
How to Dynamically Merge Markov
Decision Processes

Satinder Singh
Department of Computer Science

University of Colorado
Boulder, CO 80309-0430
baveja@cs.colorado.edu

David Cohn
Adaptive Systems Group

Harlequin, Inc.
Menlo Park, CA 94025
cohn@harlequin.com

Abstract

We are frequently called upon to perform multiple tasks that com-
pete for our attention and resource. Often we know the optimal
solution to each task in isolation; in this paper, we describe how
this knowledge can be exploited to efficiently find good solutions
for doing the tasks in parallel. We formulate this problem as that of
dynamically merging multiple Markov decision processes (MDPs)
into a composite MDP, and present a new theoretically-sound dy-
namic programming algorithm for finding an optimal policy for the
composite MDP. We analyze various aspects of our algorithm and
illustrate its use on a simple merging problem.

Every day, we are faced with the problem of doing multiple tasks in parallel, each
of which competes for our attention and resource. If we are running a job shop,
we must decide which machines to allocate to which jobs, and in what order, so
that no jobs miss their deadlines. If we are a mail delivery robot, we must find the
intended recipients of the mail while simultaneously avoiding fixed obstacles (such
as walls) and mobile obstacles (such as people), and still manage to keep ourselves
sufficiently charged up.

Frequently we know how to perform each task in isolation; this paper considers how
we can take the information we have about the individual tasks and combine it to
efficiently find an optimal solution for doing the entire set of tasks in parallel. More
importantly, we describe a theoretically-sound algorithm for doing this merging
dynamically; new tasks (such as a new job arrival at a job shop) can be assimilated
online into the solution being found for the ongoing set of simultaneous tasks.

1 The Merging Framework

Many decision-making tasks in control and operations research are naturally formu-
lated as Markov decision processes (MDPs) (e.g., Bertsekas & Tsitsiklis, 1996). Here

we define MDPs and then formulate what it means to have multiple simultanous
MDPs.

1.1 Markov decision processes (MDPs)

An MDP is defined via its state set S, action set A, transition probability matrices
P , and payoff matrices R. On executing action a in state s the probability of
transiting to state s′ is denoted P a(ss′) and the expected payoff associated with
that transition is denoted Ra(ss′). We assume throughout that the payoffs are
non-negative for all transitions. A policy assigns an action to each state of the
MDP. The value of a state under a policy is the expected value of the discounted
sum of payoffs obtained when the policy is followed on starting in that state. The
objective is to find an optimal policy, one that maximizes the value of every state.
The optimal value of state s, V ∗(s), is its value under the optimal policy.

The optimal value function is the solution to the Bellman optimality equations (e.g.,
Bertsekas & Tsitsiklis, 1996): for all s ∈ S,

V (s) = max
a∈A

(
∑
s′

P a(ss′)[Ra(ss′) + γV (s′)]),

where the discount factor 0 ≤ γ < 1 makes future payoffs less valuable than more
immediate payoffs. It is known that the optimal policy π∗ can be determined from
V ∗ as follows: π∗(s) = argmaxa∈A(

∑
s′ P a(ss′)[Ra(ss′) + γV ∗(s′)]). Therefore

solving an MDP is tantamount to computing its optimal value function.

1.2 Solving MDPs via Value Iteration

Given a model (S,A, P,R) of an MDP value iteration (e.g., Bertsekas & Tsitsiklis,
1996) can be used to determine the optimal value function. Starting with an initial
guess, V0, iterate for all s

Vk+1(s) = max
a∈A

(
∑
s′∈S

P a(ss′)[Ra(ss′) + γVk(s′)]).

It is known that maxs∈S |Vk+1(s)−V ∗(s)| ≤ γ maxs∈S |Vk(s)−V ∗(s)| and therefore
Vk converges to V ∗ as k goes to infinity.

Note that a Q-value (Watkins, 1989) based version of value iteration and our algo-
rithm presented below is also easily defined.

1.3 Multiple Simultaneous MDPs

The notion of an optimal policy is well defined for a single task represented as
an MDP. If, however, we have multiple tasks to do in parallel, each with its own
state, action, transition probability, and payoff spaces, optimal behavior is not
automatically defined. We will assume that payoffs sum across the MDPs, which
means we want to select actions for each MDP at every time step so as to maximize
the expected discounted value of this summed payoff over time. If actions can be
chosen independently for each MDP, then the solution to this “composite” MDP
is obvious — do what’s optimal for each MDP. More typically, choosing an action
for one MDP constrains what actions can be chosen for the others. In a job shop
for example, actions correspond to assignment of resources, and the same physical
resource may not be assigned to more than one job simultaneously.

Formally, we can define a composite MDP as a set of N MDPs {M i}N
1 . We will use

superscripts to distinguish the component MDPs, e.g., Si, Ai, P i, and Ri are the
state, action, transition probability and payoff parameters of MDP M i. The state

space of the composite MDP, S, is the cross product of the state spaces of the com-
ponent MDPs, i.e., S = S1×S2× . . .×SN . The constraints on actions implies that
the action set of the composite MDP, A, is some proper subset of the cross product
of the N component action spaces. The transition probabilities and the payoffs of
the composite MDP are factorial because the following decompositions hold: for
all s, s′ ∈ S and a ∈ A, P a(ss′) = ΠN

i=1P
ai

(sisi′) and Ra(ss′) =
∑N

i=1 Rai

(sisi′).
Singh (1997) has previously studied such factorial MDPs but only for the case of a
fixed set of components.

The optimal value function of a composite MDP is well defined, and satisfies the
following Bellman equation: for all s ∈ S,

V (s) = max
a∈A

∑
s′∈S

(
ΠN

i=1P
ai

(sisi′)
[N∑

i=1

Rai

(sisi′) + γV (s′)
])

. (1)

Note that the Bellman equation for a composite MDP assumes an identical discount
factor across component MDPs and is not defined otherwise.

1.4 The Dynamic Merging Problem

Given a composite MDP, and the optimal solution (e.g. the optimal value function)
for each of its component MDPs, we would like to efficiently compute the optimal
solution for the composite MDP. More generally, we would like to compute the
optimal composite policy given only bounds on the value functions of the component
MDPs (the motivation for this more general version will become clear in the next
section). To the best of our knowledge, the dynamic merging question has not been
studied before.

Note that the traditional treatment of problems such as job-shop scheduling would
formulate them as nonstationary MDPs (however, see Zhang and Dietterich, 1995
for another learning approach). This normally requires augmenting the state space
to include a “time” component which indexes all possible state spaces that could
arise (e.g., Bertsekas, 1995). This is inefficient, and potentially infeasible unless we
know in advance all combinations of possible tasks we will be required to solve. One
contribution of this paper is the observation that this type of nonstationary problem
can be reformulated as one of dynamically merging (individually) stationary MDPs.

1.4.1 The naive greedy policy is suboptimal

Given bounds on the value functions of the component MDPs, one heuristic com-
posite policy is that of selecting actions according to a one-step greedy rule:

π(s) = argmax
a

(
∑
s′

ΠN
i=1P

ai

(sisi′)[
N∑

i=1

(Rai

(si, ai) + γXi(si′))]),

where Xi is the upper or lower bound of the value function, or the mean of the
bounds. It is fairly easy however, to demonstrate that these policies are substantially
suboptimal in many common situations (see Section 3).

2 Dynamic Merging Algorithm

Consider merging N MDPs; job-shop scheduling presents a special case of merging
a new single MDP with an old composite MDP consisting of several factor MDPs.
One obvious approach to finding the optimal composite policy would be to directly
perform value iteration in the composite state and action space. A more efficient

approach would make use of the solutions (bounds on optimal value functions) of
the existing components; below we describe an algorithm for doing this.

Our algorithm will assume that we know the optimal values, or more generally,
upper and lower bounds to the optimal values of the states in each component
MDP. We use the symbols L and U for the lower and upper bounds; if the optimal
value function for the ith factor MDP is available then Li = U i = V ∗,i.1

Our algorithm uses the bounds for the component MDPs to compute bounds on
the values of composite states as needed and then incrementally updates and nar-
rows these initial bounds using a form of value iteration that allows pruning of
actions that are not competitive, that is, actions whose bounded values are strictly
dominated by the bounded value of some other action.

Initial State: The initial composite state s0 is composed from the start state of
all the factor MDPs. In practice (e.g. in job-shop scheduling) the initial composite
state is composed of the start state of the new job and whatever the current state
of the set of old jobs is. Our algorithm exploits the initial state by only updating
states that can occur from the initial state under competitive actions.

Initial Value Step: When we need the value of a composite state s for the first
time, we compute upper and lower bounds to its optimal value as follows: L(s) =
maxN

i=1 Li(si), and U(s) =
∑N

i=1 U i(s).

Initial Update Step: We dynamically allocate upper and lower bound storage
space for composite states as we first update them. We also create the initial set of
competitive actions for s when we first update its value as A(s) = A. As successive
backups narrow the upper and lower bounds of successor states, some actions will
no longer be competitive, and will be eliminated from further consideration.

Modified Value Iteration Algorithm:

At step t if the state to be updated is st:

Lt+1(st) = max
a∈At(st)

(∑
s′

P a(sts
′)[Ra(st, s

′) + γLt(s′)]
)

Ut+1(st) = max
a∈At(st)

(∑
s′

P a(sts
′)[Ra(st, s

′) + γUt(s′)]
)

At+1(st) =
⋃

a ∈ At(st) AND
∑
s′

P a(sts
′)[Ra(st, s

′) + γUt(s′)]

≥ argmax
b∈At(st)

∑
s′

P b(sts
′)[Rb(st, s

′) + γLt(s′)]

st+1 =
{

s0 if si is terminal for all si ∈ s
s′ ∈ S such that ∃a ∈ At+1(st), P a(sts

′) > 0 otherwise

The algorithm terminates when only one competitive action remains for each state,
or when the range of all competitive actions for any state are bounded by an indif-
ference parameter ε.

To elaborate, the upper and lower bounds on the value of a composite state are
backed up using a form of Equation 1. The set of actions that are considered
competitive in that state are culled by eliminating any action whose bounded values
is strictly dominated by the bounded value of some other action in At(st). The

1Recall that unsuperscripted quantities refer to the composite MDP while superscripted
quantities refer to component MDPs. Also, A is the set of actions that are available to the
composite MDP after taking into account the constraints on picking actions simultaneously
for the factor MDPs.

next state to be updated is chosen randomly from all the states that have non-zero
probability of occuring from any action in At+1(st) or, if st is the terminal state of
all component MDPs, then st+1 is the start state again.

A significant advantage of using these bounds is that we can prune actions whose
upper bounds are worse than the best lower bound. Only states resulting from
remaining competitive actions are backed up. When only one competitive action
remains, the optimal policy for that state is known, regardless of whether its upper
and lower bounds have converged.

Another important aspect of our algorithm is that it focuses the backups on states
that are reachable on currently competitive actions from the start state. The com-
bined effect of only updating states that are reachable from the start state and
further only those that are reachable under currently competitive actions can lead
to significant computational savings. This is particularly critical in scheduling,
where jobs proceed in a more or less feedforward fashion and the composite start
state when a new job comes in can eliminate a large portion of the composite state
space. Ideas based on Kaelbling’s (1990) interval-estimation algorithm and Moore
& Atkeson’s (1993) prioritized sweeping algorithm could also be combined into our
algorithm.

The algorithm has a number of desirable “anytime” characteristics: if we have to
pick an action in state s0 before the algorithm has converged (while multiple com-
petitive actions remain), we pick the action with the highest lower bound. If a new
MDP arrives before the algorithm converges, it can be accommodated dynamically
using whatever lower and upper bounds exist at the time it arrives.

2.1 Theoretical Analysis

In this section we analyze various aspects of our algorithm.

UpperBound Calculation: For any composite state, the sum of the optimal
values of the component states is an upper bound to the optimal value of the
composite state, i.e., V ∗(s = s1, s2, . . . , sN) ≤

∑N
i=1 V ∗,i(si).

If there were no constraints among the actions of the factor MDPs then V ∗(s) would
equal

∑N
i=1 V ∗,i(si) because of the additive payoffs across MDPs. The presence of

constraints implies that the sum is an upper bound. Because V ∗,i(si) ≤ Ut(si) the
result follows.

LowerBound Calculation: For any composite state, the maximum of the optimal
values of the component states is a lower bound to the optimal value of the composite
states, i.e., V ∗(s = s1, s2, . . . , sN) ≥ maxN

i=1 V ∗,i(si).

To see this for an arbitrary composite state s, let the MDP that has the largest
component optimal value for state s always choose its component-optimal action
first and then assign actions to the other MDPs so as to respect the action con-
straints encoded in set A. This will guarantee at least the value promised by that
MDP because the payoffs are all non-negative. Because V ∗,i(si) ≥ Lt(si) the result
follows.

Pruning of Actions: For any composite state, if the upper bound for any com-
posite action, a, is lower than the lower bound for some other composite action,
then action a cannot be optimal — action a can then safely be discarded from the
max in value iteration. Once discarded from the competitive set, an action never
needs to be reconsidered.

Our algorithm maintains the upper and lower bound status of U and L as it updates
them. The result follows.

Convergence: Given enough time our algorithm converges to the optimal policy
and optimal value function for the set of composite states reachable from the start
state under the optimal policy.

If every state were updated infinitely often, value iteration converges to the optimal
solution for the composite problem independent of the intial guess V0. The difference
between standard value iteration and our algorithm is that we discard actions and
do not update states not on the path from the start state under the continually
pruned competitive actions. The actions we discard in a state are guaranteed not
to be optimal and therefore cannot have any effect on the value of that state. Also
states that are reachable only under discarded actions are automatically irrelevant
to performing optimally from the start state.

3 An Example: Avoiding Predators and Eating Food

We illustrate the use of the merging algorithm on a simple avoid-predator-and-eat-
food problem, depicted in Figure 1. The component MDPs are the avoid-predator
task and eat-food task; the composite MDP must solve these problems simultane-
ously. In isolation, the tasks avoid-predator and eat-food are fairly easy to learn.
The state space of each task is of size n4; 625 states in the case illustrated. Using
value iteration, the optimal solutions to both component tasks can be learned in
approximately 1000 backups. Directly solving the composite problem requires n6

states (15625 in our case), and requires roughly 1 million backups to converge.

. . f . .
P . . S .
.
.
.

Figure 1: Our agent (S) roams an n by n grid. It gets a payoff of 0.5 for every
time step it avoids predator (P), and earns a payoff of 1.0 for every piece of food
(f) it finds. S moves two steps for every step P makes, and P always moves directly
toward S. When food is found, it reappears at a random location on the next time
step. On every time step, S has a 10% chance of ignoring its policy and making a
random move.

Figure 2 compares the performance of several solutions to the avoid-predator-and-
eat-food task. The opt-predator and opt-food curves shows the performance of value
iteration on the two component tasks in isolation; both converge quickly to their
optima. While it requires no further backups, the greedy algorithm of Section 1.4.1
falls short of optimal performance. Our merging algorithm, when initialized with
solutions for the component tasks (5000 backups each) converges quickly to the
optimal solution. Value iteration directly on the composite state space also finds the
optimal solutions, but requires 4-5 times as many backups. Note that value iteration
in composite state space also updated states on trajectories (as in Barto etal.’s, 1995
RTDP algorithm) through the state space just as in our merging algorithm, only
without the benefit of the value function bounds and the pruning of non-competitive
actions.

4 Conclusion

The ability to perform multiple decision-making tasks simultaneously, and even
to incorporate new tasks dynamically into ongoing previous tasks, is of obvious
interest to both cognitive science and engineering. Using the framework of MDPs

0.0 500000.0 1000000.0 1500000.0
Number of Backups

0.40

0.50

0.60

0.70

0.80

A
ve

ra
ge

 P
ay

of
f

opt−predator

opt−food

opt−merge

greedyopt−composite

Figure 2: Payoff as a function of number of backups, averaged over successive
windows. The mean payoff of different learning strategies vs. number of backups.
The bottom two lines show that when trained on either task in isolation, a learner
reaches the optimal payoff for that task in fewer than 5000 backups. The greedy
approach makes no further backups, but performs well below optimal. The optimal
composite solution, trained ab initio, requires requires nearly 1 million backups.
Our algorithm begins with the 5000-backup solutions for the individual tasks, and
converges to the optimum 4-5 times more quickly than the ab initio solution.

for individual decision-making tasks, we have reformulated the above problem as
that of dynamically merging MDPs. We have presented a modified value iteration
algorithm for dynamically merging MDPs, proved its convergence, and illustrated
its use on a simple merging task.

As future work we intend to apply our merging algorithm to a real-world job-
shop scheduling problem, extend the algorithm into the framework of semi-Markov
decision processes, and explore the performance of the algorithm in the case where
a model of the MDPs is not available.

References

Barto, A. G., Bradtke, S. J., & Singh, S. (1995). Learning to act using real-time dynamic
programming. Artificial Intelligence, 72, 81–138. also, University of Massachusetts,
Amherst, CMPSCI Technical Report 93-02.

Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control. Belmont, MA:
Athena Scientific.

Bertsekas, D. P. & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Belmont, MA:
Athena Scientific.

Kaelbling, L. P. (1990). Learning in Embedded Systems. PhD thesis, Stanford University,
Department of Computer Science, Stanford, CA. Technical Report TR-90-04.

Moore, A. W. & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with
less data and less real time. Machine Learning, 13 (1).

Singh, S. (1997). Reinforcement learning in factorial environments. submitted to ICML97.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, Cambridge
Univ., Cambridge, England.

Zhang, W. & Dietterich, T. G. (1995). High-performance job-shop scheduling with a time
delay TD(lambda) network. In Advances in Neural Information Processing Systems
8. MIT Press.

