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Abstract

Spectral learning methods have recently been
proposed for a variety of probabilistic mod-
els. These methods typically involve a rank
hyperparameter that controls the complexity
of the model; when it is set to match the true
rank of the process generating the training
data, the resulting estimate is provably con-
sistent and admits finite sample convergence
bounds. However, in practice we usually do
not know the true rank, and in any case, from
a computational standpoint, it is likely to be
prohibitively large. It is therefore of great
practical interest to understand the behavior
of low-rank spectral learning, where the model
rank is less than the true rank. In this paper
we show that several appealing and intuitive
hypotheses turn out to be false, including that
the error of the learned model is bounded in
some way by the magnitudes of the omitted
singular values, and that spectral methods
are guaranteed to converge to good low-rank
models if they exist. We present a series of
simple examples illustrating these negative re-
sults, and discuss their implications. Finally,
we present some synthetic results suggesting
that there may be special cases where these
problems can be controlled.

1. Introduction

Spectral learning methods have become popular alter-
natives to slow, non-convex algorithms like EM for
models in which hidden information must be inferred
by the learner. In spectral learning, such information is
typically discovered through the singular value decom-
position of a specially constructed correlation matrix;
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this process gives the method its name, and can be
seen as a form of canonical correlation analysis (CCA).
Because these calculations have a closed form, spectral
methods are typically much faster than algorithms that,
like EM, attempt to iteratively optimize an objective
function. However, less is understood about their be-
havior in settings that do not meet the assumptions
of existing analysis. In this paper we are particularly
interested in the issue of learning low-rank spectral
models, which we describe in more detail in Section 3.
We begin with some background.

2. Background

Spectral learning techniques have been developed for a
variety of latent variable graphical models (Hsu et al.,
2012; Cohen et al., 2012; Anandkumar et al., 2012;
Parikh et al., 2011), predictive state representations
(Boots et al., 2010b; Boots & Gordon, 2011), automata
(Luque et al., 2012; Balle et al., 2011; Balle & Mohri,
2012), and many other settings. We focus here on the
simple and widely known HMM setup described by
Hsu et al. (2012); however, our aim is to address broad
questions about spectral learning that arise for many
different models.

The basic setup is as follows. The world produces
sequences of discrete observations x1,zs,x3,... from
the set {1,2,...,n}. The process generating these
sequences is a hidden Markov model (HMM) with states
{1,2,...,m}, where the hidden state at time ¢ is given
by y:. The parameters of the HMM include an initial
state distribution o = R™, Pr(y; = i) = 0y, a transition
matrix T~ R™*™, Pr(yi41 = iy = j) = T;;, and
an observation matrix O ~ R™™ Pr(z; = iy =
j) = O;j. Defining the observable operators A, =
Tdiag(O,.), we can write the joint probability of an

observation sequence as
Pr(zy,xo,...,04) =17 Ay, -+ Ay, Ay, 0 . (1)

The goal of learning (for our purposes) is to predict,
from a training set of sampled observation sequences,
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the joint probabilities of all sequences of ¢ observations
for some finite constant ¢. In particular, we will consider
the Ly variational distance

I |Pr(x1,...,ajt) —Br(zy,...,m) |, (2)

L1;.--,T¢

where Pr denotes the predicted probability.

One possible approach is to try and discover the original
parameters o, T, and O; the standard EM algorithm
(Dempster et al., 1977) attempts this non-convex prob-
lem via alternating local optimization. However, EM
can be slow in practice, and provides no guarantees
regarding the quality of the final solution.

Instead, Hsu et al. (2012) showed that, under the con-
ditions that o is strictly positive and T and O are of
rank m, a transformed parameterization of the HMM—
sufficient to predict the desired joint probabilities, and
more—is recoverable from quantities that can be com-
puted using only visible observations:

P1 ~R"
P21 %Rnxn

Pyyy R

[Pl]z = PI‘(Q?l = Z)
[Pgl}ij = Pr(ﬂ?g = i,xl = j)

[P3s1]ij = Pr(zs = i,20 = 2,21 = j) ,

where a Ps,1 matrix is computed for each observation
symbol z. The spectral parameters are given in terms
of a matrix U ~R" ™ with the property that (U'O)
is invertible; typically, U is chosen to contain the m
principal singular vectors of P»;. The parameters are:

by =UTP
bl =P (U Py)*t
B, =U" Py (U Pyy) ", (3)

where again we have B, for each observation .

In practice, when exact P-statistics are not available,
they are simply estimated by counting. Hsu et al. (2012)
showed that the resulting joint probability estimates
Pr(xy,xa,...,24) =~ bl By, ---ByyBa,bi  (4)
are consistent in the limit of infinite data, and moreover

that the size of the training set required to achieve a
fixed level of accuracy is only polynomial in ¢.

3. Low-rank spectral learning

As far as we are aware, existing analyses of spec-
tral learning assume that the number of states m (or
an equivalent complexity measure, depending on the
model) is known to the learner. This allows for proofs of
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Figure 1. A simple two-state HMM.

statistical consistency and finite-sample bounds. How-
ever, in practice we rarely know the correct value of
m; moreover, for any real process it is likely to be
unbounded, or at least too large to be computation-
ally feasible. Thus we must usually resort to what we
will call low-rank spectral learning, where the spectral
projection U ~R™** contains the k principal left sin-
gular vectors of P»; (or equivalent) for some k < m.
Indeed, this method has been previously suggested as a
means of regularizing the complexity of spectral models
(Boots et al., 2010b).

Such an approach makes intuitive sense, since we are
used to treating the magnitudes of singular values as
measures of “importance” for their associated singular
vectors. However, we will show that this intuition does
not necessarily hold for spectral learning. In partic-
ular, the magnitudes of the excluded singular values
(numbers k + 1 to m) are not necessarily predictive
of the error of the resulting model. Moreover, in con-
trast to the statistical consistency of full-rank spectral
learning, low-rank spectral learning can produce poor
results even with infinite data, and even in cases where
accurate low-rank models exist.

Throughout the discussion that follows we will assume
an infinite training set. Though unrealistic, this al-
lows us to isolate the effects of learning a low-rank
model from finite-sample convergence issues. (Whether
finite-sample issues would compound the difficulties of
low-rank spectral learning in an interesting way—or,
perhaps, alleviate them—remains an interesting and
open question.) However, we cannot ignore the impli-
cations of finite training sets in practice; the need to
accurately estimate singular vectors with small corre-
sponding singular values is of particular concern pre-
cisely because very large quantities of data are required
to do so (Benaych-Georges & Nadakuditi, 2012). In-
deed, existing finite sample bounds typically have a
term that grows like O(1/0%), where o is the smallest
nonzero singular value of P (or equivalent) (Hsu et al.,
2012; Boots et al., 2010a; Foster et al., 2012).

First example. Counsider the simple two-state, two-
observation HMM in Figure 1. (T is depicted as an
automaton, with states drawn as circles and probabil-
ities on the transition arrows.) For simplicity, we let
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Figure 2. A modified two-state HMM.

O be the identity, though this is not fundamental. Tt
is clear by inspection that this HMM produces only
the alternating observation sequences 1,2,1,2,... and
2,1,2,1,..., and each occurs with probability 50%. We
can easily compute

| |
P = 0(.)5 065 ’ ®)
which has singular values (0.5,0.5). The top singular
vector can be any unit vector, but if a small amount of
noise is added it will be an elementary basis vector such
as [0 1]T. It is easy to compute that rank-one spectral
learning in this case yields By = By = 0; therefore the
model predicts zero probability for every sequence, and
the L; variational distance is 1 for all ¢.

This is not terribly surprising: the large singular values
of Py are a clear sign that reducing the rank will result
in a poor approximation. But does this implication
hold in reverse? That is, do small singular values imply
that a low-rank model will be a good fit? The next
example shows that the answer, in general, is negative.

Second example. Figure 2 depicts a slight modifi-
cation to the HMM in Figure 1. The only change is
to o; here € is some small positive number. Whereas
before the two feasible sequences had equal probability,
the sequence 1,2,1,2,... is now observed almost all of
the time. We have

I 0 €|

Py = l—e 0 ° (6)

with singular values (1 — €,¢). This time we might
reasonably suppose that the second singular vector is
unimportant, given its small associated singular value.
And yet, again, simple computations show that a rank-
one spectral model yields By = By = 0 and gives trivial
predictions. This means that there can in general be
no “safe” threshold for pruning the singular values of
Ps1; an arbitrarily small singular value might still be
crucially important. In this case, a rank-two model
recovers the process perfectly, while a rank-one model
is totally uninformative.

One way to view this result is that, though we have
technically met the spectral learning condition that

Figure 3. A three-state example HMM.

o > 0, we have “barely” met it by setting oo = €. In the
same way that spectral learning fails when an element
of o is equal to 0, we should somehow expect increasing
difficulty as an element of o approaches zero. This is
true, in the sense that if the conditions from Section 2
are met with margin then the singular values of Py
cannot get too small. And yet, it is not a satisfying
resolution, since assuming that the singular values of
P51 do not get too small is equivalent to assuming that
its rank, m, is easily obtained from a finite sample,
which we have argued is not feasible in the first place.
The conditions are assumptions about the world itself,
and we cannot simply wish them stronger; if they do
not hold, the entire learning procedure may fail.

We can, however, provide at least one sound reason for
the poor performance of the rank-one spectral model
here: we have designed an HMM that cannot be ef-
fectively approximated by any rank-one model, since
the alternating pattern is fundamentally stateful. Per-
haps, even if singular values fail to convey the value
of increasing model rank, low-rank spectral learning
will still recover a model that is near-optimal (with
respect to some reasonable objective) given the rank
constraint. Unfortunately, the next example shows that
this cannot be true either.

Third example. Compared to Figure 2, the HMM
in Figure 3 adds a “dummy” state that always tran-
sitions to itself and allocates to it a small positive
amount o of the initial probability mass. This HMM
generally behaves the same as its predecessor, but with
probability o it produces only 3s. We now have

| 0 e 0!
P21:| l—e—0c 0 O 5 (7)
0 0 O'J

with singular values (1 — € — g, ¢, 0). By construction,
there exists a rank-two model that gives arbitrarily
good predictions as 0 = 0, obtained by simply ignoring
the third state. Indeed, when € > o, rank-two spec-
tral learning recovers this result, giving nearly perfect
predictions for all lengths t. When o > ¢, however,
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Figure 4. The relationship between variational distance and
omitted singular values. Random HMMs are in blue (upper
cloud) and HMMs initialized at the stationary distribution
are in red.

the alternating pattern is “masked” by the dummy
state. The learner chooses to allocate its representa-
tional power poorly, and the result is an L, variational
distance approaching 1.

4. The importance of 7

Is there any good news? One apparent common thread
in the examples of Section 3 is that they all rely on
small values in the entries of o. This turns out to
not be fundamental; for instance, the HMM given by
o =1[0.250.25 0.25 0.25] " and

T 0
01 05-¢ 0 | 1100 1-0!
(L 00s—cl-c, ;010 0
|0 0 2 0 oo 1 o0
00 0 o 000 o

admits a near-perfect rank-three model, but rank-three
spectral learning produces large errors when o> €.

However, this leads to a more general idea, which is
that the bias introduced by ¢ might somehow interfere
with the underlying long-term structure of the HMM.
Indeed, if o is replaced with the stationary distribution—
that is, To = c—then the examples seen so far become
well-behaved. The first two yield poor-quality models
since no good rank-one fit is possible, but the singular
values now correctly indicate this fact. The remaining
examples produce accurate models regardless of € and o.
We conjecture that this may be true in a more general
way, but leave details to future work.

Figure 4 contains a scatter plot in which each point
represents a synthetic 10-state, 20-observation HMM
for which a rank-9 spectral model has been learned.
On the y-axis is the resulting L; variational distance
at t = 3 (other choices of ¢ were qualitatively similar),
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Figure 5. The relationship between variational distance and
model rank. In blue (upper curve), 7 is random. In red,
initialization occurs at the stationary distribution.

and on the z-axis is the magnitude of the omitted
tenth singular value. Blue points correspond to HMMs
generated randomly; entries of o, T', and O are sampled
iid. from the uniform distribution on [0,1], and then
normalized to satisfy stochasticity. For red points, T'
and O are generated as before, but o is set to be the
stationary distribution. This change creates an obvious
and dramatic tightening of the relationship between
singular values and variational error; moreover, the
errors obtained by these models are uniformly lower.

Figure 5 shows the L; variational distance at ¢t = 3
measured for a single 50-state, 100-observation HMM,
generated randomly as before, across a range of spectral
learning ranks. In blue, the original (random) initial
distribution is used, while in red, o is replaced with
the stationary distribution. The latter setting not only
achieves lower error at all ranks (though the underlying
model has changed as well), but reaches a point of
diminishing returns more quickly. Note that the 40th
singular value of P»; for this model is less than 1079,
and yet, with random o, spectral learning still has not
achieved error below 0.01 even at rank 44 out of 50.

Of course, we cannot in general change o since it is fixed
by the world. Thus, for problems that fundamentally
involve restarts to a fixed distribution, this result may
be of limited value. However, for many real-world
problems we observe a small number of long observation
sequences, making the stationary distribution a natural
measure. This is particularly common for predictive
state representations, which are often used to model
an agent’s experience over long periods of time.

More generally, our results imply that the relationship
between the initial distribution (which appears in some
form in all spectral methods) and the remaining model
parameters may be especially important for low-rank
spectral learning.
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