x,, let the output
of the 7" Q-module be ¢;(t), and let the ;% output of the gating module be s;(#).
The output of Q-module i, ¢;, is treated as the mean of a Gaussian probability

distribution with variance . The outputs of the gating module are normalized as
esj(t)

follows: ¢;(t) = S where ¢;(t) is the prior probability that -module j is
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selected at time step t by the stochastic switch. At each time step ¢ the following
steps are performed:

1. Ya € A, and Vi, ¢;(x4, a) is evaluated.
2. V7, s;(t) and then g¢;(%) is computed.

3. Using the probabilities defined by the function ¢, a single Q-module is selected.
Let the label of the selected Q-module be u(t).

4. Then an action to be executed in the real-world is selected using the Gibbs
- N . Bay()(2t,a) . .
probability distribution: P(a|x;) = = e’ (;21 (Z)m 7. The action selected at time
a/GA6 “ 7

step t is denoted a;.
5. The output of the bias module, K () is computed.
6. The final output at time # is Q(1) = qu(s)(x+, a¢) + K(1).

7. The estimate of the desired output at time t—1 is computed as follows: D(t—1) =
R(xi-1,a;-1) + Q(1). Note that v = 1.

8. D(t—1) is used to update the parameters of all the modules using Equations 6.2
developed below.

9. Go to Step 1 at time ¢ 4+ 1.

The parameter 3, used in Step 4, controls the probability of selecting a non-greedy
action, and is increased over time so that eventually only the greedy actions are
selected. The action chosen at time ¢ is executed and the resulting next state is
2141 and the payoff is R(x, a;). Note that the estimate of the desired output of the
network at time ¢ — 1 only becomes available at time ¢. The probability that the
Q-module 7 will have generated the desired output is

1 WpG=1)=K(t=1)—ge=1)|?

202

—e
No ’

pi(D(t —1)) =

where N is a normalizing constant. The a posteriori probability that Q-module ¢ was
selected at time ¢ — 1, given that the desired output is D(t — 1), is

gi(t = Vpi(D(t — 1))
>, 95(t = L)pi(D(t — 1))

The likelihood of producing the desired output, L(D(t — 1)), is therefore given by
2595t = 1)p; (D(t = 1)).

p(e| D(t = 1))
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The objective of the architecture is to maximize the log likelihood of generating
the desired Q-values for the current task. The partial derivative of the log likelihood
with respect to the output of the Q-module j is

TP — DG~ DD~ 1)~ K= 1) = a0 1)

The partial derivative of the log likelihood with respect to the :** output of the gating
module simplifies to

ab%ﬁTJU): (pGID(E = 1)) = gilt = 1)).

Using the above results, at time step ¢ the update rules for Q-module j, the :* output
of the gating module, and the bias module?* respectively are:

dlog L(D(t — 1))

Agi(t) = aq -1
Asi(t) = ozgalogaiifitl_) D) ,and
AK(t) = ap(D(t—=1)—Q(t—1)), (6.2)

where ag, ap and «a, are learning rate parameters.

CQ-L was tested empirically on compositionally structured tasks from two sep-
arate navigation domains: a simple discrete gridworld domain, and a more realistic
continuous image-based navigation domain.

6.3 Gridroom Navigation Tasks

The first set of simulation results are from a discrete navigation domain, called
the grid-room, and shown in Figure 6.4. The grid-room is an 8 X 8 room with three
special locations designated A, B and C'. The robot is shown as a circle, and the white
squares represent fixed obstacles that the robot must avoid. In each state the robot
has four actions: UP, DOWN, LEFT and RIGHT. Any action that would take the
robot into an obstacle or boundary wall does not change the robot’s location. There
are three elemental tasks: “visit A7, “visit B”, and “visit (', labeled T}, Ty and Tj
respectively. Three composite tasks, Cy, Cy, and C3 were constructed by temporally
concatenating some subset of the elemental tasks (see Table 6.1).

The six tasks, along with their labels, are described in Table 6.1 and illustrated
in Figure 6.5. For all x € X U X" and a € A, ¢*(2) = —0.05. The reward function
is defined as follows: r;(x) = 1.0, if © € X is the desired final state of elemental task
T;, or if @ € X' is the final state of composite task C;, and r;(x) = 0.0 in all other
states. Thus, for composite tasks no intermediate payoff was provided for successful
completion of elemental subtasks. It is to be emphasized that the tasks defined in
Table 6.1 are optimal control tasks and the optimal solutions define shortest paths
through the sequence of special intermediate states to the final state.

4This assumes that the bias module is minimizing a mean square error criteria.
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Figure 6.4 The Grid Room. The room is an 8 x 8 grid with three desired final
locations designated A, B and (. The white squares represent obstacles. The robot
is shown as a circle and has four actions available: UP, DOWN, RIGHT, and LEFT.

Table 6.1 Tasks. Tasks T4, T5, and T5 are elemental tasks; tasks (7, (5, and (5 are

composite tasks. The last column describes the compositional structure of the tasks.

Label | Command | Description Decomposition
Ty 000001 visit A 11

T, 000010 visit B Ty

Ts 000100 visit C T3

4 001000 visit A and then C TyTs

Cy 010000 visit B and then C ToTs

Cs 100000 visit A, then B and then C | T17T57T5

6.3.1 Simulation Results

In the simulations described below, the performance of CQ-L is compared to the
performance of a “one-for-one” architecture that learns to solve each MDT separately.
The one-for-one architecture cannot achieve any transfer of learning because it has a
pre-assigned distinct Q-learning module for each task. Each module of the one-for-one
architecture was provided with the augmented state.

6.3.1.1 Simulation 1: Learning Multiple Elemental MDTs

Both CQ-L and the one-for-one architecture were separately trained on the three
elemental MDTs Ty, T3, and T3 until they could perform the three tasks optimally.
Training proceeded in trials. For each trial the task and the starting location of the
robot were chosen randomly. Each trial ended when the robot reached the desired
final location for that task. Both CQ-L and the one-for-one architecture contained
three Q-learning modules. Figure 6.6 shows the number of actions taken by the robot
to get to the desired final state. FEach data point is an average over 50 trials. The
one-for-one architecture converged to an optimal policy faster than CQ-L because it
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Figure 6.5  Gridroom Tasks: This figure shows the composition hierarchy. The
lowest level shows the elemental tasks, the next level shows composite tasks of size

two, and the uppermost level shows a composite task of size three.

took time for CQ-L’s gating module’s outputs to become approximately correct, at
which point CQ-L learned rapidly.

Figures 6.7(i), 6.7(ii), and 6.7(iii) show the three normalized outputs of CQ-L’s
gating module for trials involving tasks Ty, Ty and T3 respectively. In each panel,
the x-axis is the number of times the task associated with that panel occurred in
the trial sequence. Each panel shows three curves, one for each of the three outputs
of the gating module. For each curve the value plotted for each trial is the average
prior probability in that trial for the associated -module. At the start of training
each Q-module is selected with almost equal probability for all tasks. After training
on approximately 100 trials a different Q-module is selected with probability one for
each task. This simulation shows that CQ-L is able to partition its “across-trial”
experience and learn to engage a distinct )-module for each elemental task. This is
similar in spirit to the simulations reported by Jacobs [55], except that he applies his
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Figure 6.6 Learning Curve for Multiple Elemental tasks. Both CQ-L and one-for-one
were trained on the intermixed trials of the three elemental tasks 77, T3, and 73. Each
data point is the average, taken over 50 trials, of the number of actions taken by the
robot to get to the final state.
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Figure 6.7 Both CQ-L and one-for-one were trained on intermixed trials of the three
elemental tasks Ty, Ty and T5. This figure shows the prior probabilities of selecting
the different -modules for each task. (i) Module Selection for Task 7i. The 3
normalized outputs of the gating module are shown averaged over each trial with
task T7. Initially the outputs were about 0.3 each, but as learning proceeded the
gating module learned to select Q-module 2 for task 7. (ii) Module Selection for
Task Ty. Q-module 3 was selected. (iii) Module Selection for Task T5. Q-module 1

was selected for task T5.
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architecture to supervised learning tasks. See Appendix D.1 for simulation details.
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Figure 6.8 Learning Curve for a Set of Elemental and Composite Tasks. Both
CQ-L and one-for-one were trained on intermixed trials of all the six tasks shown in
Table 6.1. Each data point is the average over 50 trials of the time taken by the robot
to reach the desired final state.

6.3.1.2 Simulation 2: Learning Elemental and Composite MDTs

Both CQ-I. and the one-for-one architecture were separately trained on the six
tasks Ty, Ty, Ts, C, Cy, and (5 until they could perform the six tasks optimally. CQ-L
contained four Q-modules, and the one-for-one architecture contained six Q-modules®.
Training proceeded in trials. For each trial the task and the starting state of the
robot were chosen randomly. Each trial ended when the robot reached the desired
final state. Figure 6.8 shows the number of actions, averaged over 50 trials, taken
by the robot to reach the desired final state. The one-for-one architecture performed
better initially because it learned the three elemental tasks quickly, but learning

°In separate simulations CQ-L was given more Q-modules without any difference in training
performance.
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Figure 6.9 Both CQ-L and one-for-one were trained on intermixed trials of all the
six tasks shown in Table 6.1. This figure shows the intra-trial selection of Q-modules
for each composite task after learning. (i) Temporal Composition for Task C;. After
10,000 learning trials, the three outputs of the gating module during one trial of task
(' are shown. Q-module 1 was turned on for the first seven actions to accomplish
subtask 77, and then Q-module 2 was turned on to accomplish subtask 7T5. (ii)
Temporal Composition for Task C5. Q-module 3 was turned on for the first six
actions to accomplish subtask T3 and then QQ-module 2 was turned on to accomplish
task T5. (iil) Temporal Composition for Task C3. The three outputs of the gating
module for one trial with task C3 are shown. Q-modules 1, 3 and 2 were selected in
that order to accomplish the composite task Cf.
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the composite tasks took much longer due to the long action sequences required to
accomplish the composite tasks. CQ-L performed worse initially, until the outputs of
the gating module become approximately correct, at which point all six tasks were
learned rapidly.

Figures 6.8(i), 6.8(ii), and 6.8(iii) respectively show the three normalized out-
puts of the gating module for three randomly chosen trials, one each for tasks (7,
(5, and C3. The trials shown were chosen after the robot had learned to do the
tasks, specifically, after 10,000 learning trials. The elemental tasks Ty, T,, and T3
respectively were learned by the -modules 1, 3 and 2. The graphs in each panel
show that for each composite task the gating module learned to compose the outputs
of the appropriate elemental Q-modules over time. This simulation shows that CQ-L
is able to solve the composition problem for composite tasks, and that compositional
learning, due to transfer of training across tasks, can be faster than learning each
composite task separately. See Appendix D.1 for simulation details.
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Figure 6.10 Shaping. The CQ-Learning architecture containing one Q-module was
trained for 1000 trials on task 75. Then another Q-module was added, and the
architecture was trained to accomplish task ;. The only task-dependent payoft for
the task C'y was on reaching the desired final location C'. The graph shows the number
of actions taken by the robot to reach the desired final state averaged over 50 trials.

6.3.1.3 Simulation 3: Shaping

One approach for training a robot on a composite task is to train the robot on mul-
tiple tasks: all the elemental tasks required in the composite task, and the composite
task itself. Another approach is to train the robot on a succession of tasks, where
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each succeeding task requires some subset of the already learned elemental tasks, plus
a new elemental task. This roughly corresponds to the “shaping” procedures used by
psychologists to train animals to do complex motor tasks (see Skinner[104]).

A simple simulation to illustrate shaping was constructed by training CQ-L with
one (Q-module on one elemental task, 75, for 1,000 trials and then training on the
composite task Cy. After the first 1,000 trials, the learning was turned off for the
first Q-module and a second Q-module was added for the composite task. Figure 6.10
shows the learning curve for task T5 composed with the learning curve for task Cj.
The number of actions taken by the robot to get to the desired final state, averaged
over 50 trials, were plotted by concatenating the data points for the two tasks, T3
and Cy. Figure 6.10 shows that the average number of actions required to reach
the final state increases when the composite task was introduced, but eventually
the gating module learned to decompose the task and the average decreased. The
second ()-module learned the task 7% without ever being explicitly exposed to it. See
Appendix D.1 for simulation details.

6.3.2 Discussion

The simulations reported above show that CQ-L can construct the solution of a
composite MDT by computationally inexpensive modifications to the solutions of its
constituent elemental MDTs. It was shown that CQ-L can automatically learn the
solutions to elemental tasks in separate modules, share the solutions to elemental tasks
across multiple composite tasks, and can learn faster than a one-for-one architecture
when trained on a set of compositionally structured MDTs.

Given a training set of composite and elemental MDTs, the sequence in which
the learning agent receives training experiences on the different tasks determines the
relative advantage of CQ-L over other architectures that learn the tasks separately.
The simulation reported in Section 6.3.1.2 demonstrates that it is possible to train
CQ-L on intermixed trials of elemental and composite tasks. Nevertheless, some
training sequences on a set of tasks will result in faster learning of the set of tasks
than other training sequences. The ability of CQ-L to scale well to complex sets
of tasks is still dependent on the choice of the training sequence. Determining the
optimal training sequence of subtasks is a meta-problem and is not considered in this
dissertation.

6.4 Image Based Navigation Task

This section illustrates the utility of CQ-L on a set of simulated navigation
tasks that are more “real-world” than the grid-room tasks simulated in the previous
section. The new navigation tasks are in a navigational test bed that simulates a
planar robot that can translate simultaneously and independently in both x and y
directions (Figure 6.11). This testbed is similar to the one developed by Bachrach [4].
Figure 6.11 shows a display created by the navigation simulator. The bottom portion
of the figure shows the robot’s environment as seen from above. The circle represents
the robot and the radial line inside the circle represents the robot’s orientation. The
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Figure 6.11 Simulated Image-Based Navigation Testbed. This lower panel shows a
room with walls and obstacles that are painted in grayscale. The circular robot has
16 grayscale sensors and 16 distance sensors distributed evenly around its perimeter.
The upper panel shows the robot’s view. This testbed is identical to one developed
by Bachrach [4]. See text for details.
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walls of the simulated environment and the obstacles are shaded in grayscale. The
robot can move one radius in any direction on each time step.

The robot has 8 distance sensors and 8 grayscale sensors evenly placed around its
perimeter. These 16 values constitute the state vector. The upper panel shows the
robot’s view by drawing one column for each pair of distance and grayscale values.
The central column corresponds to the sensors aligned with the robot’s orientation.
The grayscale value of each column corresponds to the reading of the grayscale sensor.
The height of each column is the inverse of the reading of the corresponding distance
sensor.

Tasks identical to the grid-room tasks can be defined in this environment. Three
different goal locations, A, B, and (', are marked on the test bed. The set of tasks
on which the robot is trained is shown in Table 6.1. The elemental tasks require
the robot to go to the associated final location from a random starting location in
minimum time. The composite tasks require the robot to go to the final location
via the associated sequence of special locations. These navigation tasks are harder
because the learning architecture has to deal with continuous state and actions and
because the robot is not provided with a minimal state input.

6.4.1 CQ-L for Continuous States and Actions

To deal with the infinite states and actions, connectionist networks were used to
implement the different modules in the CQ-L architecture. See Appendix F for a brief
review on connectionist networks. Each Q-module was implemented as a feedforward
connectionist network with a single hidden layer containing 128 radial basis units. The
bias and gating modules were also feedforward networks with a single hidden layer
containing sigmoid units. With continuous actions one cannot determine the Q-value
for each action and therefore cannot use the Gibbs distribution to select actions.
Instead, the action to be executed at time step ¢ is computed by adding Gaussian
noise to the estimated greedy action in the current state. The greedy action in state
x; is found by using a network inversion method (see Jordan and Rumelhart [59]).
As learning proceeds the variance of the Gaussian noise is reduced over time so as to
increase the likelihood of selecting the greedy action. Aside from this difference, the
training algorithm for CQ-L is similar to the algorithm presented in Section 6.2.1.1.
The weights of the networks are trained by using the backpropagation algorithm of
Rumelhart et al. [88].

6.4.2 Simulation Results

As before, task commands were represented by standard unit basis vectors (Ta-
ble 6.1), and thus the architecture could not “parse” the task command to solve
the composition problem for a composite task. For all x € X U X' and a € A,
c*(x) = —0.05. r;(x) = 1.0 only if @ is the desired final state of elemental task T;, or
if @ € X' is the final state of composite task C;; r;(x) = 0.0 in all other states. Thus,
for composite tasks no intermediate payoff for successful completion of subtasks was
provided.
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In the simulation described below, the performance of CQ-L is compared to the
performance of a “one-for-one” architecture that implements the “learn-each-task-
separately” strategy. The one-for-one architecture has a pre-assigned distinct network
for each task, which prevents transfer of training. Each network of the one-for-one
architecture was provided with the augmented state.
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Figure 6.12 Learning Curve for task [A]. The horizontal axis shows the number of
trials where the task was [A], and the vertical axis shows the number of time steps
to finish the trial. A trial finishes if the agent reaches the goal state or else if there is
a time-out after 100 time steps.

Both CQ-I. and the one-for-one architecture were separately trained on the six
tasks Ty, Ty, Ts, Cy, Cy, and C3 until they could perform the six tasks optimally.
Training proceeded in trials. CQ-L contained three Q-networks, and the one-for-
one architecture contained six Q-networks. For each trial the task and the starting
location of the robot were chosen randomly. A trial ended when the robot reached
the desired final location or when there was a time-out. The time-out period was
100 for the elemental tasks, 200 for C; and Cy, and 500 for task C3°. The graphs
in Figures 6.12, 6.13, and 6.14 show the number of actions executed per trial. The

5The time-out technique has been used by several authors to increase the likelihood of the robot’s
finding any path to the goal state with a random walk.
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Figure 6.13  Learning Curves for task [AB]. The horizontal axis shows the number
of trials where the task was [AB], and the vertical axis shows the number of time
steps to finish the trial. A trial finishes if the agent reaches state B after having
traversed through state A, or else if there is a time-out after 200 time steps.

number of actions executed is equivalent to the time taken because each action is
executed in a unit time step. Separate statistics were accumulated for each task.

Figure 6.12 graphs the performance of the two architectures on trials involving
elemental task T;. Not surprisingly, the one-for-one architecture learns more quickly
than CQ-L because it does not have the overhead of figuring out which Q-network
to train for task 7. Figure 6.13 graphs the performance on task €'y and shows that
the CQ-L architecture is able to learn faster than the one-for-one architecture for a
composite task containing just two elemental tasks. Figure 6.14 graphs the results
for composite task C3 and illustrates the main point of this chapter. The one-for-one
architecture is unable to learn the task Cj3, in fact it is unable to complete the task
more than a couple of times due to the low probability of randomly performing the
correct task sequence.

6.4.3 Discussion

As in Section 6.3, the simulations presented in Section 6.4.2 show that CQ-L is
able to solve the composition problem for fairly complex composite tasks and that
compositional learning, due to transfer of training across tasks, can be significantly



600.0

500.0

I
o
©
o

Avg. # of steps till goal
N W
3 3
o o

100.0

0.0

88

— CQ-L
--- one-for-one

0 1000 2000 3000 4000

Figure 6.14 Learning

Trial Number (for Task [ABC])

Curves for task [ABC]. The horizontal axis shows the number

of trials where the task was [ABC], and the vertical axis shows the number of time
steps to finish the trial. A trial finishes if the agent reaches state C' after having
traversed through states A and B in that order, or else if there is a time-out after

500 time steps.



89

faster than learning tasks separately. More importantly, CQ-L is able to learn to
solve task [ABC] which the more conventional application of Q-learning was unable
to learn to solve. Although compositional QQ-learning was illustrated using a set of
navigational tasks, it is suitable for a number of different domains where multiple
sequences from some set of elemental tasks need to be learned. CQ-L is a general
mechanism whereby a “vocabulary” of elemental tasks can be learned in separate
Q-modules, and arbitrary” temporal syntactic compositions of elemental tasks can be
learned with the help of the bias and gating modules.

According to the definition used in this paper, composite tasks have only one
decomposition and require the elemental tasks in their decomposition to be performed
in a fixed order. A broader definition of a composite tasks allows it to be an unordered
list of elemental tasks, or more generally, a disjunction of many ordered elemental task
sequences. CQ-L should work with the broader definition for composite tasks without
any modification because it should select the particular decomposition that is optimal
with respect to its goal of maximizing expected returns. Further work is required to
test this conjecture.

6.5 Related Work

An architecture similar to CQ-L is the subsumption architecture for autonomous
intelligent agents (Brooks[22]), which is composed of several task-achieving modules
along with precompiled switching circuitry that controls which module should be
active at any time. In most implementations of the subsumption architecture both
the task-achieving modules as well as the switching circuitry are hardwired by the
agent designer. Maes and Brooks [69] showed how reinforcement learning can be used
to learn the switching circuitry for a robot with hardwired task modules. Mahadevan
and Connell [71], on the other hand, showed how Q-learning can be used to acquire
behaviors that can then be controlled using a hardwired switching scheme. The
simulations reported in this chapter show that at least for compositionally-structured
MDTs, CQ-L combines the complementary objectives of Maes and Brooks’s architec-
ture with that of Mahadevan and Connell’s architecture.

6.6 Conclusion

Learning to solve MDTs with large state sets is difficult due to the sparseness of
the evaluative information and the low probability that a randomly selected sequence
of actions will be optimal. Learning the long sequences of actions required to solve
such tasks can be accelerated considerably if the agent has prior knowledge of useful
subsequences. Such subsequences can be learned through experience in learning to
solve other tasks. This chapter presented CQ-L, an architecture that combines the
Q-learning algorithm of Watkins [118] and the modular architecture of Jacobs et al.
[56] to achieve transfer of training by sharing the solutions of elemental tasks across
multiple composite tasks.

"This assumes that the state representation is rich enough to distinguish repeated performances
of the same elemental task.



CHAPTER 7

REINFORCEMENT LEARNING ON A
HIERARCHY OF ENVIRONMENT MODELS

This chapter takes a familiar idea from artificial intelligence (Al), that of using an
abstraction hierarchy to accelerate problem solving, and extends it to reinforcement
learning (RL). Research on abstraction hierarchies in Al focused on deterministic
domains and assumed that the problem solver was provided apriori with a hierarchy
of state-space models of the problem environment (Sacerdoti [90]). The main contri-
bution of this chapter is in extending the advantages of using a hierarchy of state-space
models of the environment to RL agents that are embedded in stochastic environments
and that learn a hierarchy of environment-models on-line. This chapter presents a
RL agent architecture that uses the value functions learned for the simpler elemental
tasks to build an abstract environment model. It is shown that doing backups in the
abstract environment model can greatly accelerate the learning of value functions for
composite tasks. Transfer of training is achieved by sharing the abstract environment
model learned while solving the elemental tasks across multiple composite tasks. The
material presented in this chapter is also published in Singh [98, 97].

7.1 Hierarchy of Environment Models

Building abstract models to speed up the process of learning the value function
in RL tasks is not in itself a new idea. There is considerable work in building models
that do structural abstraction, i.e., ignore structural details about the state that is
perceived by the agent (see review in Chapter 5). In this chapter, however, the focus
is on abstracting temporal detail by building an abstract model whose depth is much
smaller than the depth of the real environment. As defined before, the depth of a
RL problem is the average over the start states of the expected number of actions
that are executed to get to a goal state when the agent follows an optimal policy (cf.

Chapter 5).

For most problems there is a finest temporal grain at which the problem can be
studied, determined usually by the highest sampling frequency and other hardware
constraints. By limiting the backups to that fine a temporal scale, or alternatively to
that high a temporal resolution, problems with large state sets and a large depth
become intractable because of the many backups that have to be performed to
learn the value function. There has been some research on overcoming the high
temporal resolution problem without building a model by doing multi-step backups.
For example, Sutton’s TD()) algorithm can update the values of all states along
a sampled trajectory based on the change in the value of the state at the head of
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the trajectory.! A model-based way to do backups at longer time scales requires a
model that makes predictions at longer time scales, i.e., makes predictions for abstract
actions that span many time steps in the real world.

Y

Figure 7.1 A Hierarchy of Environment Models. This figure shows a block diagram
representation of two levels of a hierarchy of environment models. The lower level
is the primitive model that stores the state transition probabilities and the payoff
function for primitive actions. The upper level is the abstract model and stores the
same two functions for abstract actions.

In the MDT framework there are two consequences of executing an action: the
state of the environment changes, and the agent receives a payoff. Therefore, any
environment model, whether primitive or abstract, has to store two functions of state-
action pairs: the state transition probabilities, and the payoff function.? Figure 7.1
shows a two level hierarchy of environment models as block diagrams that take as
input state-action pairs and output the payoff and the state transition probabilities
for that state-action pair. The primitive model predicts the consequences of executing

! Alternatively, the controller can decrease the resolution by simply choosing not to change actions
at some time steps — but this can only come at the expense of optimality. It also means that the
agent may no longer be able to react appropriately to every state of the environment.

2Some researchers distinguish between a model of the state transition probabilities and a model
of the payoff function by giving them distinct names, such as action model and payoff model
respectively.
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a primitive action, while the abstract model predicts the consequences of executing
an abstract action.

7.2 Closed-loop Policies as Abstract Actions

The motivation behind building abstract models in the RL framework is the same
as that of building abstract models for problem solving, that of achieving temporal
abstraction. Al researchers have long used macro-operators, which are labels for useful
sequences of operators/actions, to build abstract models of the problem environment
(e.g., Fikes et al. [41]). The problem solver uses such abstract environment-models to
plan in terms of the macro-operators instead of the primitive operators (Korf [64]).
Planning in the abstract model achieves temporal abstraction because it allows the
problem solver to ignore unnecessary detail. This chapter extends the familiar idea
of macro-operators developed for problem solving in deterministic domains into the
reinforcement learning (RL) framework for solving stochastic tasks.

Consider the motivation behind macro-operators in more detail. Imagine a room
with just one door. No matter where one wants to go from inside the room to outside
the room, one has to go through the door first. A path planning agent should not
have to replan or relearn the skill of getting to the door separately for all the different
destinations. A problem solving agent should be able to use the macro-operator
“get-to-door” in planning for the optimal route to a new destination. Doing so will
not only allow the agent to ignore unnecessary temporal detail but will also transfer
knowledge across tasks which is the overall goal for this architecture.

The difficulty in building a macro-operator get-to-door in stochastic environments
is that there may not be any finite open-loop sequence of actions that is guaranteed to
get the agent to the door. The main innovation in this chapter is the idea that in many
stochastic environments there may be a closed-loop policy that is guaranteed to get
the agent to the door with probability one. Therefore, in stochastic environments it
is possible to define abstract actions that are labels for closed-loop policies, instead of
macro-operators, which are labels for open-loop policies. The architecture presented
in this chapter builds abstract models for abstract actions that express the intention
of achieving a “significant” state in the environment.

7.3 Building Abstract Models

In the above example of finding paths from a room to destinations outside the
room, the door was obviously a significant state. The general problem of auto-
matically finding significant states in arbitrary environments is difficult and is not
addressed in this dissertation. Instead, a simple heuristic is used; the goal states of all
the tasks faced by an agent in its lifetime in an environment are the significant states
in that environment. This heuristic may be difficult to apply in environments where
every state could become a goal state, but even in such cases, techniques for pruning
the list of significant states over time could make the heuristic computationally
feasible.

In this chapter the goal is to develop an abstract architecture for efficiently build-
ing and exploiting a hierarchy of environment models in the multi-MDT framework.
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The focus is on agents that have to solve a set of MDTs that share the following
properties:

1. Each MDT has a single absorbing goal state.

2. The payoff function for each MDT is decomposed into a non-positive cost func-
tion that is independent of the task being performed, and a non-negative reward
function that is zero everywhere except the goal state.

3. The objective function to be maximized is the expected infinite-horizon sum of
the undiscounted payoffs.

Note that the compositionally-structured MDTs of the previous chapter have the
above properties in addition to the property that the composite MDTs are composed
by sequencing the elemental MDTs. As before, it is assumed that there is an external
agency that provides task commands to the agent that are not indicative of the
decomposition of a task. In this chapter a generic task, elemental or composite, will
be denoted simply as task . Smaller case ‘a’ will be used for the primitive actions
and the upper case ‘A’ will be used for abstract actions.

The agent simultaneously learns three things: the primitive model, the abstract
model and the value function. For each task the agent faces, say task ¢, it adds an
abstract action A; to the abstract model and estimates its state transition probabilities
and payoff function. Under the assumptions listed above about the nature of the
MDTs faced by the agent, there is a very efficient way to build abstract models.
Figure 7.2 shows how the value function learned for task ¢ and the goal state of task
2 are equivalent to an abstract model for action A;. The value function table for task
i stores an estimate of V;*(x), the optimal value of state x, but V.*(x) is also the
cost of executing abstract action A; in state #. The next state after executing action
A; in state x is unique and it is the goal state of task ¢. Notice that even though
the primitive model and the real environment may be stochastic, the abstract model
is deterministic. In summary, no extra computation is needed to learn an abstract
model for abstract action A;; the information acquired while learning to solve task
2 1s already an abstract model. Therefore, the abstract model explicitly stores only
the state-independent goal state for each abstract action. The payoff function is not
stored explicitly because it already exists in the value function table.

7.4 Hierarchical DYNA

Sutton [108] developed an on-line RL architecture called DYNA that uses the
agent’s experience to learn simultaneously a value function and build a primitive
model of the environment. In the time interval between two actions in the real
environment, DYNA updates the value function by doing backups on the primitive
model. This chapter extends DYNA to hierarchical-DYNA, or H-DYNA, that not
only builds a primitive model but also an abstract model. H-DYNA is an abstract
architecture, in the tradition of Sutton’s DYNA, and its main purpose is to illustrate
the utility of building abstraction hierarchies.
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Figure 7.2 Building An Abstract Environment Model. This figure shows the abstract
model for abstract action A; that is associated with Task 1. The goal state of
Task 1 is labeled A. The payoff on executing action A; in a state = is V{*(x), and
state-independent next state is A. Therefore, learning the abstract model for Task
1 simply requires storage of the goal state A. The payoff function for action A is
already stored in the value function for Task 1.
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Figure 7.3  The Hierarchical Dyna (H-DYNA) architecture. The module on the left
is the value function module that stores the value function V; for each task i faced
by the agent. The upper module on the right shows the abstract model M-2 and the
abstract policy module 11-2. The abstract model stores the state-independent goal
states for each task faced by the agent. The lower module in the right hand side
shows the primitive model M-1 and the primitive policy module II-1.
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The essential elements of H-DYNA are shown in Figure 7.3: the value function
module that stores the value function tables, one for each task, the primitive model
(M-1), and the abstract model (M-2). There is a policy module II-1 for M-1 that
takes a task label and state as input and outputs a primitive action. Similarly there
is a policy module II-2 for model M-2.

Value Function Module: The value function module stores the value function
V; for each task ¢ in a separate lookuptable. The value functions are updated using
the TD algorithm. When the agent faces a new task, it adds a new lookuptable for
that task to the value function module. The initial entries in the table are some
default value, usually zero.

Primitive Model (M-1): The primitive actions and the dynamics of the envi-
ronment do not change with the task. Therefore, learning the primitive model just
involves keeping some statistics about transitions in the real environment independent
of the task being solved. If n*(x,y) is the number of times the agent executed action
a in state x and reached state y, then the estimated transition probability ]5“(:1;, y) is

Zﬂf_f?%)' The payoff function for state-action pair (z,a) is stored when action « is
yl no\z,

executed in state x for the first time.

Abstract Model (M-2): The abstract model stores the state-independent goal
state for each abstract action. The payoff function is already stored in the value
function module. When the agent faces a new task, say task ¢, it adds an abstract
action A; to the list of abstract actions and allocates memory for its goal state in
the abstract model. When the goal state of task ¢ is reached (for the first time), it is
entered into the abstract model.

Primitive Policy Module (1I-1): It stores weights w;(x, a) for state-action pair
(x,a) and task 7. The probability of choosing action a in state x for task ¢ is given

by the Gibbs distribution, i.e., P(a|z,i) = %, where I'; is a temperature
coefficient for task ¢. The weight values are updated by using TD (cf. Sutton’s
DYNA-Pi). The temperature is increased over time to increase the probability of

taking a greedy action. A new table is allocated whenever the agent faces a new task.
The initial weights are set to zero.

Abstract Policy Module (II-2): It stores the weight W;(x, A) for state z,
abstract action A, and task ¢. Actions are chosen using the Gibbs distribution just
as in the primitive model. The weights are also updated using TD. A new table is
allocated whenever the agent faces a new task. The initial weights are set to zero.

7.4.1 Learning Algorithm in H-DYNA

The operation of the architecture is a straightforward extension of Sutton’s DYNA.
Learning proceeds in trials as shown in Figure 7.4. Each trial starts with the external
agency (experimenter) choosing a task for the agent, say task ¢, and ends when the
task has been completed successfully. The trial proceeds in a loop. At the beginning
of the loop it is determined if it is time for the agent to act in the real environment.
If yes, then the agent selects a primitive action, say a, to execute in the current state
x from the policy module II-1, executes it in the real world, and then updates three
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things: the value function for state = and task ¢, the policy weights stored in II-1 for
state x, and the primitive model for abstract action a in state x.

At the beginning of the loop, if it is not time to act, the agent can do some
model-based learning in which the agent is not constrained to update the value
function for the current state in the current task. The agent can pick an arbitrary task
7, an arbitrary state z, and the model M-1 or M-2 that it will use for the simulation.
Assume, w.l.o.g., that it picks M-2. Then it can simulate the consequences of
executing the action proposed by II-2, say A, in state z for task j. The simulated
experience is used to update two things: V;(z), the value of state z in task j, and the
weights stored for state z in II-2. Similarly, if the agent had chosen to simulate in
M-1, V;(z) and the weights for state z in II-1 would be updated. A trial ends when
the goal state of the current task is reached.

If at the beginning of a trial, the agent receives a task command it has not seen
before, then some new memory has to be allocated for that task. The agent adds a
new value function table to the value function module, allocates memory for the goal
state of that task in the abstract module, and allocates a table in 1I-1 and 1I-2 for
that task. This new memory is filled with some default values. The rest of the loop
remains the same.

7.5 Empirical Results

H-DYNA is a general architecture for building abstract environment models for
abstract actions in RL tasks. The above description was presented for abstract
actions that express intentions of achieving significant states in the environment.
It was suggested that assuming the goal states of all the tasks faced by an agent
in its environment to be significant states was a useful heuristic. In this section,
this heuristic is tested in the context of compositionally-structured MDTs developed
in Chapter 6. In particular H-DYNA is tested on the gridworld navigation tasks
presented in Section 6.3.

7.6 Simulation 1

This simulation was designed to illustrate two things: first, that it is possible
to solve a composite task by doing backups exclusively in the abstract model M-2,
and second, that it takes fewer backups to learn the optimal value function by doing
backups in the abstract model as compared to the number of backups it takes in the
primitive model. H-DYNA was first trained on the three elemental tasks 77, T and
T5 (see Table 6.1). The system was trained until the primitive model had learned
the expected payoffs for the primitive actions and abstract model had learned the
expected payoffs for the three elemental tasks. This served as the starting point for
two separate training runs for composite task C5 that requires the agent to execute
tasks 17, Ty and T5 in that order.

For the first run, only M-1 was used to generate information for a backup. For
the second run the same learning parameters were used, and only M-2 was used to
do the backups. To make the conditions as similar as possible for the comparison, the
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Figure 7.4  Anytime Learning Algorithm for H-DYNA. This figure shows the
flowchart for the algorithm implemented by H-DYNA. It is a trial based algorithm.
At the start of a trial a task is chosen for the agent. At any given moment, if it is time
to act, a primitive action is chosen from II-1 and executed in the real environment.
All the modules are updated based on that real experience. If it is not time to act,
the agent can update the value of any state for any task using simulated experience

from M-1 or from M-2.
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Figure 7.5  Rate of Convergence in M-1 versus M-2. This figure compares the
rate of convergence of the value function for two algorithms: one does backups in
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order in which the states were updated was kept the same for both runs by choosing
predecessor states in a fixed order. After each backup, the absolute difference between
the estimated value function and the previously computed optimal value function was
determined. This absolute error was summed over all states for each backup and then
averaged over 1000 backups to give a single data point. Figure 7.5 shows the learning
curves for the two runs. The dashed line shows that the value function for the second
run converges to the optimal value function. The two curves show that it takes far
fewer backups in M-2 than M-1 for the value function to become very nearly-optimal.

7.7 Simulation 2

This simulation was conducted on-line to determine the effect of increasing the
ratio of backups performed in M-2 to the backups performed in the real world. H-
DYNA is first trained on the 3 elemental tasks 77, T,, and T5, for 5000 trials. Each
trial started with the agent at a randomly chosen location in the gridworld, and
with a randomly selected elemental task. Each trial lasted until the agent had either
successfully completed the task, or until 300 actions had been performed. After 5000
trials H-DYNA had achieved near-optimal performance on the three elemental tasks.
Then the three composite tasks (see Table 6.1) were included in the task set. For
each trial, one of the six tasks was chosen randomly, the agent started in a randomly
chosen start state, and the trial continued until the task was accomplished or there
was a time out. The tasks, 'y and (3 were timed out after 600 actions and the task
(5 after 800 actions.

For this simulation it is assumed that controlling the robot in real-time leaves
enough time for the agent to do n backups in M-2. The purpose of this simulation
is to show the effect of increasing n on the number of backups needed to learn the
optimal value function. No backups were performed in M-1. The simulation was
performed four times with the following values of n: 0, 1, 3 and 10. Figure 7.6
shows the results of the four different runs. Note that each backup performed in M-2
could potentially take much less time than a backup performed in the real world.
Figure 7.6 displays the absolute error in value function plotted as a function of the
number of backups performed. This results of this simulation show that even when
used on-line, backups performed in M-2 are more effective in reducing the error in
the value function than a backup in the real world.

7.8 Discussion

The previous chapter presented a model-free or direct approach for accelerating
the learning of solutions for compositionally-structured MDTs that are defined in the
same environment. The relative merits of adaptive model-based approaches versus
model-free approaches in the single-task context are still debated and in the opinion
of this author the answer is likely to be problem dependent. However, for agents
that have to learn to solve multiple tasks defined in the same environment, it seems
reasonable to assume that building an environment model will be useful. In the
multi-task context, learning a model allows transfer of knowledge that is invariant
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across tasks (see, also Mahadevan [70]), and the computational expense of building
the model can be amortized across the set of tasks.

In both the single and multiple task contexts, the nature of the model will play
a role in determining its usefulness. As demonstrated in this chapter, it is possible
to build models that do temporal abstraction by predicting the consequences for
abstract actions. Solving new tasks by doing state-updates in abstract models can
lead to low-depth solutions and that can accelerate convergence to the optimal value
function.

7.8.1 Subsequent Related Work

After the publication of this author’s work (Singh [95, 98, 97]) on CQ-L and
H-DYNA, other authors have developed hierarchical RI architectures that make
different assumptions and have different strengths and weaknesses. Lin [66] developed
an architecture that first learns elementary tasks and then learns how to compose
them to solve more complex tasks. Lin’s work assumes deterministic environments
but does not assume the compositional structure on tasks assumed in this authors
work. It also does not build models of the elementary tasks. Dayan and Hinton [35]
have developed a hierarchical architecture, called feudal RL, that also does not assume
compositional structure on tasks. It consists of a predefined hierarchy of managers,
each of whom has the power to set goals and payoffs for their immediate sub-managers.
Each component of the hierarchy attempts to maximize its own expected long-term
payoff. The system has learned when the goal of the top level manager is satisfied.

7.8.2 Future Extensions of H-DYNA

H-DYNA represents preliminary research on the topic of building abstract envi-
ronment models. The structure of the abstract model made some assumptions about
the class of tasks faced by the agent. One assumption that turns out not to be a
limitation is that each task should have a single goal state. If a task has more than
one goal state then all that will change is that the next-state function in the abstract
model will no longer be state independent. The abstract model will have to store
the goal state reached as a function of the start state. A second assumption that the
cost function be task independent is somewhat more limiting. However, there are
many classes of tasks where the cost function will be task independent, e.g., in many
robotic tasks defined in the same environment.

Another potential drawback of H-DYNA is that in the worst case the number of
abstract actions can equal the number of states in the environment. However, that
is unlikely to be true in any realistic task setting. Nevertheless, as one increases the
number of abstract actions, the advantage gained by a reduced depth is offset by
the disadvantage of increasing branching factor. However, it should be possible to
combine H-DYNA with some heuristics for pruning the abstract actions from time to
time. Two obvious heuristics are: prune the least recently used abstract actions or
the least frequently used abstract actions.



CHAPTER 8

ENSURING ACCEPTABLE BEHAVIOR
DURING LEARNING

An agent using RL to solve an optimal control problem has to search, or explore,
in order to avoid settling on suboptimal solutions. In off-line learning, exploration
does not directly affect performance because the agent uses simulated experience
derived from a model of the environment to compute a solution before applying it to
the actual environment. However, in on-line learning, exploration can lead the agent
to perform worse than is acceptable or safe in the real environment. For example,
if the environment has catastrophic ‘failure’ states, exploration can lead to disaster
despite the fact that the agent may already know a ‘safe’ but suboptimal solution.

Although the need for exploration cannot be removed entirely, this chapter presents
a technique that constrains the solution space for a complex task to ensure that the
exploration is conducted in a space composed mostly of acceptable solutions. The
solution space is constrained by replacing the conventional primitive actions for the
complex task by actions that engage closed-loop policies found for suitably-defined
simpler tasks. This method also accomplishes transfer of training from simple to
complex tasks. It is demonstrated in an optimal motion planning problem, a compo-
nent of many problems in robotics. Empirical results are presented using a simulated
dynamical robot in two different environments.

Constraining the solution space for a complex task in the manner described above
also reduces the size of the solution space and thereby accelerates learning. One has to
be careful, though, not to constrain the solution space so much as to exclude all good
solutions. In the previous two chapters the terms simple and complex tasks were used
to refer to elemental and composite MDTs that have a hierarchical relationship. The
terms simple and complex tasks are used in a different sense here that will become
clear later in the chapter.

8.1 Closed-loop policies as actions

To formulate a given control problem as an MDT one has to choose the state set
and the actions available to the agent. In most attempts to apply RL, the actions of
the agent are primitive in that they are the low-level, general-purpose actions that
the agent can perform in most states, e.g., “rotate wheel by 90 degrees”, or “close
gripper”. Primitive actions are assumed to have the following characteristics: 1) They
are executed open loop, and 2) They last one time step. This is an arbitrary and
self imposed restriction; in general the set of actions can have a much more abstract
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relationship to the problem being solved. Specifically, what are considered ‘actions’
by the RL algorithm can themselves be goal-directed closed-loop control policies.

RL algorithms search for optimal policies in a policy space defined by the actions
available to the agent. Changing the set of actions available to an agent changes the
policy space. RL should still find an optimal policy but only with respect to the
changed policy space. The previous chapter used abstract actions that were closed-
loop policies to build abstract environment models for achieving temporal abstraction.
In this chapter, the motivation for considering abstract actions is to 1) constrain the
policy space to satisfy external criteria, such as excluding unsafe policies, and 2)
reduce the size of the policy space so that finding the optimal policy is easier. Of
course, care has to be taken to ensure that the reduced policy space in fact does
contain a policy that is close in evaluation to the policy that is optimal with respect
to the largest policy space physically realizable by the agent.

The robustness and greatly accelerated learning resulting from the above factors
can more than offset the cost of learning the abstract actions. The next section
presents the optimal motion planning problem and a brief sketch of the harmonic
function approach to path planning developed by Connolly [29] that is used to
compute the abstract actions.

8.2 Motion Planning Problem

The motion planning problem arises from the need to give an autonomous robot
the capability of planning its own motion, i.e., deciding what motions to execute in
order to achieve a task specified by initial and goal spatial arrangements of physical
objects. In the most basic problem, it is assumed that the robot is the only moving
object, and the dynamic properties of the robot are ignored. Furthermore motion is
restricted to non-contact motions so that mechanical interaction between the robot
and its environment is also ignored. These assumptions transform the motion plan-
ning problem into a geometrical path planning problem. In the context of achieving
transfer of training from simple to complex tasks, motion planning is the complex
problem and geometric path planning is the simple problem.

Further simplification of the path planning problem is achieved by adopting the
configuration space representation. The essential idea in configuration space is to
represent the robot as a point in the robot’s configuration space, and to map the
obstacles into that space. This mapping transforms the problem of planning the
motion of a Cartesian robot into the problem of planning the motion of a point in
configuration space. The solution to the path planning problem is a path from every
starting point that avoids obstacles and reaches the goal.

Both the motion planning problem and the path planning problem defined above
are not optimal control problems because there is no objective function to optimize.
To convert the motion planning problem into an optimal motion planning problem
one requires the learner to find paths that minimize some objective function. The
objective function adopted here is the time-to-goal objective function. Therefore the
solution paths will be minimum time paths. The associated path planning problem,
however, is still not an optimal control problem because time does not play a role.
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The motivation behind the approach presented in this chapter is to use paths
found for the (non-optimal) path planning problem to a) help reduce the number of
failures and ensure acceptable performance, and b) to accelerate learning, in the more
complex optimal motion planning problem. Even though it is possible to learn the
solutions to the path planning problem, the simulations reported here simply compute
the solutions off-line via an efficient procedure described in the next section.

8.2.1 Applying Harmonic Functions to Path Planning

A conventional approach to solving the geometric path planning problem is the
potential field approach. Roughly, the point-robot in configuration space is treated
as a particle in an artificial potential well generated by the goal configuration and
the obstacles. Typically the goal generates an “attractive” potential which pulls the
particle towards the goal, and the obstacles produce a “repulsive” potential that
repels the particle away. The negative gradient of the total potential is treated as
an artificial force applied to the robot. The problem with this approach is that it is
not guaranteed that the particle will avoid spurious minima, i.e., minima not at goal
location.

Harmonic functions have been proposed by Connolly et al. [31, 30] as an al-
ternative to local potential functions. Harmonic functions are guaranteed to have no
spurious local minima. The description presented here closely follows that of Connolly
et al. [31]. A harmonic function ¢ on a domain @ C R" is a function that satisfies
Laplace’s equation:

2 9
Vi = ; 77 = 0. (8.1)
In practice Equation 8.1 is solved numerically by finite difference methods. In a
two-dimensional configuration space, let ¢(x, y) be the solution to Laplace’s equation,
and let u(x;,y;) represent a discrete regular sampling of ¢ on a grid. A Taylor series
approximation to the second derivatives is used to derive the following linear system
of equations:

h2¢($“y]) = u(xi-l-l?yj) + u(xi—lvyj)

Fu(ws, yia) + ulws, yj-1) — dulzi,y;) (8.2)
where h is the grid spacing, henceforth set to be 1.0 without loss of generality.
Equation 8.2 can be extended to higher dimensions in the obvious way.

Equation 8.2 can be solved by a relaxation equation much like successive ap-

proximation was used to solve the linear system of equations associated with policy
evaluation. Successive approximations to ¢ are produced using the following iteration:

1
Uk-|—1($z’7 yj) = Z(Uk(xﬁla ?Jj) + uk(xi—lv ?Jj)
Fur(@i; yipa) + ur(zi,yi-1)). (8.3)

This iteration is performed for all non-boundary grid points, where the boundary of
2, labeled (6€2) consists of the boundaries of all obstacles and goals in a configuration-
space representation.
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At the grid points along the boundary of the configuration space the iteration
depends on the nature of the boundary condition on ¢. The following is called a
Dirichlet boundary condition: ¢|sq = ¢, where ¢ is some constant, and ¢|sq is the
value of the function ¢ at the boundary 6. It amounts to holding the boundary to
a fixed potential of ¢. Solutions derived with the Dirichlet boundary conditions are
denoted ¢p. A second boundary condition is called the Neumann boundary condition
defined as: %LSQ = 0, where n is the vector normal to the boundary, and % is the
derivative of ¢ in the direction n. The Neumann boundary condition constrains the
gradient of ¢ at the boundary to be zero in the direction normal to the boundary.
Solutions derived from the Neumann boundary condition are denoted ¢y.

8.2.2 Policy generation

The gradient of a harmonic function, V¢, defines streamlines, or paths, in con-
figuration space that are guaranteed to be a) smooth, b) avoid all obstacles, and ¢)
terminate in a goal state (Connolly et al. [30]). The paths generated by ¢p as well
as by ¢y have these properties but are qualitatively very different from one other.
The Dirichlet paths are perpendicular to the boundary, while the Neumann paths
are parallel to the boundary. Examples of both types of paths are shown later in
Figure 8.3, lower panel. These paths are solutions to the geometric path-planning
problem. A controller to follow these paths can be obtained by using the gradient
of the harmonic function as a velocity command for the robot controller. Depending
on the type of the boundary condition, the controller would execute the following
closed-loop control policy:

7TD($) = V¢D|l’7
n(z) = Vénls

where z is some point in configuration space. Note that the actions of the robot are
velocity commands for a velocity reference controller.

Note that the policies 7p and 7 are not solutions to an optimal control problem,
i.e., they are not derived to optimize some objective criteria such as minimum time,
or minimum jerk.! In the next section, a RL problem is defined that uses the Dirichlet
and Neumann closed-loop control policies as abstract actions to define a policy space

8.2.3 RL with Dirichlet and Neumann control policies

The state space of the optimal motion planning problem for a robot is larger than
the configuration space in which the harmonic functions are computed. For example,
the state space in the motion planning problem for a robot in a planar environment
is ®* ({=,2,y,y}). The harmonic functions are computed by ignoring the dynamics,

THowever the harmonic functions minimize a particular functional that is independent of the
dynamics of the robot.
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i.e., they are defined in two dimensional position space R* ({z,y}). One can define
Dirichlet and Neumann policies (7p and 7x) in state space as follows:

mp(r) = Vépls
() = Vonls

where z is some point in the state space and 7 is its projection into configuration space.
As before, the actions defined by policies 7p and 7 prescribe velocity commands for
a velocity reference controller.

Instead of formulating the optimal motion planning problem as a RL task in
which a control policy maps states into physical actions, consider the formulation in
which a policy maps state @ to a mizing parameter k(x) that then defines the physical
action as :

(1 = k(@))mp(e) + k(z)mn(z),

where 0 < k(x) < 1. Appendix E presents conditions that guarantee that for a robot
with no dynamical constraints, the solution space defined by the action k() will not
contain any unacceptable solutions. Although the guarantees stop holding as one
adds dynamical constraints to the robot, the new formulation does serve to reduce
the risk of hitting an obstacle.

8.2.4 Behavior-Based Reinforcement Learning

Behavior-based robotics is the name given to a body of relatively recent work
in robotics that builds robots equipped with a set of useful “behaviors” and solves
problems by switching these behaviors on and off appropriately (e.g., the subsumption
architecture of Brooks [22]). The term behavior is often used loosely to include all
kinds of open-loop, closed-loop, and mixed control policies. The closed-loop Dirichlet
and Neumann policies are examples of goal-seeking behaviors. In most behavior-based
architectures for robots the switching circuitry and the behaviors are designed by the
roboticist. (see Mahadevan and Connell [71] for an exception that learns behaviors
but has fixed switching circuitry).

The learning architecture presented in this section is called BB-RL, for behavior-
based RL, because it uses RL to learn an optimal policy that maps states to a mixture
of Dirichlet and Neumann behaviors. Maes and Brooks [69] used a simple form of
RL to learn the switching circuitry for a walking robot with hardwired behavior
modules. Their formulation of the RL problem was as a single stage decision task in
which the learner’s goal was to select at each time step the behavior that maximizes
the immediate payoff. BB-RL extends Maes and Brooks’ [69] system to multi-stage
decision tasks and to policies that assign linear combinations of behaviors to states
instead of a single behavior to each state. (see, also Gullapalli et al. [117]).

8.3 Simulation Results

Figure 8.1 shows the two simulation environments for which results are presented
in this section. The environment in the top panel consists of two rooms connected
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by a corridor, and the environment in the lower panel is a horseshoe-shaped corridor.
The robot is simulated as a unit-mass, and the only dynamical constraint is a bound
on the acceleration.

8.3.1 Two-Room Environment

The learning task is to find a policy that minimize time to reach goal region.
Q-learning [118] was used to learn the mixing function, k. Figure 8.2 shows the
2-layer neural network architecture used to store the Q-values (see Appendix F for a
brief review of layered neural networks). Because both the states and the actions are
continuous for these problems a network inversion technique was used to determine
the best Q-value in a state as well as to determine the best action in a state (cf.
Chapter 6). The robot was trained in a series of trials, with each trial starting with
the robot placed at a randomly chosen state and ending when the robot entered the
goal region. The points marked by stars in Figure 8.1 were the starting locations for
which statistics were collected to produce learning curves.

Each panel in Figure 8.3 shows three robot trajectories from a randomly chosen
start state; the black-filled circles mark the Dirichlet trajectory, the white-filled circles
mark the Neumann trajectories, and the grey-filled circles mark the trajectories after
learning. Trajectories are shown by taking snapshots of the robot at every time step;
the velocity of the robot can be judged by the spacing between successive circles on the
trajectory. The upper panel in Figure 8.4 shows the mixing function for zero-velocity
states. The darker the region, the higher the proportion of the Neumann policy in
the mixture. The agent learns to follow the Neumann policy in the room on the
left-hand side, and to follow the Dirichlet policy in the room on the right-hand side.
The lower panel in Figure 8.4 shows the average time to reach the goal state as a
function of the number of trials. The solid-line curve shows the performance of the
QQ-learning algorithm. The horizontal lines show the average time to reach the goal
for the designated unmixed policies. It is clear from the lower panel of Figure 8.4
that within the first hundred trials the RL architecture determines a mixing function
that greatly outperforms both the unmixed policies.

8.3.2 Horseshoe Environment

Figures 8.5 and 8.6 present the results for the horseshoe environment. As above,
the black-filled circles mark the Dirichlet trajectory, the white-filled circles mark the
Neumann trajectories, and the grey-filled circles mark the trajectories after learning.
Figure 8.5 shows sampled trajectories from two different start states. Notice that the
Dirichlet trajectory seems to be better than the Neumann trajectory after the bend
in the horseshoe and worse before the bend. The upper panel in Figure 8.6 presents
the learned mixing function for zero-velocity states. The lower panel in Figure 8.6
shows the performance curve of the learned mixed policy versus the pure Dirichlet
and Neumann policies. In this environment, the pure Neumann policy is quite good.
Nonetheless the Q-learning agent finds a better solution within the first ten thousand
trials.
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Figure 8.1  Simulated Motion Planning Environments. This figure shows the two environments
for which results are presented in Section 8.3. The task is to find minemum time paths from every
point in the workspace to the region marked as GOAL without hitting a boundary wall (shown
by solid lines). The robot is trained in trials, each starting with the robot in a randomly chosen
state and ending when the robot enters the goal region. The points marked with stars represent the

starting locations for which statistics were kept to produce learning curves.
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Figure 8.2  Neural Network for Learning Q-values. This figure shows a three-layered connectionist
net, with the hidden layer composed of radial basis functions. The inputs to the net are the
4-dimensional state and the 1-dimensional action. The network was trained using backpropagation

with target outputs determined by the Q-learning [118] algorithm.
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Figure 8.3  Sample Trajectories for Two-Room Environment. This figure shows the robot’s
trajectories from two different starting points. The black-filled circles mark the Dirichlet trajectory,
white-filled circles mark the Neumann trajectory, and the grey-filled circles mark the trajectory that
results from learning. FEach trajectory is shown by showing the position of the robot after every time

step. The velocity can be judged by the spacing between successive circles on a trajectory.
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Figure 8.4  Learning Results for Two-Room Environment. The upper panel shows the mixing
function for zero-velocity states after learning. The darker the region the higher the proportion of
the Neumann policy in the action for that region. The lower panel compares the performance of
the Q-learning robot relative to agents that follow un-mixed policies. The solid-line curve shows
the incremental improvement over time that is achieved due to Q-learning. The horizontal lines
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Figure 8.5

Sample Trajectories for the Horseshoe Environment. This figure shows the robot’s
trajectories from two different start states. The black-filled circles are used to show the Dirichlet
trajectory, white-filled circles for Neumann trajectory, and the grey filled circles for the trajectory

achieved after learning. The trajectory is shown by showing the position of the robot in position
space after every second.

8.3.3 Comparison With a Conventional RL Architecture

The performance of BB-RL was compared with the performance of a conventional
RI. (C-RL) architecture that uses primitive actions to solve the optimal motion
planning problem in the two-room and the horseshoe environments. The aim is
to compare three things: the rate of convergence, the number of times the robot
hits an obstacle, and the quality of the final solution. The primitive actions for the
C-RL architecture are to choose an acceleration (magnitude and direction) for the
robot. The magnitude of the acceleration is bounded from above. Notice that the

action space for C-RL is two dimensional while the action space for BB-RL is one
dimensional.

In the two-room environment the best C-RL architecture found by this author
takes more than twenty thousand trials to achieve the performance achieved by
the BB-RL architecture in roughly a hundred trials. Furthermore, the robot using
the C-RL architecture collided with the boundary wall hundreds of times. The
actual number of collisions varied with parameter settings and random number seeds.
The final solution found by the C-RL architecture was 6% better than the final
solution found by the BB-RL architecture. In the horseshoe environment, the C-RL
architecture takes more than a hundred thousand trials to find a solution equivalent
to a solution found by the BB-RL architecture in about ten thousand trials. The
robot collides with a wall thousands of times, and the best solution is better by about

8%.
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Figure 8.6  Learning Results for the Horseshoe Environment. The upper panel shows the mixing
function for zero-velocity states. The darker the region, the higher the proportion of Neumann in
the resulting action for that region. The lower panel compares the performance of the Q-learning
agent relative to agents with fixed strategies. The solid-line curve shows the improving performance
via Q-learning. The horizontal lines represent the performance of the fixed strategies shown on the

line labels.
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There are at least three reasons for the slower rate of learning in the C-RL
architecture compared to the BB-RL architecture. The robot cannot generalize the
concept of avoiding the wall; it has to learn it separately for each segment of the
wall. Further, because the robot hits the wall so many times, the learning rate has
to be very small to ensure that the early experience does not saturate the weights in
the Q-learning network. The many collisions and the small learning rate slows down
learning in C-RL. A third reason for the slow learning of C-RL is that the action
space of C-RL is two dimensional compared to BB-RL’s one-dimensional space.

In addition, C-RIL. was much more sensitive than BB-RL to the choice of learning
rate and the neural network architecture used to implement Q-learning. In C-RL,
a small increase in the learning rate prevented the robot from learning any solution
at all. BB-RL is more robust because any choice of mixing function guarantees an
acceptable level of performance.

8.4 Discussion

The BB-RL architecture kept the robot from colliding into a boundary wall, and
it accelerated learning relative to a C-RL architecture. But BB-RL also has some
disadvantages compared to C-RL. CR-L is ultimately able to find a better solution
than BB-RL and so BB-RL’s benefits are attained at the expense of optimality. BB-
RL needs a map of the environment to solve the path planning tasks. Also, unlike
C-RL, BB-RL has to expend the computational effort of computing the harmonic
functions. However, as noted above, harmonic functions are cheaper to compute than
value functions because they are computed in the lower dimensional configuration
space, because they can be computed on a coarse grid over the environment, and
because they do not involve any optimization. Connolly has also proposed a hardware
resistive grid architecture that can compute harmonic functions very rapidly.

This chapter illustrated the idea of using the closed-loop solutions found for
suitably designed simple tasks to constrain the policy space of a complex task in
order to remove all/most undesired solutions. The difficult question of automatically
designing suitable simple tasks is not addressed here. Instead, it is proposed that
in some domains, especially in robotics, researchers have already identified sets of
closed-loop behaviors that have desired properties. Determining stable behaviors
and rules for composing them that are useful across a variety of complex tasks
with multi-purpose robots is an active area of research (e.g., Grupen [47, 46]). RL
architectures, such as the one described here, offer a technique for using existing
closed-loop behaviors as primitives by learning mixing functions to solve new complex
tasks.



CHAPTER 9

CONCLUSIONS

The field of reinforcement learning (RL) is at an exciting point in its history.
A solid mathematical foundation has been developed for RIL algorithms. There are
asymptotic convergence proofs for lookup table implementations of all RL algorithms
when applied to finite Markovian decision tasks (MDTs). There is now a common
framework for understanding some heuristic search methods from artificial intelligence
(AI), dynamic programming methods from optimal control, and RL methods from
machine learning. This great synthesis of the different approaches and the clear
understanding of the different assumptions behind them have come about as a result
of work done by several researchers. The theoretical research presented in the first
half of this dissertation has contributed to this understanding by providing a uniform
framework based on classical stochastic approximation theory for understanding and
proving convergence for the different RL algorithms.

As a result of its strong theoretical foundations, the field of RL is gaining ac-
ceptance not only among Al researchers interested in building systems that work in
real environments, but also among researchers interested in incorporating RL into
traditional control theoretic architectures. But along with the increasing acceptance
has come the need to apply RL architectures to larger and larger applications. The
research on scaling RL presented in the second half of this dissertation was motivated
by the applications of tomorrow, e.g., adaptive household robots, multi-purpose soft-
ware agents residing inside computer networks, adaptive multi-task space exploration
robots, etc. Building multi-task, life-long learning agents raises some significant
issues for RL. The architectures presented in Chapters 6 , 7 and 8 represent a first
step in tackling the complex issues of achieving transfer of training across tasks and
maintaining safe performance while learning that are crucial to the success of adaptive
multi-task agents. Despite the preliminary nature of the architectures, some general
ideas were developed that are likely to outlast the details of the specific architectures.

9.1 Contributions

The section presents a brief summary of the main contributions of this disserta-
tion.

9.1.1 Theory of DP-based Learning

Soft Dynamic Programming: Classical DP algorithms use a backup operator
that only takes into account the best action in each state. That can lead to solutions
where the agent prefers states with only one very good action over states that have
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many good actions. This dissertation developed a family of soft backup operators that
take into account all the actions available in a state. Soft DP can lead to solutions
that are more robust in non-stationary environments than the solutions found by
conventional DP. Proofs of convergence were also developed.

Single-Sided Asynchronous Policy Iteration: Classical asynchronous DP
algorithms allow the agent to sample in predecessor state space but not in action
space. This dissertation developed a new asynchronous algorithm that allows the
agent to sample both in predecessor state space as well as in action space. It was
shown that the new algorithm converges under more general initial conditions than
the related algorithms of modified policy iteration (Puterman and Shin [84]) and the
asynchronous algorithms developed by Williams and Baird [127].

Stochastic Approximation Framework for RL: A hitherto unknown con-
nection between stochastic approximation theory and RL algorithms such as TD and
QQ-learning was developed. The stochastic approximation framework clearly delineates
the contribution made by RL researchers to the entire class of algorithms for solving

RL tasks.

Sample Backup Versus Full Backup: Sample backups are cheap to compute
but return noisy estimates while full backups are expensive to compute but return
more informative estimates. It was shown that algorithms using sample backups
can be more efficient than algorithms using full backups for MDTs that are nearly
deterministic but have a high average branching factor.

Impact of Approximations on Performance: Two separate results were
derived that provide partial justification for using function approximation methods
other than lookup tables to store and update value functions. The first result defined
an upper bound on the worst-case average loss per action when the agent follows a
policy greedy with respect to an approximation to the optimal value function. The
second result shows that there is a region around the optimal value function such
that any value function within that region will yield optimal policies.

9.1.2 Scaling RL: Transfer of Training from Simple to Complex Tasks

Compositional Q-learning: The constrained but useful class of compositionally-
structured MDTs was defined. A modular connectionist architecture called CQ-L
was developed that does compositional learning by composing the value functions for
the elemental MDTs to build the value function for a composite MDT. Transfer of
training is achieved by sharing the value functions learned for the elemental tasks
across several composite tasks. CQ-L is able to solve automatically the composition
problem, i.e., it can figure out which value functions to compose for a composite task
without knowing the decomposition of that composite task.

Hierarchical-DYNA: An RL architecture was developed that learns value func-
tions by doing backups in a hierarchy of environment models. The abstract environ-
ment model predicts the consequences of executing abstract actions that express
intentions of achieving significant states in the environment. It was shown that
if the agent is trained on compositionally-structured tasks, doing backups in the
abstract model can speed up learning considerably. The definition of abstract actions
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as closed-loop policies for achieving significant states generalizes the definition of
macro-operators as open-loop sequences of actions.

Closed-Loop Policies as Primitive Actions: An architecture that maintains
acceptable performance while learning in motion planning problems was developed.
The main innovation was in replacing the conventional primitive actions in motion
planning problems by actions that select the proportion in which to mix two closed-
loop policies found as solutions to two geometric path planning problems.

9.2 Future Work

A large proportion of RL research, including this dissertation, has focused on finite
stationary MDTs for two reasons: it has allowed considerable progress in developing
the theory of RI, and there are many interesting and challenging RL tasks that fall
into that category. Nevertheless, as the range of real-world problems to which RL is
applied is extended, both the theory and practice of RL will also have to be extended
to deal with the following:

Continuous Domains: A common strategy of researchers currently applying
RL to continuous state tasks is to replace the lookup tables of conventional RL
architectures by function approximators such as neural networks and nearest neighbor
methods. Some researchers handle continuous state spaces by partitioning the state
space into a finite number of equivalence classes and then use conventional RL
architectures on the reduced and finite state space. Of course, none of the theory
developed for finite MDTs yet extends to general continuous state problems.

Non-Markovian Environments: In many real-world problems it is unrealistic
to assume that the agent is complex enough, or that the environment is simple enough,
to allow the agent’s perceptions to return state information. Researchers are currently
developing methods that attempt to build state information by either memorizing past
perceptions, or by controlling the perceptual system of the agent to generate multiple
perceptions (Whitehead and Ballard [126], Lin and Mitchell [67], Chrisman [27], and
McCallum [73]). In both cases the hope is that techniques other than RL can be used
to convert a non-Markovian problem into a Markovian one so that conventional RL
can be applied. State estimation techniques developed in control engineering, e.g.,
Kalman filters, can also be used in conjunction with RL. Of course, in practice state
estimation and control can also be done simultaneously.

Nonstationarity: The issue of changing, or nonstationary, environments has
largely been ignored in RL research. One possible approach may be to build robust
RL algorithms that find policies producing satisfactory, though perhaps suboptimal,
performance in all possible environments. On the other hand, if the environment
changes slowly enough, then RL. methods, being incremental, can perhaps track those
changes.



APPENDIX A
ASYNCHRONOUS POLICY ITERATION

The purpose of this appendix is to prove some Lemma’s used in the proof of
convergence of the single-sided asynchronous policy iteration (SS-API) algorithm
developed in Chapter 3. The notation used in the following is developed in Chapter 3.
Throughout we will use the shorthand (Vign, 7i4n) = {Us §+h(Vl, 7;) for

Vigns m13n) = Ui U1 Urpn—a <. Ul(Vi, 7).

For ease of exposition, define the identity operator I(Vi, mx) = (Vi, 7x). Further define
the operator B, = T,L,, Vo € X.

Fact 1: Consider a sequence of operators {U;}/™" such that for [ < k < (I + h),
Up € {B, |z € X}, and Vo € X, B, € {Up};*". Then if Vi € Vo, [[Vigr — V7o <
Vi = V||

Proof: This is a simple extension of a result in Bertsekas and Tsitsiklis [18].
Fact 2: Consider the following algorithm: (V[ ,,741) = Up(V/, 71), where U, €
{B; |z € X}. IftVy €V, and Vo € X, B, € {U,} infinitely often, then limj_, V// =
V=,

Proof: This result follows from Fact 1 and the contraction mapping theorem.
Note that the algorithm stated in Fact 2 is a modified version of asynchronous value
iteration that updates both a value function as well as a policy.

Q.E.D.
Fact 3: Consider (Viq1,Try1) = Bo(Vi,mi) and (V4,7 ) = B(V] 7). IV >
Vi 2 V], then Vrp, 7, € P, Vipr > V4.

Proof:
Vipa(a) = max | B*(x) +7 30 P*(a,)Vi(y)
yes
= Ra/(l') + Z Pa/(l‘,y)vé(y) for some a’ € A.
yex
And

RY(x) 4+~ Y P*(x,y)Vily)

yeX

> R () +v Y PV (x,y)Vily)

yeX

> RY(x) +v Y PY(x,9)Vi(y)

yeX
= Vk/-|—1 (51/')

Viar(2) = max

Q.E.D.
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Lemma 3: Consider a sequence of operators {U;}/™" such that for some arbitrary
state 2, VI <k <I+h—1,Up € {L% |2 € X,a € A}, and Va € A, L} € {Uy ;"
and Uy, =T, Let Vi € V,,, and let (V' 7') = B.(V, 7). Then, Vg, > V7.

Proof: Let (Vign 1, mipn1) = {Up}™" 7' (Vi, 7). Then Vk, [ < k < (I4+h—1),
Vi = V; and therefore m,_1(x) will be a greedy action with respect to V;, i.e.,

{Uk}g-l—h(‘/lv 7‘—1) = Tx(‘/l-l—h—la 7Tl-|—h—1) = (V/, 7T1_|_h).
Q.E.D.

Define W(x) to be the set of finite length sequences of operators that satisfy the
following properties:

1. each element {w;}! € W(x) has a subsequence {w;,}d, where d < h, and Va €
A, L(l’,a) S {wk}gv

2. wy, =T ().

Note, that for each state @ € X, there is a separate set W (x).
Lemma 4: In ARPI, for any arbitrary state x, consider a sequence {U; }}*" € W(x).
Let (V. %) = By(Vi,m). It V, € V,,, then Viy, > V.

Proof: Any element of W (a) applies each element of the set {L%|a € A} followed
by one T,. Intermediate applications of L where y # z will not affect the policy for
state  and intermediate applications of any T, can only increase the value function.
The above argument combined with Lemma 3 constitutes an informal proof. A formal
proof follows. Let the sequence {U/}*"~! be obtained by replacing all T' operators
in {Ux}*"" by the I operator, and let U}, = Uy = T,. The following can be
concluded immediately:

LViz>V/ =V =V, for I<k<(I+h—-1), and
2. l/-I—h — V
We will prove that

Vign(a) = max(Q"#= (a, mipp-1(2)), Vigna(2))
> l/-|—h(x)

= maX(QVllJrh—l(:E, Tipn-1()), Vz/+h—1($))v

thereby showing that Vi., >V, = V.

Because V, > V/ for [ < k <14 h —1, it suffices to show that QVk(x,rk(x)) >
QVi(x,my(x)), for | <k < (I+ h —1). We will show this by induction on k.
Base Case: By assumption V; = V/, and 7 = #]. Therefore Q"(x,m(z)) =
QY (x, w(x)).

Induction Hypothesis: Assume that Q" (x, 7, (2)) > QVm(x,x! (z)), for some m
such that I <m < (I4+h—1).

We will show that the above inequality holds for & = m + 1. There are three
separate cases to study.

Case 1: U,y = T(y) for some y € X. Therefore U, = I. Then clearly
Tl = T and @ =7, . Also, Vo1 2 Vi, =V =V . Therefore,
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QUi (2, T (7)) = QT (2, T (2)) 2 QT (2,7 (7)) = Q¥ (2,7, () =
QY (w7, 41 ().

Case 2: Uy = U, = Lj for some y # x. Then V,,\; =V, and V], = V] .
Also mpy1(2) = 7 (2) and 7Tm+1($) = x/ (). Therefore,

QY+t (2, T (2)) = Q' (&, m(2)) 2 QY (w,w), () = QVmr (w4 (2)).

Case 3: Upy1 = U, ., = L2 for somea € A. Then V,,\y =V, and V] ., =V .

Therefore QY+ (z, Tpp1(2)) = Q" (x, Tpmy1(2)), and similarly QVm+1(z, T (7)) =

Q" (x, 7!, ,1(x)). There are two subcases to consider:

L Thyy = a. Then Q41 (2, 7 4(w)) = QY (2, Ty (7)) = QP (2,0) > QVr(w, a) =
QY+ (2, ), 4 (2))

2. Thyy = 7 Then QUi (a, 7Tm+1(x)) > QU (2, wm(w)) = QY (2, wm(2)) 2

QY (,m), () = Q¥+t (2, w4 (2)):

Q.E.D.

Define W to be a set of finite length sequences of operators that satisfy the
following property: each element of W contains disjoint subsequences, such that at
least one distinct subsequence is in W(x), Vo € X.

Lemma 5: Consider any sequence {Uy}; the W. If Vi € V,, then ||[Vign — V|| <
YNV = Voo

Proof: From Lemma 4 and Facts 1 and 3 it can be seen that for any sequence
of operators that is an element of W the result would be a contraction.

Theorem: Given a starting value-policy pair (Vg, 7o), such that Vo € Vy, the ARPI
algorithm (Vip1, mrg1) = Ur(Vi, 7)) converges to (V*,7%) provided for each i € X,
and for all state-action pairs, (,a) € X x A, T; and L? appear infinitely often in the
sequence {Uy}.

Proof: The infinite sequence {Uy} has an infinity of disjoint subsequences that are
elements of W. The result that limg— . (Vi, 7x) = (V*, 7o) follows from Lemma 5 and
the contraction mapping theorem. It is known that de¢ > 0 such that if ||V —V*||, <€
then the greedy policy with respect to V is optimal (Singh [101]). Because the
sequence {V;} is non-decreasing it can be concluded that 7., € {7*}.

Q.E.D.



APPENDIX B

DVORETZKY’S STOCHASTIC
APPROXIMATION THEORY

After the initial Robbins-Monro paper on stochastic approximation algorithms
that proved convergence in probability, several researchers derived stronger results
of convergence with probability one and mean-square convergence under conditions
that are more general than the ones proposed in the original Robbins-Monro paper.
For the purposes of Chapter 4 a result derived by Dvoretzky is the most relevant.
Dvoretzky [39] studied a problem more general than finding roots of equations. He
studied convergent deterministic iterative processes of the form V41 = T,,(V,,), where
T, is a deterministic operator. He derived conditions under which the stochastic
process Vop1 = T,(V,) + D, where D, is mean-zero noise, would converge to the
fixed point of the original deterministic process.

The Robbins-Monro stochastic approximation iteration

where Y(V,,) = G(V,,) + €,, where G(V) is deterministic and ¢, is mean-zero noise,
can be rewritten in the form studied by Dvoretzky as follows:

Vir = (Vi = puG(V2)) + pu(G(V2) = Y (V2)), (B.2)
where T,,(V,,) =V, — p,G(V,), and D,, = G(V,,) = Y(V,,).

Let V,, be measurable random variables assuming values in a (finite or infinite
dimensional) (real) Hilbert space H. Let T, be function for ‘H to H. Let |.| denote
the norm in H.

Consider the basic recurrence scheme:

Theorem:. Let «,, 3, and ¢, be non-negative real numbers satistying

lim o, =0

n=0odo

i_o:ﬂz < o0

Let V* be a point of H and T, satisty the following equation
| T(Va) = V7 < max[ag, (14 8, — é0)[Va = V7] (B.5)
be satisfied for all V,, € H.



Then the iteration B.3 together with the conditions

E{D,|V,} =0
Vn, and
Y E{D!} <
=1
imply

P{limV, =V~} =1.
If moreover, E{V}?} < oo then also

lim E(V, = V*)* =0

123



APPENDIX C

PROOF OF CONVERGENCE OF Q-VALUE
ITERATION

This appendix proves that the full backup Q-value iteration operator, B(Q),
defined in Chapter 4 is a contraction operator. Therefore we have to show that if

Qus1 = B(Qw), then
H%:E(LIX |Qk+1(x7 a) - Q*(xv Cl)| < OéII%:E(LlX |Qk($7 a) - Q*(xv Cl)|

where 0 < a < 1. Let M = max, , |Qr(x,a)—Q*(x,a)|. Then V(z,a), Q*(x,a)— M <
Qr(z,a) < Q*(x,a) + M. Therefore, ¥Y(z,a)

Qrr(z,a) = R'(x)+7 Y P'(x,y)Vily)

yeX

< RNa) 4y 3 PHay)(Viy) + M)

yeX

< RYa)+ M+ > Pa.y)Vi(y)

yeX
< Q(x,a) + M.

Similarly one can show that ¥(x,a), Qr+1(x,a) > Q*(x,a) — vy M.



APPENDIX D
PROOF OF PROPOSITION 2

This appendix proves Proposition 2 stated in Chapter 6. Consider an elemental
deterministic Markovian decision task (MDT) T; and let its final state be denoted
x,. Let m; be the optimal policy for task 7;. The payoff function for task T; is
Ri(xz,a) = Y ex Poyla)ri(y) — ¢(z,a), for all x € X and a € A. By assumptions
A1-A4 (Chapter 6) we know that the reward r;(z) = 0 for all # # x,. Thus, for any
state y € X and action a € A,

Q" (y,a) = rixy) —cly,a) — Oy, z,) + cly, m(y)),

where ¢(y, 7;(y)) is the cost of executing the optimal action in state y, and ®(y, z,)
is the expected cost of going from state y to z, under policy ;.

Consider a composite task C; that satisfies assumptions A1-A4 given in Sec-
tion 6.1.2 for Chapter 6 and w.l.o.g. assume that for C; = [T'(j,1)T(5,2)---T(j, k)],
d1 < [ < k, such that T'(y3,1) = T;. Let the set L C X’ be the set of all 2’ € X'
that satisty the property that the augmenting bits corresponding to the tasks before
T; in the decomposition of C; are equal to one and the rest are equal to zero. Let
y' € L be the state that has the projected state y € X. Let z), € X' be the state
formed from z, € X by setting to one the augmenting bits corresponding to all the
subtasks before and including subtask 7} in the decomposition of C;, and setting the
other augmenting bits to zero. Let m} be an optimal policy for task C;. r;(2') is the
reward for state 2’ € X’ while performing task C;. Then by assumptions A1-A4, we
know that r;(z') = 0 for all 2’ € L and that ¢(2/,a) = ¢(x, a).

By the definition of Cj, the agent has to navigate from state y’ to state z to
accomplish subtask T;. Let ®'(y’,x)) be the expected cost of going from state y’ to
state ), under policy 7. Then, given that T'(j,1) = T;

Q7 (' a) = Qi) (@) +ri(a)) — ey a) — ®'(y, 2) + ey, 7 (y)),

where b € A is an optimal action for state z{ while performing subtask T'(j,/+ 1)
in task C;. Clearly, ®'(y', ;) = ®(y,z,), for if it were not, either policy 7; would
not be optimal for task 7}, or given the independence of the solutions of the subtasks
the policy 7} would not be optimal for task C;. For the same reason, c(y,mi(y)) =

e(y',mi(y')). Define K(Cj,1) = ng(j,l—l—l)(x;? b) +rj(z}) — ri(xy). Then

Q7 (v a) = QT (y.a)+ K(C;,1).

Q.E.D.
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D.1 Parameter values for Simulations 1, 2 and 3

For all three simulations, the initial values for the lookup tables implementing
the Q-modules were random values in the range 0.0-0.5, and the initial values for the
gating module lookup table were random values in the range 0.0-0.4. For all three
simulations, the variance of the Gaussian noise, o, was 1.0 for all Q-modules.

For Simulation 1, the parameter values for the both CQ-L and the one-for-one
architectures were: ag = 0.1, o = 0.0, oy = 0.3. The policy selection parameter, 3,
started at 1.0 and was incremented by 1.0 after every 100 trials.

For Simulation 2, the parameter values for CQ-L were: ag = 0.015, o, = 0.0001,
a, = 0.025, and 8 was incremented by 1.0 after every 200 trials. For the one-for-one
architecture, the parameter values were: ag = 0.01 and 3 was incremented by 1.0
after every 500 trials.!

For Simulation 3, the parameter values, ag = 0.1, oy, = 0.0001, and «, = 0.01
were used, and § was incremented by 1.0 every 25 trials.

!Incrementing the 3 values faster did not help the one-for-one architecture.



APPENDIX E

CONDITIONS FOR ROBUST
REINFORCEMENT LEARNING IN MOTION
PLANNING

Chapter 7 developed a RL architecture for solving the motion planning problem
that learns to mix two closed-loop policies found for the simpler path-planning prob-
lem. Let ¢p be the Dirichlet closed-loop policy, ¢n be the Neumann closed-loop
policy, and k(x) be the mixing function learned by the RL algorithm. This appendix
derives conditions under which the policy space of the RL algorithm developed in
Chapter 7 is guaranteed to exclude all unsafe policies (see Chapter 7 for further
detail).

Any closed-loop policy is a convex combination of the Dirichlet and Neumann
policies derived from the Dirichlet and Neumann harmonic potential functions. Let
L denote the surface whose gradients at any point are given by the closed-loop policy
under consideration. Then for there to be no local minima in L, the gradient of L
should not vanish in the workspace, i.e., (1.0 — k(2))Vop(2) + k(x)Veon(2) # 0. The
only way that can happen is if V2

41.ok_(xk)<x> B l_WD(?]/ (=

where [.]; is the :** component of vector [.]. The algorithm can explicitly check for
that possibility and prevent it. Alternatively, note that due to the finite precision
in any practical implementation, it is extremely unlikely that Equation E.1 will hold
in any state. Also note that x(s) for any point s on the boundary will always point
away from the boundary because it is the convex sum of two vectors, one of which is
normal to the boundary, and the other is parallel to the boundary.



APPENDIX F

BRIEF DESCRIPTION OF NEURAL
NETWORKS

An artificial neural network or connectionist network is a computational model
that is a directed graph composed of nodes and connections between nodes. Each
connection is capable of transmitting a real number from the predecessor node to the
successor node. Each node is capable of performing some simple, usually fixed, com-
putation on the signals that come in on the incoming connections. The computation
performed by a node is called its activation function and the result of the computation
is called the activation of the node. The signal carried by a connection is the product
of the activation of the predecessor node and a scalar parameter, called a weight,
associated with each connection. In addition, each unit can also store additional
parameters (weights) that are used in the activation function computation. The
parameters of the network can be adapted. Several learning rules based on gradient
descent have been developed for adapting the parameters. A good place for learning
about artificial neural networks and about learning rules is Rumelhart et al.’s [89]
1986 book on parallel distributed processing.

A subset of nodes are called input nodes and their activations are set from the
outside. Some special nodes are called output nodes and their activation can be read
by the outside world. Only a special class of networks, called feedforward networks
(Figure F.1) are used in this dissertation. In feedforward networks the nodes are
arranged in layers, starting with the input layer and ending with an output layer.
The layers inbetween the input and output layers are called hidden layers because
they are not accessible to the outside world. Each node in a layer receives connections
from all nodes in the layer below and sends connections to all nodes in the layer above.

For the purpose of this dissertation, neural networks can be thought of as function
approximators for storing functions. A particular neural network with fixed weights
implements a function that assigns an output vector to every input vector. The output
vector is determined by setting the activations of the input units to the components
of the input vector and forward propagating the activations and reading off the values
at the output nodes.

Two types of activation functions are used in this dissertation: the linear function,
and the radial basis function. A node that uses a linear activation function is called
a linear unit. Similarly a node that uses the radial basis activation function is called
a radial basis unit. A linear unit’s activation is equal to the sum of the inputs on the

T—w

incident connections. The radial basis unit’s activation is equal to ¢ 25, where x is
the vector of inputs to the unit, w is the vector of weights of the incident connections,
and o is the vector of additional parameters stored in the unit.
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Figure F.1 A Feedforward Connectionist Network. The nodes represent neurons
or units that compute simple functions of the inputs coming in on the edges. The
edges in the graph store scalar parameters or weights that determine the function
represented by the network.
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