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Abstract

Much of AI is concerned with the design of
intelligent agents. A complementary challenge
is to understand how to design “rules of en-
counter” (Rosenschein and Zlotkin 1994) by which
to promote simple, robust and beneficial interac-
tions between multiple intelligent agents. This is
a natural development, as AI is increasingly used
for automated decision making in real-world set-
tings. As we extend the ideas of mechanism design
from economic theory, the mechanisms (or rules)
become algorithmic and many new challenges sur-
face. Starting with a short background on mecha-
nism design theory, the aim of this paper is to pro-
vide a non-technical exposition of recent results
on dynamic incentive mechanisms, which provide
rules for the coordination of agents in sequential
decision problems. The framework of dynamic
mechanism design embraces coordinated decision
making both in the context of uncertainty about
the world external to an agent and also in regard
to the dynamics of agent preferences. In addition
to tracing some recent developments, we point to
ongoing research challenges.

Introduction

How can we design intelligent protocols to coordinate
actions, allocate resources and make decisions in envi-
ronments with multiple rational agents each seeking to
maximize individual utility? This problem of “inverse
game theory,” in which we design a game form to pro-
vide structure to interactions between rational agents,
has sparked interest within artificial intelligence since
the early 1990s, when the seminal work of Rosenschein
and Zlotkin (1994) and Ephrati and Rosenschein (1991)
introduced the core themes of mechanism design to the
AI community.
Consider this an “inverse artificial intelligence” per-

haps, the problem of designing rules to govern the in-
teraction between agents in order to promote desirable
outcomes for multi-agent environments. The rules are
themselves typically instantiated algorithmically, with
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the computational procedure by which the rules of in-
teraction are enacted forming the coordination mecha-
nism, and the object of design and analysis.

The design of a suitable mechanism can require the
integration of multiple methods from AI, such as those
of preference elicitation, optimization, and machine
learning, in addition to an explicit consideration of
agent incentives. An interesting theme that emerges is
that by careful design it is possible to simplify the rea-
soning problem faced by agents. Rather than require
agents to struggle with complex decision problems, we
are in the unusual position of being able to design sim-
ple decision environments.

Mechanism design theory was developed within
mathematical economics as a way to think about
what “the market”—viewed somewhat like an ab-
stract computer—can achieve, at least in principle, as
a method for coordinating the activities of rational
agents. During the debates of the 1960’s and 1970’s
about centralized command-and-control versus market
economies, Hurwicz (1973) developed the formal frame-
work of mechanism design to address this fundamental
question. The basic set-up considers a system of ra-
tional agents and an outcome space, with each agent
holding private information about its type, this type
defining the agent’s preferences over different outcomes.
Each agent makes a claim about its type, and the mech-
anism receives these claims and selects an outcome; e.g.,
an allocation of resources, an assignment of tasks, or de-
cision about a public project. Being rational agents, the
basic modeling assumption is that an agent will seek to
make a claim so that the outcome selected maximizes its
utility given its beliefs about the claims made by other
agents, i.e., in a game-theoretic equilibrium. Jackson
(2000) provides an accessible recent survey of economic
mechanism design.

Mechanism design theory typically insists on designs
that enjoy the special property of incentive compati-
bility: namely, it should be in every agent’s own best
interest to be truthful in reporting its type. Especially
when achieved in a dominant-strategy equilibrium (so
that truthfulness is best whatever the claims of other
agents) this obviates the need for strategic reasoning
and simplifies an agent’s decision problem. If being



able to achieve incentive compatibility sounds a bit too
good to be true, it often is; in addition to positive re-
sults there are also impossibility results that identify
properties on outcomes that cannot be achieved un-
der any incentive mechanism. Just as computer sci-
ence uses complexity considerations to divide problems
into tractable and intractable, mechanism design the-
ory classifies outcome rules into those that are possible
and impossible, working under its own lens of incentive
constraints. Where mechanism design gets really inter-
esting within AI is when the incentive constraints are in
tension with the computational constraints, but we’re
getting a bit ahead of ourselves.

Two Simple Examples

For a first example, we can think about an auction for
a last-minute ticket for a seat at an ice hockey game
at the Winter Olympics. Rather than the usual auc-
tion concept (the highest bidder wins and pays her bid
price), we can consider instead a second-price sealed-bid
auction (Vickrey 1961). See Figure 1. There are three
agents (A1, A2 and A3), each with a simple type that
is just a single number representing its value for the
ticket. For example, A2 is willing to pay up to $1000,
with its utility interpreted as v − p for value v = 1000
and payment p. In a second-price auction, A2 would
win, but pay $900 rather than its bid price of $1000.

Figure 1: A single-item allocation problem. Agents A1,
A2 and A3 have value $900, $1000 and $400. A2 wins
the hockey ticket and makes a payment of $900 for any
bid above $900.

Collecting reports of a single number from each agent,
allocating the item to the agent with the highest report
(breaking ties at random) and collecting as payment
the second-highest report defines the allocation mech-
anism. This mechanism is incentive compatible in the
strong sense that truthful bidding is a dominant strat-
egy equilibrium. A2 need not worry about bidding less
than $1000, its bid merely describes the most it might
pay and its actually payment is the smallest amount
that it could bid and still win.1

1Another way to see this is that each agent faces the

For a second example, consider a university campus
with a central mall along which all students walk. The
problem is to determine where to build a glass building
that will house the skeleton of a 26-meter blue whale
that washed up on Prince Edward Island in 1987.2 Let
us suppose that every student has a preferred location
ℓ∗ along the mall to locate the whale. Moreover, we
assume single peaked preferences, such that for two lo-
cations ℓ and ℓ′, both on the same side of a student’s
most preferred location, then ℓ′ is less preferred than ℓ
whenever ℓ′ is further from ℓ∗ than ℓ.
A truthful mechanism can locate the whale at theme-

dian of all the reported peaks (with a random tie break-
ing step if there is an even number of agents) (Moulin
1980). See Figure 2. For truthful reports of preference
peaks, i.e., (100, 200, 400), A2’s report forms the me-
dian and the whale is located at 200-meters into the
mall. No agent can improve the outcome in its favor.
For example, A1 only changes the location when its re-
port is greater than 200, but then the position moves
away from its most preferred location of 100. It is a fun
exercise to think about how the mean rule, in compar-
ison, fails to be truthful.3

Mechanism Design and AI

These two examples are representative of problems for
which the microeconomic theory of mechanism design
has made great advances. In deriving clean, closed-form
results, it is common to adopt a model in which the pri-
vate information of an agent is a single number, perhaps
a value, or a location. A typical goal is to character-
ize the family of incentive compatible mechanisms for a
problem, in order to identify the mechanism that is op-
timized for a particular design criterion, perhaps social
welfare, revenue, or some notion of fairness. Moreover,
the examples are representative in that they are static
problems: the set of agents is fixed and a decision is to
be made in a single time period.
Contrast these examples, then, with the kinds of com-

plex decision problems in which AI is typically inter-
ested: environments in which actions have uncertain
effects, are taken across multiple time periods, and per-

choice of winning or losing, and the price for winning is
independent of his report. The report of an agent’s value
just determines which choice is made, with the choice that
is made being optimal for the agent given the report. A2
faces a choice of losing for zero payment, or winning for $900,
and is happy to win. A3 faces a choice between winning for
$1000 or losing and is happy not to win.

2The University of British Columbia has just opened such
an exhibit.

3Both of these examples illustrate direct mechanisms in
which agents make a report about their type. In indirect
mechanisms, a message sent by an agent is typically inter-
preted instead as providing partial information about an
agent’s type; e.g., a bid for an item at price p in an ascend-
ing price auction can be interpreted as a claim that v ≥ p,
for value v. Indirect mechanisms are important when pref-
erence elicitation is costly.



Figure 2: Single-peaked preferences and the median se-
lection mechanism. Agents A1, A2 and A3 each have
preferred locations at 100, 200 and 400. The whale ex-
hibit is located at the median report of 200.

haps with the need to learn about the value and ef-
fect of different actions. But we are increasingly inter-
ested in multi-agent environments, and including those
in which there is self-interest: e-commerce, crowdsourc-
ing, multi-robot systems, sensor networks, smart grids,
scheduling, and so forth.

The research challenge that we face is to adapt the
methods of mechanism design to more complex prob-
lems, addressing computational challenges as they arise
and extending characterization results as required, in
order to develop a theory and practice of computational
mechanism design for dynamic, complex, multi-agent
environments. It seems to us that progress will require
relaxing some aspects of mechanism design theory, for
example substituting a kind of approximate incentive
compatibility (or models of non-equilibrium behavior)
and being willing to adopt heuristic notions of optimal-
ity in return for increasing mechanism scale and mech-
anism reach.

Outline

In what follows we will develop some intuitions for in-
centive mechanisms that are compatible with two dif-
ferent kinds of dynamics. There is external uncertainty,
in which the dynamics are outside the boundary of in-
dividual agents and occur because of agent arrivals and
departures and other uncertain events in the environ-
ment. In addition there is internal uncertainty, in which
the dynamics are due to learning and information ac-
quisition within the boundary of an individual agent,
and where it is the private information of an agent that
is inherently dynamic.

External Uncertainty

By external uncertainty, we intend to describe a sequen-
tial decision problem in which the uncertain events oc-
cur in the actual world rather than merely in an agent’s
view of the world. The dynamics may include the ar-
rival and departure of agents with respect to the sphere
of influence of a mechanism’s outcome space, as well as
changes to the outcomes that are available to a mech-
anism. Crucially, by insisting on external uncertainty
we require that an agent that arrives has a fixed type,
and is able to report this type, truthfully if it chooses,
to the mechanism upon its arrival.4

A Dynamic Unit-Demand Auction

To illustrate this, we can return to the problem of allo-
cating hockey tickets, and now ask what would happen
if one ticket is sold on each of two days with agents
arriving and departing in different periods.
There is one ticket available for sale on Monday and

one available for sale on Tuesday. Both tickets are for
the Wednesday game. The type of an agent is now
associated with an arrival, departure and value. The
arrival period is the first period in which it is able
to report its type. The departure period is the fi-
nal period in which an agent has value for winning a
ticket. The arrival-departure interval denotes the set
of periods in which an agent has value for an alloca-
tion. See Figure 3. In the example, the types are
(($900, 1, 2), ($1000, 1, 2), ($400, 2, 2)) so that A1 and
A2 are “patient” with value for a ticket on either of
days 1 or 2 but with A3 “impatient” and arriving on
day 2 and requiring a ticket allocation on the day of its
arrival. The setting is unit-demand because each agent
requires only a single ticket.
We could run a sequence of second-price auctions,

with A2 winning on Monday for $900, dropping out,
and A1 winning on Tuesday for $400. But this would
not be truthful, and we should expect that agents would
try to misreport to improve the outcome in their favor.
A2 can deviate and bid $500 and win on Tuesday for
$400, or just wait until Tuesday to bid.
A simple variant provides a dynamic and truthful

auction. We can adopt the same greedy decision pol-
icy, committing the item for sale in a given period to
the unallocated agent with the highest value amongst
those present. The item is held by the mechanism until
the reported departure time of the agent. But rather
than collect the second-price, the payment is set to the
lowest amount the agent could have bid and still been
allocated in some period (not necessarily the same pe-
riod) within its arrival-departure interval (Hajiaghayi
et al. 2005). In the example, A2 is allocated a ticket on

4Without a dynamic agent population, external uncer-
tainty can be rolled into the standard framework of mecha-
nism design because incentive constraints need bind only in
the initial period, with a decision made and committed to
(e.g., a decision policy) that will structure the subsequent
realization of outcomes (Dolgov and Durfee 2005).



Figure 3: A dynamic auction for tickets to a Wednes-
day hockey game. Agents A1 and A2 have value $900
and $1000, respectively, for an allocation on Monday or
Tuesday. A3 arrives on Tuesday, and has value $400 for
a ticket allocated that day.

Monday which is released to the agent on Tuesday. A1
is allocated on Tuesday. For payments, both agents pay
$400 because this is the smallest amount each could bid
(leaving all other bids unchanged) and still be allocated
a ticket.

[Could be formatted into a sidebar on “mono-
tonicity”.]
The key to understanding the truthfulness of the dy-

namic auction is that the allocation policy ismonotonic.
An agent that loses with a bid v, arrival a and departure
d also loses for all bids with v′ ≤ v, a′ ≥ a and d′ ≤ d.
It is easy to see that the greedy allocation rule is mono-
tonic, whatever the bids received from other agents. To
see why monotonicity provides truthfulness, first con-
sider any (a′, d′) report and some v′ 6= v. The payment
p for any winning bid is the “critical value” at which an
agent first wins in some period. This is the same for all
winning bids, and therefore if v ≥ p the agent wins and
has no useful value misreport. If v < p then the agent
loses, and continues to lose for all v′ except v′ ≥ p, but
then its payment p is greater than its true value.
Knowing that value v will be truthfully reported, for

all arrival-departure misreports, we can now consider
temporal manipulations. For this, we assume that mis-
reports a′ ≤ a are not possible because the arrival mod-
els the time period when an agent first realizes his or her
demand, or first discovers the mechanism. A misreport
to a later departure with d′ > d is never useful because
the mechanism does not release an allocated ticket to
an agent until d′ when the agent would have no value.
Finally, deviations with a′ ≥ a and d′ ≤ d can only in-
crease the payment made by a winning agent by mono-
tonicity (since the critical value must increase) and will
have no effect on the outcome for a losing agent.

[End of sidebar.]
But what about more general problems? Can we de-

sign incentive mechanisms for uncertain environments
with a dynamic agent population, and where agents
have general valuation functions on sequences of actions
by the mechanism? In fact, this is possible, through a
different generalization of the second-price auction to
dynamic environments.

A Static Variation
We first review the Vickrey-Clarke-Groves (VCG)
mechanism for static problems. For this, assume that
the bids (($900, 1, 2), ($1000, 1, 2), ($400, 2, 2)) can all
be made on Monday (even for agent A3). The com-
plete allocation and payments can now be determined
in a single period. In the VCG mechanism, the tickets
are allocated to maximize reported value, i.e., to A1
and A2. For the payment, we determine the external-
ity imposed by an agent through its presence. This is
Va − Vb, where

Va: the total reported value to other agents from the
optimal action that would be taken if the agent was ab-
sent, and
Vb: the total reported value to other agents from the

action made when the agent is present.

In the example, for A1 this is payment p1 = Va−Vb =
1400 − 1000 = 400 and for A2 this is p2 = Va − Vb =
1300 − 900 = 400. In both cases, this is the cost im-
posed on A3 by the presence of A1 or A2, which is
$400 because A3 would be allocated if either A1 or
A2 was absent. For an incentive analysis, consider
agent A1. The utility to A1 is v · I(A1 wins) − p1 =
v · I(A1 wins) − (Va − Vb) = v · I(A1 wins) + Vb − Va,
where I(E) is 1 if event E is true and 0 otherwise. Now,
Va is independent of A1’s bid and so can be ignored for
an incentive analysis. We are left with A1’s utility de-
pending on

v · I(A1 wins) + Vb,

where v is its true value. A1 affects this quantity
through the effect of its bid on the allocation, and thus
whether or not it wins and also the allocation to other
agents and thus Vb. But we see that to maximize its true
value plus the total reported value of the other agents
the agent can just be truthful. The VCG mechanism se-
lects an allocation that maximizes total reported value
and thus maximizes A1’s true value plus the reported
value of the other agents when A1 is truthful.5

A misreport is never useful for an agent and can pro-
vide less utility.

The Online VCG Mechanism
A generalization of the VCG mechanism to dynamic
environments is provided by the online VCG mecha-
nism (Parkes and Singh 2003). Payments are collected

5In the example, when A1 is truthful then v+Vb = 900+
1000 = 1900 and this is unchanged for all reports v′ ≥ 400.
For reports v′ < 400, then v + Vb = 0 + 1400 < 1900 and
A1’s utility falls from 500 to 0.



so that each agent’s expected payment is exactly the ex-
pected externality imposed by the agent on other agents
upon its arrival. The expected externality is the dif-
ference between the total expected (discounted) value
to the other agents under the optimal policy without
agent i, and the total expected (discounted) value to
the other agents under the optimal policy with agent
i.6 For this, the mechanism must have a correct proba-
bilistic model of the environment, including a model of
the agent arrival and departure process.
The online VCG mechanism aligns the incentives of

agents with the social objective of following a decision
policy that maximizes the expected total (discounted)
value to all participants. The proof of incentive com-
patibility establishes that each agent’s utility is aligned
with the total expected (discounted) value of the entire
system. The mechanism’s incentive properties extend
to any problem in which each agent’s value, conditioned
on a sequence of actions by the mechanism, is indepen-
dent of the private type of other agents.
For a simple example, we can suppose that the types

of A1 and A2 are unchanged while a probabilistic model
states that A3 will arrive on Tuesday with a value that
is uniform on [$300, $600]. Thus, the expected external-
ity that A2 imposes on A3 is $450, which is the mean
of this value distribution. In making this payment,
A2 cannot do better in expectation by misreporting its
type, as long as other agents in future periods play the
truthful equilibrium and the probabilistic model of the
center is correct.
The kind of incentive compatibility achieved by the

online VCG mechanism is somewhat weaker than the
dominant strategy equilibrium achieved in the static
VCG mechanism. Notice, for example, that if A3 al-
ways bids $300 then A2 can reduce its payment by de-
laying its arrival until period 2. Rather, truthful re-
porting is an agent’s best-response in expectation, just
as long as the probabilistic model of the mechanism is
correct and agents in the current and future periods are
truthful.7

A Challenge Problem: Dynamic
Combinatorial Auctions

In a combinatorial auction (CA), agent valuations can
express arbitrary relationships between items, such as

6As is familiar from Markov Decision Processes, for infi-
nite decision horizons a discount factor γ ∈ (0, 1) is adopted,
and the objective is to maximize the expected discounted
sum, i.e., V (0) + γV (1) + γ2V (2) + . . ., where V (t) is the
total value to all agents for the action in period t.

7This is a refinement on a Bayesian-Nash equilibrium,
referred to as a within period ex post Nash equilibrium be-
cause an agent’s best strategy is to report its true type
whatever the reports of other agents up to and including
the current period, just as long as other agents follow the
truthful equilibrium in future periods. It is equivalent to
dominant-strategy equilibrium in the final period of a dy-
namic problem, when online VCG is equivalent to the static
VCG mechanism.

substitutes (“I want a ticket for one of the following
hockey games”) and complements (“I want a ticket for
two games involving USA.”) See Cramton et al. (2006)
for a summary of recent advances for static CAs. In a
dynamic CA, we can allow for an uncertain supply of
distinct goods, agent arrival and departure, and agents
with preferences on different sequences of allocations of
goods.
The online VCG mechanism is well defined, and re-

tains incentive compatibility for dynamic CAs. On
the other hand, there remain significant computational
challenges in getting these dynamic mechanisms to
truly play out in realistic, multi-agent environments,
and here there is plenty of opportunity for innovative
computational advances to be made within AI. For ex-
ample, the following issues loom large:

(a) Bidding languages and preference elicitation. This
is an issue well-developed for static CAs but largely
unexplored for dynamic CAs. One direction is to de-
velop concise representations of valuation functions
on sequences of allocation decisions. Another direc-
tion is to develop methods for preference elicitation,
so that only as much information as is required to
determine an optimal decision in the current period
is elicited.

(b) Winner determination and payment computation.
The winner-determination and payment computation
problem has been extensively studied in static CAs,
with tractable special cases identified, and approx-
imation schemes and scalable, heuristic algorithms
developed (Cramton, Shoham, and Steinberg 2006).
Similarly, we require significant progress on winner
determination in dynamic CAs, where the decision
problem is online and one of stochastic optimiza-
tion. Given approximations, then incentives will once
again come into play.

(c) Learning. The incentive compatibility of the dynamic
VCG mechanism relies, in part, on having an exact
probabilistic model of the agent arrival and departure
process. We must develop techniques to provide in-
centive compatibility (perhaps approximately) along
the path of learning, in order to enable the deploy-
ment of dynamic mechanisms in unknown environ-
ments.

We are, in a sense, in the place that static CAs were
around a decade ago, when there was a concerted ef-
fort to provide a solid computational footing for CAs,
inspired in part by the push by the U.S. Federal Com-
munications Commission to design CAs for the alloca-
tion of wireless spectrum. One domain that seems com-
pelling, in working to develop a computational ground-
ing for dynamic CAs is crowdsourcing, where human
and computational resources are coordinated to solve
challenging problems (Shahaf and Horvitz 2010; von
Ahn and Dabbish 2008). A second domain of interest is
smart grids in which renewable energy sources (neces-
sarily more bursty than traditional power sources) are



dynamically matched through dynamic pricing against
the shifting demand of users (Vytelingum et al. 2010).

Heuristic Mechanism Design
Within microeconomic theory, a high premium is placed
on developing analytic results that exactly characterize
the optimal mechanism rule within the space of all pos-
sible mechanism rules. But this is typically not possible
in many of the complex environments in which AI re-
searchers are interested because it would imply that we
can derive an optimal algorithm in a domain. This is of-
ten out of reach. There is even debate about what opti-
mality entails in the context of bounded computational
resources, and still greater gaps in understanding about
how to best use bounded resources (Russell and Wefald
1991; Russell, Subramanian, and Parr 1993). Rather,
it is more typical to approach difficult computational
problems in AI through a combination of inspiration
and perspiration, with creativity and experimentation
and the weaving together of different methods.
From this viewpoint, we can ask what it would mean

to have a heuristic approach to mechanism design? One
idea is to insist on provable incentive properties but
punt on provably optimality properties. In place of op-
timality, we might adopt as a gold standard by which
to evaluate a mechanism the performance of a state-of-
the-art, but likely heuristic, algorithm for the relaxed
version of the problem in which agents are cooperative
rather than self-interested (Parkes 2009). In this sense,
a heuristic approach to mechanism design is successful
when the empirical performance of a designed mech-
anism is good in comparison with the performance of
a gold standard algorithm that would be adopted in a
cooperative system.
To make this concrete, we can return again to our

running example and suppose now that our hockey en-
thusiasts have friends that also like hockey, and want
to purchase multiple tickets. An agent’s type is now a
value for q ≥ 1 tickets, and this is an “all-or-nothing”
demand, with no value for receiving q′ < q tickets and
the same value for more than q tickets. Optimal se-
quential policies are not available for this problem with
current computational methods. The reason is a curse
of dimensionality resulting from the need to include ac-
tive agents in the state of the planning space.8 A gold
standard, but heuristic algorithm is provided by the
methods of online stochastic combinatorial optimiza-
tion (OSCO) (Hentenryck and Bent 2006). Crucially,
we can model the future realization of demand as in-
dependent of past allocation decisions, conditioned on
the past realization of demand. This uncertainty inde-
pendence property permits high quality decision making
through scalable, sample trajectory methods.

8In comparison, if agents are impatient and demand an
allocation of q tickets in the period in which they arrive,
the associated planning problem is tractable, with a closed-
form characterization of the optimal policy and an analytic
characterization of incentive compatible dynamic mecha-
nisms (Dizdar, Gershkov, and Moldovanu 2009).

Figure 4: An illustration of output-ironing in a single-
item allocation problem. The initial allocation rule
is non-monotonic, with the agent winning for values
[$400, $600] but losing for values [$600, $900]. Output-
ironing would establish monotonicity by canceling the
allocation decision in interval [$400, $600].

But, these OSCO algorithms cannot be directly com-
bined with payments to achieve incentive compatibil-
ity. A dynamic-VCG approach fails because an agent
may seek to misreport to “correct” for the approxima-
tion of the algorithm.9 Moreover, the heuristic poli-
cies can fail to be monotonic, which would otherwise
allow for suitable payments to provide incentive com-
patibility (Parkes and Duong 2007). For a simple exam-
ple, suppose that three tickets for the Wednesday game
are for sale, and that each can be sold on either Mon-
day or Tuesday. There are three bidders, with types
($50, 1, 1, q = 2), ($90, 1, 2, q = 1) and ($200, 2, 2, q = 1)
for A1, A2 and A3, where A3 arrives with probability
ǫ ∈ (0, 50/200). The optimal policy (which we should
expect from OSCO in this simple example) will allocate
{A1} on Monday and then {A2} or {A3} on Tuesday
depending on whether or not A3 arrives. But, A2 could
request q = 2 instead and report type ($90, 1, 2, q = 2).
In this case, the optimal policy will allocate {} on Mon-
day, and then {A2} or {A2, A3} on Tuesday depend-
ing on whether or not A3 arrives. This fails an obvi-
ous generalization of monotonicity from the dynamic
unit-demand auction, which insists on improving out-
comes for higher value, earlier arrival, later departure,
or smaller quantity. In this case, A2 asks for an addi-
tional ticket and in one scenario (when A3 arrives) goes
from losing to winning.
However, it can be effective to perturb the decisions

of an OSCO algorithm in order to achieve monotonic-
ity. For this, a self-correcting process of output-ironing

9This effect is familiar from static problems (Lehmann,
O’Callaghan, and Shoham 2002) but exacerbated here be-
cause we get a new unraveling, with agents no longer having
a good basis for believing that other agents will be truthful,
and thus no longer believing that the mechanism’s model of
the probabilistic process is correct, and so forth.



is adopted (Parkes and Duong 2007; Constantin and
Parkes 2009).10 A decision policy is automatically mod-
ified to provide monotonicity by identifying and can-
celing decisions for which every higher type would not
provably be allocated by the algorithm (see Figure 4 for
a simple one-dimensional example). For example, the
allocation decision for A2 ($90, 1, 2, q = 2) in the event
A3 arrives would be canceled by output-ironing since it
would be observed that a higher type ($90, 1, 2, q = 1)
would not be allocated. The computational challenge is
to enable tractable sensitivity analysis, so that mono-
tonicity can be verified. The procedure also requires
that the original algorithm is almost monotonic, so that
the performance of the heuristic mechanism remains
close to that of the target algorithm.

Internal Uncertainty

By internal uncertainty, we describe a sequential de-
cision problem in which the uncertain events occur
within the scope of an individual agent’s view of the
world. The dynamics are those of information acquisi-
tion, learning, and updates to the local goals or pref-
erences of an agent, all of which trigger changes to an
agent’s preferences.

To model this we adopt the idea of a dynamic type:
the information, local to an agent and private, can
change from period to period and in a way that depends
on the actions of the mechanism. For this reason, we
will need incentive compatibility constraints to hold for
an agent in every period, so that we continually pro-
vide incentives to share private type information with
the mechanism. In contrast, for external uncertainty in
which an agent’s type is static, it is sufficient to align
incentives only until the period in which an agent makes
a claim about its type.11

We will see an analog to the online VCG mechanism,
in which payments are defined so that an agent’s ex-
pected total payment forward from every period is the
expected externality imposed by the agent on the other
agents. Whereas with external uncertainty, this prop-
erty on payments needs to hold only upon an agent’s
arrival, for internal uncertainty it must hold in every
period.

10This use of “ironing” is evocative of removing the “non-
monotonic rumples” from the decision policy, adopted here
in the sense of Myerson’s (1981) seminal work in optimal
mechanism design. Whereas Myerson achieves monotonicity
by ironing out non-monotonicity in the input into an opti-
mization procedure, the approach adopted here is to achieve
monotonicity by working on the output of an optimization
procedure.

11We can also couple internal and external uncertainty, for
example in enabling mechanism design for environments in
which there is uncertainty about the availability of resources
and in which individual agents are refining their own beliefs
about their value for different outcomes (Cavallo, Parkes,
and Singh 2009).

Figure 5: The Markov chain model for a Bayesian learn-
ing agent observing a sequence of {0, 1} values received
for attending a sequence of hockey games. Each state
is labeled with counts (N t

1, N
t
0) of the number of value

1 and value 0 observations current period t. Transi-
tions are labeled with a probability (depending on the
relative counts) and the value received.

Dynamic Auctions with Learning Agents

By way of illustration, suppose that our group of hockey
enthusiasts are not sure exactly how much they enjoy
the sport, and learn new information about their value
whenever allocated a ticket. Each time someone re-
ceives a ticket to attend a game, they receive an in-
dependent sample of their value for watching hockey
games. The mechanism design problem is to coordi-
nate the learning process, so that a ticket is allocated in
each period to maximize the expected discounted value,
given that there is uncertainty about each person’s true
value. In particular, it might be optimal to allocate a
ticket to someone other than the person with the high-
est current expected value to allow learning.
Consider Figure 5. This Markov chain illustrates the

Bayesian learning process for a single agent. We assume
that upon attending a game, an agent’s response is ex-
treme and the agent will either like the game (value=1)
or dislike the game (value=0). An agent’s value is sam-
pled from a stationary distribution, with probability
θ ∈ [0, 1] for liking a game. In any period t, an agent’s
current internal belief state is represented by the count
(N t

1, N
t
0) of games liked and disliked. This agent’s ini-

tial belief state is (1,2) so that its subjective belief is
1/3 that it will like the next game, and 2/3 that it
will dislike the next game. The Markov chain captures
Bayesian learning. In the event that it likes the game,
the observation is a ‘1’ and it transitions to belief state
(2,2).12 From this state, its subjective belief that it will

12Formally, the agent’s prior in period t on probability
θ is a Beta distribution θ ∼ Beta(αt, βt), with parameters
αt and βt. The Beta distribution satisfies the conjugate



like the next game is 1/2, and so forth. The dynamic
type of an agent is its current belief state. This belief
state also defines the probabilistic model for how its
type will evolve based on sequences of actions.
For the multi-agent problem, the Markov chain of

each agent advances upon an allocation of a ticket. In
every period, the decision to make is which Markov
chain to advance. This is amulti-armed bandits problem
(MABP), with each “arm” corresponding to an agent,
the state of an arm only changing when activated, and
only one arm activated in every period. The optimal
policy for the MABP solves the multi-agent learning
problem, identifying an allocation policy to maximize
expected discounted value and finding the right trade-
off between exploration and exploitation. It may not be
optimal to allocate an agent with the highest expected
value when there is considerable uncertainty about an-
other agent’s value. With discounting, and an infinite
time horizon, the optimal policy is characterized by an
index policy and there is an algorithm that scales lin-
early in the number of arms (Gittins 1989).13 What
makes this a mechanism design problem is that each
agent has private information about its current belief
state, and will misreport this information if this im-
proves the allocation policy in its favor.

The Dynamic VCG Mechanism

In the dynamic VCG mechanism (Bergemann and
Välimäki 2008), each agent must report a probabilistic
model for how its type will evolve based on sequences
of actions, and also, in each period, its current type.
The mechanism selects an action in each period ac-

cording to the optimal policy, i.e., the policy that max-
imizes the total expected discounted value. Let xt de-
note the action selected in period t. As in the online
VCG mechanism, the payments are defined so that the
expected discounted payments made by an agent equals
the expected externality it imposes on the other agents
through its effect on the decision policy. But now the
expected discounted payment must be aligned in every
period and not just upon arrival.
For this, a payment equal to Va − Vb is collected in

each period t, where

Va: the expected reported discounted value that the
other agents would achieve forward from the current
period under the optimal decision policy that would be
followed if agent i was not present, and
Vb: the expected reported discounted value that the

other agents would achieve forward from the current
period under the optimal decision policy that would be
followed if agent i was not present, but conditioned on
taking action xt in the current period.

property, so that the posterior is in the same family. Given
prior Beta(αt, βt), then the posterior is Beta(αt+1, βt) after
a ‘1’ and Beta(αt, βt + 1) after a ‘0.’

13An index policy is one in which an index (or “quality”)
is computed separately for each arm and the arm with the
highest index is activated in every period.

In so doing, the dynamic VCG mechanism aligns the
incentives of an agent with the objective of maximiz-
ing the expected discounted value, summed across all
agents. This makes it incentive compatible for an agent
to report its true probabilistic model and, in each pe-
riod, its current type.14

In the hockey ticket example, each agent will make a
claim about its current belief state (N t

1, N
t
0) in each pe-

riod. The ticket will be allocated to the agent with
the highest index, according to the method of Git-
tins (1989). The allocated agent will then receive value
1 or 0, make a payment, and advance to a new belief
state, whereupon it will make a new report.15

For the special case of two agents, the expected exter-
nality imposed on A2 when A1 is allocated is (1−γ)W2,
where W2 = w2

1−γ
is the expected discounted value to

agent 2 for receiving the item in every period includ-

ing the current period, with w2 =
Nt

1

Nt

1
+Nt

0

and discount

factor γ ∈ (0, 1). The amount (1 − γ)W2 = W2 − γW2

represents the effect of pushing back the sequence of
allocations to A2 by one period, and is therefore the
expected externality imposed on A2 by the presence
of A1 in the current period. In fact, we see that the
payment collected is (1 − γ)W2 = (1 − γ) w2

1−γ
= w2

and exactly the expected value to A2 for the current
ticket. For three or more agents, things get just a bit
more complicated. For example, with three agents, A1’s
payment upon winning is not simply max(w2, w3), but
greater than this. This is because we will usually have
Va > max(W2,W3), because there is an option value for
being able to switch between A2 and A3 over time.16

Even with two agents the dynamic VCG mechanism
is distinct from a sequence of second-price auctions.
This is because the item need not be allocated to the
agent with the highest expected value. Rather, A2 may
be allocated over A1 if there is still useful information
to be gained about A2’s actual θ.
To think about a sequence of simple second-price

auctions fails, suppose there are two agents, with be-
lief states (55, 45) and (2, 2) respectively. A1 has ex-
pected value 55/100 = 0.55 and A2 has expected value
2/4 = 0.5. Suppose A1 is truthful in a second-price auc-
tion, and bids his current expected value. If A2 also bids
truthfully, then with high probability (because N t

1+N t
0

is large for A1, and thus there is low variance on its

14Truthful reporting is an equilibrium in the same refine-
ment of the Bayesian-Nash equilibrium as for the online
VCG mechanism, with truthful reporting optimal whatever
the current types of agents, as long as the other agents re-
port their true type forward from the current period.

15For technical reasons, every agent is entitled to make
a report in every period, even if not activated. This is to
allow an agent to correct an earlier misreport and be truthful
going forward from the current state.

16The payment can be easily approximated through a
sample-based computation, by sampling the trajectory of
states reached under the optimal index policy to A2 and A3
alone.



estimate of θ) A2 will lose in every future period. But
A2 has considerable uncertainty about its true type θ
(which we may suppose is θ = 0.8), and could instead
bid more aggressively, for example bidding 0.6 despite
having negative expected utility in the current period.
This allows for exploration, and in the event of enjoy-
ing the hockey game then A2’s revised posterior belief
is parameterized (3, 2), and the agent will win and have
positive expected utility by bidding 0.55 or higher in
the next period. In this way, the information value
from winning and being allocated a ticket can outweigh
the short-term loss in utility.

Dynamic Auctions with Deliberative
Agents

For a second example of a problem with internal un-
certainty, we go back to the auction for hockey tickets
one last time. Suppose now that our sports enthusiasts
are now competing for a block of 10 tickets, and that
each bidder has uncertainty about how to use the tickets
and a costly process to determine the best use and thus
its ultimate value. Should the tickets go to a group of
friends from college, to a charity auction, or be given as
gifts to staff at work? In finding the best use, a bidder
needs to take costly actions, such as calling old friends
that want to chat forever, or developing and solving an
optimization model to find the best use of tickets in
rewarding performance and improving morale at work.
Given a set of candidate uses, a bidder’s value for the
tickets is the maximum value across the possible uses.
The problem of deciding when, whether and for how

long, to pursue this costly value-improvement process is
a problem ofmeta-deliberation. What is the right trade-
off to make between identifying good uses and the cost
of this process (Russell and Wefald 1991; Horvitz 1988;
Larson and Sandholm 2004)? Here we also need to
handle self-interest: one agent might seek to shirk de-
liberation by pretending to have a very costly process
so that deliberation by other agents is prioritized first.
The agent would then only need to deliberate about its
own value if the other agents find that they have a low
enough value. A socially optimal sequence of deliber-
ation actions will try to identify high value uses from
agents for which deliberation is quite cheap, in order
to avoid costly deliberation by agents whose values are
expected to be quite low.
Figure 6 provides a Markov Decision Process (MDP)

to model the deliberation process of an individual agent.
Later, we will show how to combine such a model into
a multi-agent sequential decision problem. From any
state, the agent has the choice of deliberating or stop-
ping and putting the tickets to the best use identified
so far. For example, if the agent deliberates once, with
probability 0.33 its value for the tickets will increase
from 0 to 3, and with probability 0.67 its value will
increase from 0 to 1. Deliberation in this example is
costly (with per-step cost of 1.1). Each agent has a
model of its costly deliberation process and a discount
factor γ ∈ (0, 1). Let us assume that a deliberation ac-
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Figure 6: A Markov Decision Process to model the de-
liberation process of an agent. Each state is labeled
with the value from the current best use of the block
of tickets. This value is received from a stop action.
The states labeled stop are terminal states. Upon a
deliberation action (with cost 1.1) the agent undergoes
a probabilistic transition to a new state with weakly
higher value.

tion only revises an agent’s value weakly upwards and
that each agent has only a single deliberation action
available in every state.

The dynamic VCG mechanism applies to this prob-
lem because each agent’s value is independent of the
type of other agents, conditioned on a sequence of ac-
tions. An optimal policy will pursue a sequence of de-
liberation actions, ultimately followed by an allocation
action. The goal is to maximize the total expected dis-
counted value of the allocation net of the cost of delib-
eration. Upon deliberation, the local state of an agent
changes and thus we see the characteristic of internal
uncertainty and dynamic type. The mechanism will co-
ordinate which agent should deliberate in each period
until deciding to allocate the item. Upon activating an
agent, either by requesting a deliberation step or allo-
cating the item, a payment may be demanded of the
activated agent. The payment aligns incentives, and
is such that the expected utility to an agent is always
non-negative, even though it may be both engaged in
deliberation and making payments. Upon deliberation,
each agent will report its updated local type truthfully
(e.g., its new value and revised belief about how future
deliberation will improve its value).
By assuming sufficiently patient agents (with dis-

count factor γ close enough to 1) and sufficiently costly
deliberation, the problem has a structure reminiscent
of the MABP because a single agent is “activated” in
each period (either to deliberate or to receive the items)
and an agent’s state only changes when activated. One
difference is that each agent has two actions (deliberate
or stop) from each state. It is possible to convert an
agent MDP into a Markov chain by a simple transfor-
mation in two steps. First, we prune away the actions
that would not be optimal in a world in which this was
the only agent. See Figure 7. In the example, the dis-



count factor γ = 0.95. As long as the value of an agent
only increases (as is the case in this domain) then this
pruning step is sound (Cavallo and Parkes 2008). The
second step is to convert the finite horizonMarkov chain
into an infinite horizon Markov chain by unrolling any
terminal stop action with one-time value w into an ab-
sorbing state, with reward (1 − γ)w received in every
period into perpetuity. See Figure 8. This step is valid
because these states will remain absorbing states under
an optimal policy for the MABP.
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1 1
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3 4
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Figure 7: The single-agent deliberation model in which
the suboptimal actions are removed. The result is a
Markov chain where, for example, (i) the agent will de-
liberate in state 0, undergoing a probabilistic transition
to a state with value 3 or 1, and (ii) the agent will stop
deliberating and receive value 3 in state 3.
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Figure 8: The single-agent deliberative model in which
the terminal stop states in the Markov chain (the chain
itself obtained by pruning suboptimal actions) are now
transformed into absorbing states, obtaining an infinite-
horizon Markov chain.

In the “metadeliberation auction” suggested in Cav-
allo and Parkes (2008), the dynamic VCG mechanism is
implemented as follows: each agent first reports its lo-
cal deliberation model to the mechanism along with its
current deliberation state. The mechanism constructs a
MABP by converting each agent’s MDP into a Markov
chain. The agent to activate in the current period is
computed. If the state in the agent’s pruned Markov
chain is one from which a deliberation action is taken
then this is suggested to the agent by the mechanism.

Otherwise, the state is an absorbing state and the item
is allocated to the agent. Payments are collected in
either case, in order to align each agent’s incentives.
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(b) Agent 2

Figure 9: An auction with deliberative agents. Agent
1’s initial best-use value is 2, and may increase to as
much as 40 through deliberation. Agent 2’s initial best-
use value is 0, and may increase to 8 or 40 through
deliberation. The discount factor is γ = 0.75, while the
cost of deliberation is zero.

Figure 9 illustrates a simple two agent example
where the local MDPs have already been converted into
Markov chains. Assume discount factor γ = 0.75 and
deliberation costs are 0 for both agents. Initially A1
has value 2 and A2 has value 0. The optimal policy
calls for A2 to deliberate, and make a payment of 1− γ
times the expected value to A1 if decisions were opti-
mized for him, i.e., 0.25 ·11.1 = 2.775. If A2 transitions
to the value 40 state, in the second time period it is al-
located the item and must pay 11.1. Alternatively, if it
transitions to the value 8 state, the optimal policy calls
for A1 to deliberate and make payment 0.25 · 8 = 2. If
A1 then transitions to the absorbing state with value 6,
the item is allocated to A2 who pays 6. If A1 instead
transitions to the non-absorbing value 6 state, it delib-
erates again (again making payment 2). Finally if A2
then transitions to the value 40 state it is allocated the
item and makes payment 8; otherwise A2 is allocated
and makes payment 6.



A Challenge: Scaling Up

The incentive properties of the dynamic VCG mecha-
nism extend to any problem in which each agent’s pri-
vate type evolves in a way that is independent of the
type of other agents, when conditioned on the actions
of the mechanism. But what is challenging in develop-
ing applications is the same problem that we identified
in looking to apply the online VCG mechanism to CAs:
the sequential decision problem becomes intractable in
many domains, and substituting approximation algo-
rithms does not sustain the incentive properties. Two
important challenges include:

(a) Tractable special cases and representation languages.
Can we identify additional models for multi-agent
problems with dynamic private state for which the
optimal decision policy is tractable? A related direc-
tion is to develop representation languages that allow
agents to succinctly describe their local dynamics,
e.g., models of learning and models of value refine-
ment in the earlier examples.

(b) Heuristic approaches. Just as heuristic approaches
seem essential for the design of practical dynamic
mechanisms for environments with external uncer-
tainty, so too will we need to develop methods to
leverage heuristic algorithms for sequential decision
making with agents that face internal uncertainty.
For this, it seems likely that we will need to adopt ap-
proximate notions of incentive compatibility, and de-
velop characterizations of coordination policies with
“good enough” incentive properties.

The AI community seems especially well placed to be
creative and flexible in creating effective dynamic incen-
tive mechanisms. Indeed, Roth (2002) has written of
the need for developing an “engineering” for economics
and it seems that AI research has plenty to offer in this
direction.
We need not be dogmatic. For example, it seems to

us that incentive compatibility is nice to have if avail-
able, but we will need to adopt more relaxed criteria
by which to judge the stability of mechanisms in the
presence of self-interested agents. A good alternative
will enable new approaches to the design and analysis
of mechanisms (Lubin and Parkes 2009). Indeed, Inter-
net ad auctions are inspired by, but not fully faithful
to, the theories of incentive compatible mechanism de-
sign. On the other hand, folklore suggests that search
engines initially adopted a second-price style auction
over a first price auction because the first price auction
created too much churn on the servers as bidders and
bidding agents automatically chased each other around
the bid space! So incentive compatibility, at least in
some form of local stability, became an important and
pragmatic criterion for designers.
Certainly, there are real-world problems of interest

where insisting on truthfulness comes at a great cost
to system welfare. Budish and Cantillon (2009) present
a nice exposition of this in the context of course regis-
tration markets at Harvard Business School, where the

essentially unique strategyproof mechanism—the “ran-
domized serial dictatorship”—has bad welfare proper-
ties because of the callousness of relatively insignificant
choices of early agents in a random priority ordering.

Conclusions

The promise of dynamic incentive mechanisms is that
they can provide simplification, robustness and opti-
mality in dynamic, multi-agent environments by engi-
neering the right rules of encounter. Good success has
been found in generalizing the canonical VCG mech-
anism to dynamic environments, and in adopting the
property of monotonicity to enable the coupling of
heuristic approaches to stochastic optimization with in-
centive compatibility in restricted domains. Still, many
challenges remain, both in terms of developing useful
characterizations of “good enough” incentive compati-
bility and in leveraging these characterizations within
computational frameworks.
Dynamic mechanisms are fascinating in their ability

to embrace both uncertainty that occurs outside of the
scope of individual agents and also to “reach within” an
agent and coordinate its own learning and deliberation
processes.17 But here we see the beginning of a problem
of scope. Presumably we do not really believe that cen-
tralized decision making, with coordination even down
to the details of an agent’s deliberation process, is sen-
sible in large scale, complex environments.
This is where it is also important to pivot away from

direct revelation mechanisms– in which information is
elicited by a center which makes and enforces decisions
–to indirect revelation mechanisms. An indirect mecha-
nism allows an agent to interact while revealing only the
minimal information required to facilitate coordination.
We wonder, then, whether dynamic mechanisms can be
developed that economize on preference elicitation by
allowing agents to send messages that convey approx-
imate or incomplete information about their type in
response to queries from a mechanism?18

A couple of other limitations about the mechanisms
showcased in the preceding discussion should also be
highlighted. First, we have been focused exclusively
on goals of social welfare, often termed economic ef-
ficiency. Little is known about how to achieve alter-
native goals, such as revenue or various measures of
fairness, in dynamic contexts. Secondly, we have as-
sumed mechanisms in which there is money, that can be
used for aligning agent incentives. But we saw from the
median-choice rule mechanism and its application to
the blue whale skeleton that there are interesting static

17For a more technical overview of dynamic mechanisms,
see Parkes (2007). Lavi and Nisan (2000) first introduced
the question of dynamic mechanisms to computer science,
giving a focus to the design of prior free and incentive com-
patible online algorithms.

18Such mechanisms have been developed to good effect
for settings of static mechanism design, but are still in their
infancy for dynamic mechanism design (Said 2008).



mechanisms for contexts without money. Indeed, a re-
cent line of research within computer science is devel-
oping around the notion of mechanism design without
money (Procaccia and Tennenholtz 2009). But there
is relatively little known about how to design dynamic
mechanisms without money.19 We might imagine that
the curator of the exhibition on the university mall is
interested in bringing through a progression of massive
mammals. How should a dynamic mechanism be struc-
tured to facilitate a sequence of decisions about what,
and where, to exhibit each year?
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