
Building Incomplete but Accurate Models

Erik Talvitie, Britton Wolfe and Satinder Singh
Computer Science & Engineering

University of Michigan
{etalviti, bdwolfe, baveja}@umich.edu

Abstract

We consider an agent that seeks to make abstract pre-
dictions about the world by only distinguishing be-
tween certain features of observations. Making accu-
rate abstract predictions of this form may not require
a fully detailed model of the world, though in general
it will require that the agent make some finer distinc-
tions than those that interest it. We assume the agent
has a partition of the observation space of a dynamical
system induced by the features of interest. The goal of
this paper is to find a minimal refinement of that parti-
tion such that a model of the refined system will make
accurate predictions with respect to the features of in-
terest. We provide algorithms and worst-case bounds
on the difficulty of performing this task. Our results
apply generally to all discrete dynamical systems.

1 Introduction and Preliminaries

An important capability for an artificial agent is that
of building a model in order to answer questions about
the world. An agent attempting to model a sufficiently
complex environment may wish to limit the questions it
will ask in hopes of simplifying its modeling task. This
may be because the agent actually only requires the an-
swers to a restricted set of questions or perhaps because
the environment is so complex that the agent is com-
putationally incapable of building a complete model.

In this work, we will consider discrete dynamical sys-
tems and we will think of “questions” as predictions
about future events. In particular, we imagine there
exists a finite set of actions A and a finite set of observa-
tions O. At each time step i, an agent selects an action
ai ∈ A and the environment produces an observation
oi ∈ O. We call a sequence of future actions and a se-
quence of observations that could result t = a1o1...akok

a test. In the event that the agent performs the se-
quence of actions and actually observes the sequence of
observations in a test, we say that the test succeeded.
The agent uses its model of the world to make predic-
tions of whether tests will succeed. That is, it asks ques-
tions of the form “If I perform the sequence of actions
a1, a2, ..., ak, what is the probability that I will see the
sequence of observations o1, o2, ..., ok?” A model that

Copyright c© 2007, authors listed above. All rights reserved.

can answer all such questions can make any conditional
prediction of the future (Littman, Sutton, & Singh
2002). After a sequence of past actions and observa-
tions (which we call a history) h = a1o1...ajoj , we write
the true prediction of test t = aj+1oj+1...aj+koj+k, de-
termined by the physical system, as

p(t|h)
def

= Pr(oj+1...oj+k|a1...aj+k, o1...oj). (1)

We refer to a model M ’s prediction (which may or may
not be correct) of test t at history h with pM (t|h).

We will let the set of all tests T be the set of all al-
ternating sequences of actions and observations. The
set of histories H is the set of all possible histories:

H
def

= {t ∈ T |p(t|∅) > 0}, the set of action/observation
sequences with positive probability at the null history.
We call a model M complete if it makes a prediction for
every test: for any history h ∈ H and test t ∈ T , the
model can be queried to find pM (t|h). We call a model
accurate with respect to a set of tests T̄ if for any history
h ∈ H, and all t ∈ T̄ , pM (t|h) = p(t|h). Our task is to
build an incomplete model that is nevertheless accurate
with respect to the questions of interest.

We will consider a specific way to limit the tests of
interest, namely the widely-used practice of making pre-
dictions only about features of observations and the
problem of building a model that is accurate with re-
spect to predictions of those tests, but which may be
simpler than a full model of the system. We will pro-
vide novel bounds on the worst-case difficulty of veri-
fying accuracy and present two conceptual algorithms
motivated by those results.

1.1 System Dynamics Matrix

Our results will make heavy use of a conceptual object,
D, called the system dynamics matrix (Singh, James, &
Rudary 2004). D is an infinity-by-infinity matrix that
describes a dynamical system. Each row corresponds to
a history, each column a test. Each entry of the matrix

Dij
def

= p(tj |hi), the prediction of test tj at history hi.
Though the system dynamics matrix is infinity-by-

infinity, for large classes of interesting systems it has

finite rank, and thus can be specified using a finite num-
ber of parameters. We say a dynamical system has lin-
ear dimension n if its system dynamics matrix has rank
n. The linear dimension is, in some sense, a measure of
a system’s complexity. For instance, a POMDP (Mon-
ahan 1982; Cassandra, Kaelbling, & Littman 1994)
posits the existence of a finite set of hidden states and
uses as its state the probability distribution over those
hidden states. POMDPs have a linear dimension no
greater than the number of hidden states (Singh, James,
& Rudary 2004) so the belief state vector has at least
as many entries as the linear dimension. A linear PSR
(Littman, Sutton, & Singh 2002) uses as its state repre-
sentation the predictions of a set of tests whose columns
form a linear basis of the system dynamics matrix, and
thus the predictive state vector has as many entries as
the linear dimension. In this work when we say a sys-
tem is “simpler” or “more compact” than another, we
mean that it has a smaller linear dimension.

Because every finite-observation, finite-action,
discrete-time dynamical system has a system dynamics
matrix, our results concerning properties of D will
apply generally to all such systems. Though because
PSRs are defined directly by quantities in D they may
be especially suited to take advantage of the results we
present, this work remains agnostic with respect to the
ultimate choice of representation.

1.2 Observation Aggregation

In this work we will consider a simple, yet natural and
common, mechanism for limiting the tests of interest:
the agent will choose not to distinguish between cer-
tain observations, effectively as if the agent were only
interested in certain features of each observation. The
features of interest may involve the reward signal of
some control task as in, for instance, McCallum (1995),
Hoey & Poupart (1995), and Ravindran (2004), or they
may be more general, for instance if the agent is specif-
ically assigned a prediction task, or if some features are
expected to be useful across multiple tasks.

A set of features of interest induces a partition Ô of
the observation space O, which we call the partition
of interest. Hereafter, we assume the partition of in-
terest to be given. Each element O ∈ Ô is a set of
primitive observations the agent does not distinguish
(because they share values for the features of interest).
We call O a set observation. Not distinguishing be-
tween certain observations will clearly render some ac-
tion/observation sequences indistinguishable. As such,

a partition over observations induces partitions T̂ and
Ĥ over T and H, respectively. Elements T ∈ T̂ and
H ∈ Ĥ are sequences of actions and set observations
and we call them set tests and set histories, respectively,
following Wingate et al. (2007). Note that, because we
only aggregate observations, all primitive tests (resp.
histories) contained within a set test (resp. history)
will have the same action sequence. We will often refer
to T̂ as the set tests of interest.

Figure 1: The 3x3 grid world. See text for description.

Because the agent is interested in making predictions
only about observation features, it requires predictions
only for set tests T ∈ T̂ . That is, it requires an incom-
plete model that provides answers for the predictions
p(T |h), for h ∈ H and T ∈ T̂ .

A common approach to creating such a model is to
build a complete and accurate model M̂ of the aggre-
gate system such that for any set test T and set history
H, p

M̂
(T |H) = p(T |H). M̂ can then be used for the

agent’s purposes by defining p
M̂

(T |h)
def

= p
M̂

(T |H) =
p(T |H) where H is the set history that contains h.

Since M̂ models the system at an aggregate level, it
may be significantly more compact than the primitive
system. However, because M̂ does not distinguish prim-
itive histories, it will not necessarily be accurate with
respect to T̂ . To make accurate predictions we require
that p

M̂
(T |h) = p(T |h). Since p

M̂
(T |h) = p(T |H),

where h ∈ H ∈ Ĥ, this implies that the partition Ô
must have the property that for any history h ∈ H ∈ Ĥ
and T ∈ T̂ , p(T |h) = p(T |H). Of course in general Ô
need not satisfy this property. It may be necessary to
make more distinctions than Ô in order to accurately
predict the desired tests. So, we seek an accurate re-
finement of Ô.

Definition 1. An accurate refinement Ô′ of the parti-
tion of interest Ô is a refinement such that

p(T |H ′) = p(T |h) ∀ T ∈ T̂ ,H ′ ∈ Ĥ′, h ∈ H ′ (2)

where T̂ is the partition over T induced by Ô and Ĥ′

is the partition over H induced by Ô′.

Such a refinement always exists because this property
is trivially true of the primitive system. In fact, there
must exist at least one minimal accurate refinement.

Definition 2. A minimal, accurate refinement of Ô is
an accurate refinement Ô′ such that any coarsening of
Ô′ is not an accurate refinement of Ô.

In the following example we shall see that for some
systems, minimal and non-minimal accurate refine-
ments can induce drastically different linear dimensions
in the resulting aggregate systems.

Example: Consider the 3x3 grid world pictured in
Figure 1a. At the beginning of an episode, the agent is
placed on a random square. The agent has a movement

action for each cardinal direction (n, e, s, w) and it
observes the label (numbers 1-9) of the square it moves
into. If the agent attempts to move off of the grid, no
movement occurs.

We imagine that the agent is interested in tests dis-
tinguishing the right column from the rest of the grid,
as indicated by the bold lines in Figure 1a. This par-
tition is not accurate with respect to its own set tests
because, for instance, p(e3|n2) = 1 but p(e3|n1) = 0.
The minimal accurate refinement of this aggregation
Ô′ is pictured in Figure 1b. It is easy to check that the
linear dimension of the system aggregated according to
Ô′ is 3. Now consider Ô′′, a further refinement of Ô′

that splits the left column {1, 4, 7} into {1} and {4, 7}

(as pictured in Figure 1c). Clearly Ô′′ is still accurate
with respect to the set tests of interest. However,
though it may not be obvious from inspection, its
aggregate system has a linear dimension of 9, the same
as the primitive system. On a general k × k grid,
this would represent a quadratic increase of the linear
dimension induced by the minimal accurate refinement.

So, the goal of this paper is to take any discrete dy-
namical system and any partition of interest Ô and find
a minimal accurate refinement, Ô′. An aggregate model
built using this refinement will accurately predict the
tests of interest and can be more compact than a com-
plete model of the system. We will now state our main
result, and prove it in subsequent sections.

1.3 Main Theorem

We will develop a procedure which splits set observa-
tions in Ô by searching for pairs of histories h and h′

contained within the same set history H ∈ Ĥ for which
there exists some set test T ∈ T̂ with p(T |h) 6= p(T |h′).
Such a pair of histories must be split apart in order to
achieve accuracy.

Our main result will be that this search procedure
need only check finitely many histories and tests in or-
der to guarantee accuracy.

Theorem 1. For every discrete dynamical system with
linear dimension n and observation aggregation Ô, a
minimal, accurate refinement Ô′ of Ô can be found by
checking only predictions involving tests of length less
than or equal to n and histories of length less than n2.

2 Relationship to Homomorphisms

The accuracy criterion we have defined is closely related
to recent work in homomorphisms for model minimiza-
tion. In this section we will briefly discuss the connec-
tion, finding that an accurate refinement is a weaker no-
tion than a homomorphism. Specifically, we will show
that an accurate refinement of the partition of interest
need not be a homomorphism of the primitive system.

Much of the work on homomorphisms has been done
in the setting of Markov Decision Processes (MDP).
MDP homomorphisms (Ravindran 2004) essentially

Figure 2: MDP example from Theorem 2. Multiple
arrows coming out of one state indicate a stochastic
transition with the probability distribution indicated.
States a and b are initial states with equal probability.

address the question “What states and actions can
be combined, while still allowing accurate predictions
about the reward signal?” Wolfe & Barto (2006) gener-
alized the criterion, much as we are interested in doing,
to allow for arbitrary observation features of interest,
rather than focusing on just the reward signal. Wolfe
& Barto focused on the special case of MDPs, however,
so their algorithms do not apply to our more general
setting.

The homomorphisms framework was extended to ar-
bitrary discrete dynamical systems with PSR homomor-
phisms (Soni & Singh 2007). PSR homomorphisms al-
low for history-dependent observation and action ag-
gregations. Since we only consider history-independent
observation aggregations, we are working with a special
case of the class of partitions allowed by PSR homomor-
phisms. However, Soni & Singh provide no algorithms
for finding PSR homomorphisms. More importantly,
the PSR homomorphism criteria are stronger than is
strictly necessary for our purposes. Specialized to our
setting, a refinement Ô′ of the partition of interest is a
homomorphism of the primitive system if

p(T ′|H ′) = p(T ′|h) ∀T ′ ∈ T̂ ′,H ′ ∈ Ĥ′, h ∈ H ′. (3)

That is, it must be accurate not only with respect to
the set tests of interest T̂ , but also with respect to its
own set tests T̂ ′. If Ô′ satisfies this property, we call
the aggregate system with respect to Ô′ a homomorphic
image of the primitive system.

We will now present an example in which a refinement
Ô′ is accurate with respect to T̂ (satisfies Equation 2)
and is not a homomorphism (does not satisfy 3).

Theorem 2. A minimal, accurate refinement with re-
spect to a partition of interest Ô over the observations
of a dynamical system need not necessarily be a homo-
morphism of that system.

Proof. Consider the uncontrolled MDP in Figure 2 and
imagine that the partition of interest distinguishes f
and g from other observations (and each other) with
the rest in one set observation X = {a, b, c, d, e}. Now

consider a refinement of this initial partition in which
c, d, and e are also distinguished, but a and b are ag-
gregated into the set observation Y = {a, b}. This re-
finement is not accurate with respect to its own set
tests. For instance: p(c|a) = 0.2 and p(c|b) = 0.6
even though a, b ∈ Y . By inspection, however, it is
easy to see that this refinement is accurate with re-
spect to the tests of interest, most notably because
p(Xf |a) = p(Xf |b) = p(Xf |Y) = 0.3.

In fact, though it may not be obvious from inspec-
tion, this refined system has a linear dimension of 4,
while the primitive system (the only refinement that is
a homomorphism) has a linear dimension of 5. Thus the
system aggregated according to this refinement is more
compact than the minimal homomorphic image that is
accurate with respect to the tests of interest.

Our main results concern the process of finding a min-
imal accurate refinement, though later we will present
an algorithm for finding a homomorphism, and see that
there may be reasons to prefer it, even at the potential
cost of compactness.

3 Finding an Accurate Refinement

As discussed in Section 1.3, our refinement procedure
will search for violations of the accuracy criterion.
These will consist of pairs of histories h and h′, both
contained within the same set history H ∈ Ĥ for which
there exists a set test T ∈ T̂ with p(T |h) 6= p(T |h′).
However, identifying such a pair of histories is not, in
itself, very informative with respect to how to refine
the partition Ô. Knowing that h and h′ must be split
apart tells us only that we need to split at least one pair
of observations at corresponding time steps in the two
histories, but not which pair. That said, for some pairs
of histories, it is clear. If h and h′ differ only at one
time step, then the pair of observations at that time
step must be split apart.

Lemma 1. Consider two primitive observations
o1, o2 ∈ O ∈ Ô. If there exists a ∈ A, T ∈ T̂ and
primitive histories h1, h2 ∈ H such that p(T |h1ao1h2) 6=

p(T |h1ao2h2) then in any accurate refinement Ô′ of Ô,

∃O1, O2 ∈ Ô′ such that o1 ∈ O1, o2 ∈ O2, and O1 6= O2.

Proof. In any refinement that does not split o1 and o2,
h1ao1h2 and h1ao2h2 will belong to the same set his-
tory. Since they have different predictions for T , such
a refinement could not possibly be accurate.

Using the following result, we will show that it will be
sufficient to compare only pairs of histories that differ in
one time step. Throughout the remainder of the paper
we use the notation hi to signify the i-length prefix of
a history h and h−j to signify the j-length suffix of
h. That is, if h = a1o1...akok, hi = a1o1...aioi and
h−j = ak−j+1ok−j+1...akok. Also, h0 = h−0 = ∅ and
hk = h−k = h.

Lemma 2. Consider two primitive histories with the
same action sequence h = a1o1...akok and h′ =
a1o

′
1...ako′k. Let hi = hih′−(k−i). If for all i ∈

{0, 1, ..., k}, p(T |hi) = p(T |hi+1) then p(T |h) =
p(T |h′).

Proof. The result is easy to see by making a series of
transformations from h to h′, swapping only one ob-
servation at a time. For any T , p(T |h) = p(T |hk) =
p(T |hk−1) = ... = p(T |h0) = p(T |h′).

By the contrapositive of this result, we can conclude
that for any pair of histories h and h′ of length k with
p(T |h) 6= p(T |h′) there exists another pair of histories
hiaioih

′−(k−i−1) and hiaio
′
ih

′−(k−i−1) that also disagree
on T . These two histories differ on only one time step.
So, in searching for a split, it suffices to consider every
pair of primitive observations o1 and o2 in each set ob-
servation O and check for all h1, h2, a, and T , whether
p(T |h1ao1h2) = p(T |h1ao2h2). Of course there are in-
finitely many such histories and tests. It will be the
work of later sections to prove that, in fact, we need
perform only finitely many of these checks.

A violation for observations o1 and o2 is a tuple
〈T, a, h1, h2〉 such that T ∈ T̂ , a ∈ A, h1 ∈ H, h2 ∈ T ,
and p(T |h1ao1h2) 6= p(T |h1ao2h2). We will say a pair
of observations o1, o2, is comparable if there exists some
history h and some action a such that p(hao1|∅) > 0 and
p(hao2|∅) > 0. If all observations are comparable, then
the pair-wise relation “Have no violations” is an equiv-
alence relation. If we define our refinement such that
each set observation is exactly one equivalence class ac-
cording to this relation, we will have split every obser-
vation that must be split in any accurate refinement,
and no more:

Lemma 3. If all observations are comparable and Ô′

is the set of equivalence classes induced by the relation
“Have no violations,” then Ô′ is a minimal, accurate
refinement of Ô. Furthermore, there is no accurate re-
finement of Ô that induces an aggregate system with a
smaller linear dimension than that induced by Ô′.

Proof. Accuracy and minimality are direct conse-
quences of Lemmas 2 and 1, respectively. Furthermore,
Lemma 2 implies that any accurate refinement must be
a refinement of Ô′, since it must make at least the dis-
tinctions made by Ô′. Since the columns and rows of
the aggregate system dynamics matrix induced by Ô′

will be sums of columns and rows of the system dynam-
ics matrix induced by any refinement of Ô′, refinement
can never reduce rank, which gives us the result.

Incomparable observations will have only a minor im-
pact on finding a minimal, accurate refinement, though
they can affect the linear dimension of the aggregate
system that results. For a brief discussion, see Ap-
pendix A. For the remainder, we will assume all obser-
vations are comparable and turn to the work of proving

that we can find a minimal accurate refinement using
only finitely many violation checks.

3.1 Bounding Test Length

We will start by proving the first part of Theorem 1:
for a dynamical system with linear dimension n, we
need only consider tests of length less than or equal
to n in our violation search. In fact, we will prove a
slightly tighter bound. We will need the concept of the
set test matrix. This is an infinity-by-infinity matrix
like the system dynamics matrix, and each entry is a
prediction. In the set test matrix, however, columns
correspond to set tests only (the rows still correspond
to primitive histories). The rank of this matrix, n̄, can
be at most n and must be at least n̂, the rank of the
aggregate system dynamics matrix (which has set tests
for columns and set histories for rows). The set test
matrix also has the following useful property, which we
will present without proof:

Lemma 4. There exists a linear column basis of the set
test matrix consisting entirely of columns corresponding
to set tests of length n̄ or less.

This allows us to consider only finitely many tests in
our violation search.

Lemma 5. If a violation 〈T, a, h1, h2〉 exists for obser-

vations o1, o2 ∈ O ∈ Ô then a violation 〈T ′, a, h1, h2〉
exists for o1 and o2 with length(T ′) ≤ n̄.

Proof. If Q̄ is a set of tests whose columns form a basis
for the set test matrix and for some pair of histories
p(q̄|h) = p(q̄|h′) for all q̄ ∈ Q̄, then p(T |h) = p(T |h′) for
any T . By Lemma 4, there exists a Q̄ consisting of tests
length n̄ or less. The result immediately follows.

3.2 Bounding History Length

In this section we will complete the proof of Theorem
1 by showing that we need only consider histories of
length less than n2 in our search for violations. For the
purposes of this argument, we will introduce a trans-
formation of the system dynamics matrix D, which we
will call D2. Each row in D2 corresponds to a pair
of histories 〈h1, h2〉, and each column a pair of tests

〈t1, t2〉. Each entry D2
〈h1,h2〉,〈t1,t2〉

def

= p(t1|h1)p(t2|h2). It

is straightforward to bound the rank of D2:

Lemma 6. If rank(D) = n, then rank(D2) ≤ n2.

Proof. Let Q be a set of n tests corresponding to
columns that form a basis for D. Then for any test t
and history h, p(t|h) =

∑
q∈Q p(q|h)mt(q), where mt(q)

is some scalar weight. Then

D2
〈h1,h2〉,〈t1,t2〉

= p(t1|h1)p(t2, h2)

=
∑

q∈Q

∑

q′∈Q

p(q|h1)p(q′|h2)mt1(q)mt2(q
′)

=
∑

〈q,q′〉∈Q×Q

D2
〈q,q′〉,〈h1,h2〉

m〈t1,t2〉(〈q, q
′〉).

So the columns corresponding to Q×Q are a column
basis of D2and rank(D2) ≤ |Q × Q| = n2.

Using this fact we can prove a general result about
the system dynamics matrix which will lead directly to
the bound we seek.

Theorem 3. Let the linear dimension of a system be n
and consider two primitive histories with the same ac-
tion sequence: h1 = a1o

1
1...ako1

k and h2 = a1o
2
1...ako2

k.
If for some test t p(t|h1) 6= p(t|h2), then there exists a
subsequence {i1, i2, ...ij} of {1, ..., k} such that j < n2

and p(t|ai1o
1
i1

ai2o
1
i2

...aij
o1

ij
) 6= p(t|ai1o

2
i1

ai2o
2
i2

...aij
o2

ij
).

Proof. If k < n2, this result holds trivially, so let us
assume k ≥ n2. We will work with a (k + 1) × (k +
1) matrix, X, constructed from entries of D2, defined
entry-wise for all 0 ≤ i, j ≤ k:

Xij
def

= p(h−j
1 t|hi

1)p(h−j
2 |hi

2) − p(h−j
2 t|hi

2)p(h−j
1 |hi

1).

Note that the rows of X are a subset of the rows of
D2 and the columns are weighted sums of the columns
of D2. Therefore, rank(X) ≤ rank(D2) ≤ n2.

If an entry Xij is zero, we have

p(h−j
1 t|hi

1)

p(h−j
1 |hi

1)
=

p(h−j
2 t|hi

2)

p(h−j
2 |hi

2)
(4)

and, by Bayes’ rule,

p(t|hi
1h

−j
1) = p(t|hi

2h
−j
2). (5)

Conversely, if p(t|hi
1h

−j
1) 6= p(t|hi

2h
−j
2) then Xij > 0.

Since p(t|h1) 6= p(t|h2), it must be that Xi(k−i) > 0
for any i. If Xij = 0 for all j < k − i, then X would
have full rank: k + 1 > n2, a contradiction. As such,
there is some j < k − i such that Xij > 0. That is,
if p(t|h1) 6= p(t|h2) and k ≥ n2, we can find another,
shorter pair of histories that disagree on t by removing
the same time-steps from both h1 and h2. Specifically:

p(t|a1o
1
1...aio

1
i ak−j+1o

1
k−j+1...ako1

k) 6=

p(t|a1o
2
1...aio

2
i ak−j+1o

2
k−j+1...ako2

k).

The resulting subsequence of indices has length k′ =
i + j. If k′ ≥ n2, we simply repeat the argument to re-
move more substrings until we reach a subseqence with
length less than n2.

Lemma 7. If a violation 〈T, a, h1, h2〉 exists for obser-

vations o1, o2 ∈ O ∈ Ô then a violation 〈T, a, h′
1, h

′
2〉

exists for o1 and o2 with length(h′
1ao1h

′
2) < n2.

Proof. This follows immediately from Theorem 3 when
we note that, since h1ao1h2 and h1ao2h2 only differ
in one time-step, the subsequences that disagree on T
must still contain that step, otherwise they would be
equal. As such, they are a violation for o1 and o2.

Figure 3: HMM example from Section 3.2. The obser-
vation (distribution) associated with each state is next
to the state. State 0 is the initial state.

This completes the proof of Theorem 1, our main
result. It may be possible to tighten these bounds in
terms of other parameters of the primitive system. For
instance, we have, as of yet, no example which requires
histories of length greater than n̄2. The quadratic de-
pendence on n, however, is necessary in the worst case,
as we now demonstrate.

Theorem 4. For any n there exists a dynamical system
with linear dimension at least n and partition of interest
Ô such that a violation exists, and the shortest pair of
histories involved in a violation have O(n2) length.

Proof. Consider the family of uncontrolled POMDPs
(or HMMs), indexed by k, of the form given in Fig-
ure 3. The linear dimension is equal to the num-
ber of hidden states, n = 2k − 1. Imagine that
the partition of interest distinguishes a from b and
c, but aggregates b and c into the set observation
X. This partition is not accurate with respect to its
own set tests because p(ak−1X|ak(n−1)b) = 0.25 and
p(ak−1X|ak(n−1)c) = 0.5. In fact, it is possible to
show that there is no history h′ shorter than ak(n−1)

such that p(b|h′) > 0 and p(c|h′) > 0. Therefore, the
shortest history at which a violation occurs has length
k(n − 1) + 1 = n+1

2 (n − 1) + 1 = 1
2 (n2 − 1) + 1.

3.3 One-Pass Algorithm

Theorem 1 in hand, we can describe in detail a con-
ceptual refinement procedure, which we call the one-
pass algorithm. It is an exhaustive search for viola-
tions p(T |h1ao2h2) 6= p(T |h1ao2h2) over all O ∈ Ô,

o1, o2 ∈ O, a ∈ A, T ∈ T̂ with length(T) ≤ n̄, and
h1, h2 ∈ H with length(h1)+length(h2) < n2−1. Once
all possible violations have been accounted for, equiva-
lence classes are found and serve as the refinement.

Note that, in its pure form, the one-pass algorithm
is computationally daunting. Even putting aside that
the linear dimension of most problems of real interest
will be enormous in itself, the number of tests and his-
tories to be checked grows exponentially in the length
to be considered. Thus in the worst case, even for sys-
tems of moderate complexity, finding all violations is
entirely impractical. However, in many cases we would
expect to see violations with much shorter tests and
histories. For instance, if the linear basis of the set test
matrix consists of short tests, then correspondingly we

need only look at short tests. If the system is more
densely connected than the example in Theorem 4, then
we would expect to see violations at shorter histories.
In the next section we will develop an alternative al-
gorithm which is better equipped to take advantage of
these circumstances when they occur, by being more
opportunistic in its choices of splits.

4 Iterative Splitting

In this section we will consider a variation of the one-
pass algorithm which, rather than searching for all vi-
olations before splitting, produces a refinement as soon
as it can do so “safely.” A safe split is one that only
splits observation pairs that have a violation. It will
often be possible to make a safe split without finding
all violations. The iterative algorithm looks at increas-
ingly long histories and tests (up to length n2 and n̄,
respectively) searching for a safe split. Once it finds
one, it treats the set tests of the new refinement as if
they were the tests of interest and begins again. Be-
cause a safe split always exists (the one-pass algorithm
always makes a safe split), this algorithm is guaranteed
to stop at a refinement that is accurate with respect to
its own set tests, a homomorphism of the primitive sys-
tem. Such a refinement is also accurate with respect to
the tests of interest. It need not, however, be a minimal
accurate refinement, as we saw in Theorem 2.

In exchange for the loss of the minimality guarantee,
the iterative algorithm can enjoy substantial improve-
ments in the length of tests and histories that must
be considered, since intermediate splits can cause new
violations, as we shall see in the following example.

Example: Imagine a k × k grid world analogous to
our previous 3 × 3 grid world example. In order to
find a violation for observations 1 and 2, the one-pass
algorithm must look at histories and tests that have
a combined length of k − 1 (because it takes one step
to see observation 1 or 2 and k − 2 steps to reach
the right side from square 2 and not from square 1).
In comparison, the iterative algorithm would find, by
looking at 1-step histories and 1-step tests, that the
(k−1)th column must be split off because it is possible
to reach the kth column from those squares in one
step, and not from the others. In the next iteration,
again checking only one-step tests and one-step his-
tories, it would discover that the (k − 2)th column
should be split off, and so on until the minimal accurate
refinement was found (one set observation per column).

Ultimately, of course, when the iterative algorithm
reaches a stopping point, it must still check tests and
histories of the same length as the one-pass algorithm
in order to verify that there are no violations. So, it
is appropriate to think of the iterative algorithm as a
“fail-fast” style algorithm, which will tend to rule out
non-solutions quickly, but which may still take a long
time to verify a solution once it is ultimately found.

 0

 25

 50

 75

 100

 0 20 40 60 80 100 120 140

P
e

rc
e

n
t

A
c
c
u

ra
te

Random Trajectories

1-Step Tests, One-Pass

x10
3

α = 0.01
α = 0.05
α = 0.1
α = 0.2

 0

 25

 50

 75

 100

 0 20 40 60 80 100 120 140

P
e

rc
e

n
t

A
c
c
u

ra
te

Random Trajectories

1-Step Tests, Iterative

x10
3

α = 0.01
α = 0.05
α = 0.1
α = 0.2

 0

 25

 50

 75

 100

 0 20 40 60 80 100 120 140

P
e

rc
e

n
t

A
c
c
u

ra
te

Random Trajectories

3-Step Tests, One-Pass

x10
3

α = 0.01

α = 0.05

α = 0.1

α = 0.2

 0

 25

 50

 75

 100

 0 20 40 60 80 100 120 140

P
e

rc
e

n
t

A
c
c
u

ra
te

Random Trajectories

3-Step Tests, Iterative

x10
3

α = 0.01
α = 0.05
α = 0.1
α = 0.2

Figure 4: Percentage of accurate refinements (out of 20) for different test lengths in the 5x5 grid world domain.

5 Experiments

There are a number of practical challenges to overcome
when applying the principles we have described to a
modeling problem. First and foremost, in most set-
tings we will not have access to true entries of the sys-
tem dynamics matrix. Instead, we will estimate pre-
diction probabilities from data, and compare estimated
values using the chi-square test of homogeneity. Sec-
ondly, it will be impractical to perform the violation
search with histories and tests of the length required to
guarantee accuracy because in most systems of interest
the linear dimension n will be large and furthermore n
is not known a priori. For many systems, however, a
minimal, accurate refinement can be found by check-
ing short tests and histories. In practice we will select
a maximum test length ltmax and a maximum history
length lhmax for our violation search.

In the following experiments we had the agent explore
the environment using a uniform random policy in a
number of distinct trajectories. Periodically we would
freeze data collection, and apply both splitting algo-
rithms, recording the refinement found. Then, restor-
ing the original aggregation, data collection would re-
sume. We compare the performance of the one-pass
algorithm to the iterative algorithm, and explore the
effect of different choices of α, the significance level for
the chi-square tests used to compare table entries.

5.1 Grid World

In our first set of experiments, we consider our running
grid world example, in this case a 5×5 grid. The prim-
itive system has 25 observations and a linear dimension
of 25. The minimal refinement accurate with respect to
whether the agent will observe the right-most column
results in a system with 5 aggregate observations (one
for each column) and a linear dimension of 5.

In Figure 4 we present the percentage of refinements
found that were accurate (out of 20 runs) compared to
the number of trajectories seen for four choices of α
(0.01, 0.05, 0.1, and 0.2), and two choices of ltmax (1
and 3). In all cases we set lhmax = 1. As predicted, the
one-pass algorithm is unable to find an accurate refine-
ment using 1-step tests, while the iterative algorithm
can. Even with 3 step tests, when both algorithms are
capable of finding an accurate refinement, the iterative
algorithm seems to be significantly more data-efficient,
regardless of the choice of α. This is because splits at

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140A
v
g
.
#
 A

g
g
re

g
a
te

 O
b
s
.

Random Trajectories

3-Step Tests, One-Pass

x10
3

α = 0.2

α = 0.1
α = 0.05

α = 0.01
 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140A
v
g
.
#
 A

g
g
re

g
a
te

 O
b
s
.

Random Trajectories

3-Step Tests, Iterated

x10
3

α = 0.2

α = 0.1

α = 0.05

α = 0.01

Figure 5: Avg. number of aggregates (out of 20 runs)
in the 5 × 5 grid world.

one iteration can cause new violations in subsequent
iterations, even without acquiring any new data.

In Figure 5 we see the average number of aggregate
observations found (out of 20 runs) compared to the
number of trajectories seen for the same four choices
of alpha (and 3-step tests). The effect of α is unsur-
prising: higher values of α tend to cause over-splitting
while lower values require more data to make the neces-
sary distinctions. The over-splitting effect is especially
pronounced with the iterative algorithm, again because
spurious splits in early iterations can propagate into
later ones.

5.2 Machine Maintenance

Our second set of experiments is in a slightly modi-
fied version of the Machine Maintenance domain pre-
sented by Cassandra (1998). In this domain the agent
is in charge of a manufacturing machine with k com-
ponents. The components can be in any of 4 states
of disrepair. At every time step, the agent can choose
from four actions. If it chooses to replace the machine
all components are reset to excellent condition. If it
repairs the machine each component upgrades its sta-
tus with some probability. In either of these cases, the
agent observes only that the machine has been serviced.
If it inspects the machine the current status of all com-
ponents is revealed (in the original formulation, each
component produced a stochastic signal of its status).
Finally, if the agent chooses to manufacture, the ma-
chine produces a product, stochastically good or bad
(determined by the components’ states), and the com-
ponents downgrade their status with some probability.

We imagine that the agent would be primarily in-
terested in whether the machine produces good or bad

 0

 25

 50

 75

 100

 0 500 1000 1500 2000 2500

P
e
rc

e
n
t
A

c
c
u
ra

te

Random Trajectories

Percent Accurate

x10
5

α = 0.2, one-pass
α = 0.1, one-pass

α = 0.05, one-pass
α = 0.01, one-pass

α = 0.01, iterative

 0

 25

 0 500 1000 1500 2000 2500A
v
g
.
#
 A

g
g
re

g
a
te

 O
b
s
.

Random Trajectories

Avg. # Aggregates

x10
5

α = 0.2, one-pass
α = 0.1, one-pass

α = 0.05, one-pass
α = 0.01, one-pass

α = 0.01, iterative

Figure 6: Results in the machine maintenance domain.

products. So, we will consider an initial aggregation
with four aggregates: {good}, {bad}, {serviced}, and
{excellent, fair, poor, broken}k, where the last aggre-
gation contains all 4k possible machine states that could
be observed after an inspection. In order to make pre-
dictions at this level, one need not actually know the
full machine state. For instance, if any component is
broken, the machine will always produce bad products.
If no component is broken, it suffices to merely know
how many components are in each state.

We performed our experiments on a 5 component ma-
chine. Thus, the primitive system has linear dimension
of 45 = 1024, enough to pose a significant challenge
to model-building techniques based on either POMDPs
or PSRs. However, the aggregate system that consid-
ers only how many components are in each state and
whether any component is broken has a more manage-
able linear dimension of 22.

In our experiments we set ltmax = 2 and lhmax = 1.
At the beginning of each trajectory each component’s
state was chosen uniformly randomly. In Figure 6 we
can see that, as with the grid world domain, the it-
erative splitting algorithm with a small α significantly
outperforms the one-pass algorithm, in this case requir-
ing an order of magnitude fewer trajectories to find an
accurate refinement. Even so, the amount of data nec-
essary is quite high. In part this is due to our choice
of a uniform random exploration policy, which will take
a long time to collect sufficient data on low-probability
events. In the future it may be possible to guide explo-
ration to focus on trajectories that will most help the
violation search.

6 Conclusions

An agent seeking to accurately predict set tests with
respect to a partition over observations may have to
build a model using a refinement of that partition. We
have bounded the difficulty of finding such a refinement
in terms of the complexity of the primitive system and
presented two conceptual algorithms based on those re-
sults. We also presented experimental results that are
consistent with our theoretical expectations.

Of course the brute-force algorithms we have pre-
sented are not themselves applicable to many domains
of interest for reasons we have discussed. However, we
hope that issues and insights raised in this analysis will
pave the way to more practicable methods. It will be

critical to study notions of approximate accuracy in
which perhaps not all violations are found, heuristics
or biases (perhaps based on domain knowledge) to im-
prove the search for violations, and incorporation of
more expressive forms for the questions of interest, in-
cluding action abstraction and temporal abstraction.

Acknowledgments

Erik Talvitie was supported under a National Science
Foundation Graduate Research Fellowship. Britton
Wolfe and Satinder Singh were supported by NSF grant
IIS-0413004. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the NSF.

A Incomparable Observations

Recall that a pair of observations o1, o2 are compara-
ble if there exists some history h and action a such that
p(hao1|∅) > 0 and p(hao2|∅) > 0. Observations that are
incomparable are notable because, by definition, they
cannot have a violation and can, as a result, cause in-
transitivities in the “Have no violations” relation.

First note that, by Lemma 2, whether two incompa-
rable observations are distinguished cannot affect accu-
racy, since they cannot cause a violation. Furthermore,
it is possible to identify incomparable observations in
the course of the violation search by the following re-
sult, which we present without proof (the argument is
similar in form to that of Theorem 4).

Lemma 8. If p(ao1|h) · p(ao2|h) = 0 for all histories
h with length(h) < n2, then p(ao1|h) · p(ao2|h) = 0 for
all histories h of any length.

Thus, it is possible to construct a minimal, accu-
rate refinement by respecting all comparisons that can
be made and otherwise grouping incomparable obser-
vations arbitrarily. One procedure for achieving this
would first group together all pairs of observations that
are comparable and have no violations. Two such sets
can be merged if all members of one set are incompara-
ble with all members of the other set (otherwise there is
a violation between a member of one set and a member
of the other set). We simply merge pairs of sets until
no more merges are available. The result will be accu-
rate (since no two observations with a violation will be
grouped together) and minimal (since every pair of sets
has at least one violation and thus, cannot be merged).

This simple procedure could result in any of several
refinements, depending on how incomparable sets are
merged. All of them will be minimal, accurate refine-
ments. However, they may differ in the linear dimension
of the aggregate system they induce, which is, in some
sense, our true decision criterion. Heuristics for group-
ing incomparable observations in order to produce a
compact aggregate model will be an important direc-
tion for future research.

References

Cassandra, A. R.; Kaelbling, L. P.; and Littman,
M. L. 1994. Acting optimally in partially observable
stochastic domains. In Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence, (AAAI),
volume 2, 1023–1028.

Cassandra, A. R. 1998. Exact and Approximate Algo-
rithms for Partially Observable Markov Decision Pro-
cesses. Ph.D. Dissertation, Brown University.

Hoey, J., and Poupart, P. 2005. Solving pomdps with
continuous or large discrete observation spaces. In
Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 1332–1338.

Littman, M.; Sutton, R.; and Singh, S. 2002. Predic-
tive representations of state. In Advances in Neural In-
formation Processing Systems 14 (NIPS), 1555–1561.

McCallum, A. K. 1995. Reinforcement Learning with
Selective Perception and Hidden State. Ph.D. Disser-
tation, Rutgers University.

Monahan, G. E. 1982. A survey of partially observ-
able markov decisions processes: Theory, models, and
algorithms. Management Science 28(1):1–16.

Ravindran, B. 2004. An Algebraic Approach to Ab-
straction in Reinforcement Learning. Ph.D. Disserta-
tion, University of Massachusetts, Amherst, MA.

Singh, S.; James, M. R.; and Rudary, M. R. 2004. Pre-
dictive state representations: A new theory for mod-
eling dynamical systems. In Uncertainty in Artificial
Intelligence: Proceedings of the Twentieth Conference
(UAI), 512–519.

Soni, V., and Singh, S. 2007. Abstraction in predictive
state representations. In Proceedings of the Twenty-
Second National Conference on Artificial Intelligence,
(AAAI). To appear.

Wingate, D.; Soni, V.; Wolfe, B.; and Singh, S. 2007.
Relational knowledge with predictive state represen-
tations. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI), 2035–
2040.

Wolfe, A. P., and Barto, A. G. 2006. Decision tree
methods for finding reusable MDP homomorphisms.
In Proceedings of the Twenty-First National Confer-
ence on Artificial Intelligence, (AAAI).

