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Abstract—There is great interest in building intrinsic moti-
vation into artificial systems using the reinforcement learning
framework. Yet, what intrinsic motivation may mean compu-
tationally, and how it may differ from extrinsic motivation,
remains a murky and controversial subject. In this article, we
adopt an evolutionary perspective and define a new optimal
reward framework that captures the pressure to design good
primary reward functions that lead to evolutionary success across
environments. The results of two computational experiments
show that optimal primary reward signals may yield both
emergent intrinsic and extrinsic motivation. The evolutionary
perspective and the associated optimal reward framework thus
lead to the conclusion that there are no hard and fast features
distinguishing intrinsic and extrinsic reward computationally.
Rather, the directness of the relationship between rewarding
behavior and evolutionary success varies along a continuum.

Index Terms—intrinsic motivation, reinforcement learning

I. INTRODUCTION

The term “intrinsically motivated” first appeared (according
to Deci and Ryan [9]) in a 1950 paper by Harlow [12] on
the manipulation behavior of rhesus monkeys. Harlow argued
that an intrinsic manipulation drive is needed to explain why
monkeys will energetically and persistently work for hours to
solve complicated mechanical puzzles without any extrinsic
rewards. Intrinsic motivation plays a wide role in human
development and learning, and researchers in many areas of
cognitive science have emphasized that intrinsically motivated
behavior is vital for intellectual growth.

This article addresses the question of how processes anal-
ogous to intrinsic motivation can be implemented in artificial
systems, with specific attention to the factors that may or may
not distinguish intrinsic motivation from extrinsic motivation,
where the latter refers to motivation generated by specific re-
warding consequences of behavior, rather than by the behavior
itself.

There is a substantial history of research directed toward
creating artificial systems that employ processes analogous
to intrinsic motivation. Lenat’s AM system [18], for exam-
ple, focused on heuristic definitions of “interestingness,” and
Schmidhuber [32]–[37] introduced methods for implementing
forms of curiosity using the framework of computational
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reinforcement learning (RL)1 [47]. More recently, research
in this tradition has expanded, with contributions based on
a variety of more-or-less formal conceptions of how intrinsic
motivation might be rendered in computational terms. Reviews
of much of this literature are provided by Oudeyer and Kaplan
[25], [26] and Merrick and Maher [22].

Despite this recent attention, what intrinsic motivation may
mean computationally, and how it may differ from extrinsic
motivation, remains a murky and controversial subject. Singh
et al. [41] introduced an evolutionary framework for address-
ing these questions, along with the results of computational
experiments that help to clarify some of these issues. They
formulated a notion of an optimal reward function given a
fitness function, where the latter is analogous to what in nature
represents the degree of an animal’s reproductive success.
The present article describes this framework and some of
those experimental results, while discussing more fully the
notions of extrinsic and intrinsic rewards and presenting other
experimental results that involve model-based learning and
non-Markovian environments. In addition to emphasizing the
generality of the approach, these results illuminate some
additional issues surrounding the intrinsic/extrinsic reward
dichotomy. In our opinion, the evolutionary perspective we
adopt resolves what have been some of the most problematic
issues surrounding the topic of intrinsic motivation, including
the relationship of intrinsic and extrinsic motivation to primary
and secondary reward signals, and the ultimate source of both
forms of motivation.

Other researchers have reported interesting results of com-
putational experiments involving evolutionary search for RL
reward functions [1], [8], [19], [31], [43], but they did not
directly address the motivational issues on which we focus.
Uchibe and Doya [51] do address intrinsic reward in an
evolutionary context, but their aim and approach differ sig-
nificantly from ours. Following their earlier work [50], these
authors treat extrinsic rewards as constraints on learning, while
intrinsic rewards set the learning objective. This concept of
the relationship between extrinsic and intrinsic rewards is
technically interesting, but its relationship to the meanings of
these terms in psychology is not clear. The study closest to
ours is that of Elfwing et al. [11] in which a genetic algorithm
is used to search for shaping rewards [23] and other learning
algorithm parameters that improve an RL learning system’s
performance. We discuss how our approach is related to this

1We use the phrase computational RL because this framework is not a
theory of biological RL despite what it borrows from, and suggests about,
biological RL. However, in the following text we use just RL to refer to
computational RL.
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study and others in Section VII.

II. COMPUTATIONAL REINFORCEMENT LEARNING

Rewards—more specifically, reward functions—in RL de-
termine the problem the learning agent is trying to solve. RL
algorithms address the problem of how a behaving agent can
learn to approximate an optimal behavioral strategy, called
a policy, while interacting directly with its environment.
Roughly speaking, an optimal policy is one that maximizes
a measure of the total amount of reward the agent expects to
accumulate over its lifetime, where reward is delivered to the
agent over time via a scalar-valued signal.

In RL, rewards are thought of as the output of a “critic” that
evaluates the RL agent’s behavior. In the usual view of an RL
agent interacting with its environment (left panel of Figure 1),
rewards come from the agent’s environment, where the critic
resides. Some RL systems form value functions using, for
example, Temporal Difference (TD) algorithms [45], to assign
a value to each state that is an estimate of the amount of reward
expected over the future after that state is visited. For some
RL systems that use value functions, such as systems in the
form of an “actor-critic architecture” [4], the phrase “adaptive
critic” has been used to refer to the component that estimates
values for evaluating on-going behavior. It is important not
to confuse the adaptive critic with the critic in Figure 1. The
former resides within the RL agent and is not shown in the
figure.

The following correspondences to animal reward processes
underly the RL framework. Rewards in an RL system cor-
respond to primary rewards, i.e., rewards that for animals
exert their effects through processes hard-wired by evolution
due to their relevance to reproductive success. Value functions
are the basis of secondary (or conditoned or higher-order)
rewards, whereby learned predictions of reward act as reward
themselves. The value function implemented by an adaptive
critic therefore corresponds to a secondary, or learned, reward
function. As we shall see, one should not equate this with
an intrinsic reward function. The local landscape of a value
function gives direction to an RL agent’s preferred behavior:
decisions are made to cause transitions to higher-valued states.
A close parallel can be drawn between the gradient of a value
function and incentive salience [20].

III. THE PLACE OF INTRINSIC MOTIVATION IN
REINFORCEMENT LEARNING

How is intrinsic motivation currently thought to fit into
the standard RL framework?2 Barto et al. [3] used the term
intrinsic reward to refer to rewards that produce analogs of
intrinsic motivation in RL agents, and extrinsic reward to refer
to rewards that define a specific task or rewarding outcome as
in standard RL applications. Most of the current approaches to
creating intrinsically motivated agents are based on defining

2While we acknowledge the limitation of the RL approach in dealing with
many aspects of motivation, this article nevertheless focuses on the sources
and nature of reward functions for RL systems. We believe this focus allows
us to clarify issues facing not only the computational community but other
communities as well that are concerned with motivation in biological systems.

special types of reward functions and then employing stan-
dard RL learning procedures, an approach first suggested by
Schmidhuber [32] as a way to create an artificial analog of
curiosity.
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Fig. 1. Agent-environment interactions in reinforcement learning; adapted
from [3]. Left panel: Primary reward is supplied to the agent from its
environment. Right panel: A refinement in which the environment is factored
into and internal and external environment, with all reward coming form the
former. See text for further discussion

But let us step back and reconsider how intrinsic motivation
and RL might be related. As Sutton and Barto [47] point
out (also see [3], [40]), the standard view of the RL agent,
and its associated terminology—as represented in the left
panel of Figure 1—is seriously misleading if one wishes
to relate this framework to animal reward systems and to
the psychologist’s notions of reward and motivation. First,
psychologists distinguish between rewards and reward signals.
For example, Schultz [38], [39] writes that “Rewards are
objects or events that make us come back for more” whereas
reward signals are produced by reward neurons in the brain.
What in RL are called rewards would better be called reward
signals. Rewards in RL are abstract signals whose source and
meaning are irrelevant to RL theory and algorithms; they are
not objects or events, though they can sometimes be the result
of perceiving objects or events.

Second, the environment of an RL agent should not be
identified with the external environment of an animal. A less
misleading view requires dividing the environment into an
external environment and an internal environment. In terms
of animals, the internal environment consists of the systems
that are internal to the animal while still being parts of
the RL agent’s environment. The right panel of Figure 1
refines the usual RL picture by showing the environment’s
two components and adjusting terminology by using the labels
“RL Agent” and “Reward Signals.” Further, we label the RL
Agent’s output “Decisions” instead of “Actions,” reflecting
the fact that actions that effect the external environment are
generated by an animal’s internal environment, for example,
by its muscles, while the RL Agent makes decisions, such as
the decision to move in a certain way. In this article, however,
we retain the usual RL terms agent, reward, and action, but
it is important not to interpret them incorrectly. Similarly,
an “environment” in what follows should be understood to
consist of internal and external components. Note that these
refinements do not materially change the RL framework; they
merely make it less abstract and less likely to encourage
misunderstanding.

This refined view better reflects the fact that the sources of
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all of an animal’s reward signals are internal to the animal.
Therefore, the distinction between the internal and external
environments is not useful for distinguishing between rewards
that underlie intrinsically and extrinsically motivated behavior,
a point also emphasized by Oudeyer and Kaplan [25]. It is
clear that rewards underlying both intrinsically and extrinsi-
cally motivated behavior depend in essential ways on informa-
tion originating in both the internal and external environments.
For example, the motivational valence of the manipulation
experiences of Harlow’s monkeys was clearly derived, at least
in part, from properties of the monkeys’ external environments,
and the motivational influence of extrinsic food reward de-
pends on an animal’s internal state of satiety.

If the distinction between internal and external environ-
ments is not useful for distinguishing intrinsic and extrinsic
motivation, we are still left with the question: What does it
mean in the computational RL framework to do something
“for its own sake” or because “it is inherently interesting or
enjoyable” [28]? One possibility, which has a long history
in psychology, is that extrinsic and intrinsic motivation map
onto primary and secondary reward signals, respectively. We
consider this view next, before introducing our alternative
evolutionary perspective.

IV. DO EXTRINSIC AND INTRINSIC MOTIVATION MAP
ONTO PRIMARY AND SECONDARY REWARD?

Among the most influential theories of motivation in psy-
chology is the drive theory of Hull [13]–[15]. According to
Hull’s theory, all behavior is motivated either by an organism’s
survival and reproductive needs giving rise to primary drives
(such as hunger, thirst, sex, and the avoidance of pain) or
by derivative drives that have acquired their motivational
significance through learning. Primary drives are the result
of physiological deficits—“tissue needs”—, and they energize
behavior whose result is to reduce the deficit. A key additional
feature of Hull’s theory is that a need reduction, and hence
a drive reduction, acts as a primary reinforcer for learning:
behavior that reduces a primary drive is reinforced. Addi-
tionally, through the process of secondary reinforcement in
which a neutral stimulus is paired with a primary reinforcer,
the formerly neutral stimulus becomes a secondary reinforcer,
i.e., acquires the reinforcing power of the primary reinforcer.
In this way, stimuli that predict primary reward, i.e., predict
a reduction in a primary drive, become rewarding themselves.
According to this influential theory (in its several variants), all
behavior is energized and directed by its relevance to primal
drives, either directly or as the result of learning through
secondary reinforcement.

Hull’s theory followed the principles of physiological home-
ostasis that maintains bodily conditions in approximate equi-
librium despite external perturbations. Homeostasis is achieved
by processes that trigger compensatory reactions when the
value of a critical physiological variable departs from the range
required to keep the animal alive [6]. Many other theories of
motivation also incorporate the idea that behavior is motivated
to counteract disturbances to an equilibrium condition. These
theories have been influential in the design of motivational

systems for artificial agents, as discussed in Savage’s review
of artificial motivational systems [30]. Hull’s idea that reward
is generated by drive reduction is commonly used to connect
RL to a motivational system. Often this mechanism consists of
monitoring a collection of important variables, such as power
or fuel level, temperature, etc., and triggering appropriate
behavior when certain thresholds are reached. Drive reduction
is directly translated into a reward signal delivered to an RL
algorithm.

Among other motivational theories are those based on the
everyday experience that we engage in activities because we
enjoy doing them: we seek pleasurable experiences and avoid
unpleasant ones. This is the ancient principle of hedonism.
These theories of motivation hold that it is necessary to
refer to affective mental states to explain behavior, such as a
“feeling” of pleasantness or unpleasantness. Hedonic theories
are supported by many observations about food preferences
which suggest that “palatability” might offer a more parsi-
monious account of food preferences than tissue needs [55].
Animals will enthusiastically eat food that has no apparent
positive influence on tissue needs; characteristics of food such
as temperature and texture influence how much is eaten;
animals that are not hungry still have preferences for different
foods; animals have taste preferences from early infancy [7].
In addition, non-deprived animals will work enthusiastically
for electrical brain stimulation [24]. Although it is clear that
biologically-primal needs have motivational significance, facts
such as these showed that factors other than primary biological
needs exert strong motivational effects, and that these factors
do not derive their motivational potency as a result of learning
processes involving secondary reinforcement.

In addition to observations about animal food preferences
and responses to electrical brain stimulation, other observa-
tions showed that something important was missing from
drive-reduction theories of motivation. Under certain condi-
tions, for example, hungry rats would rather explore unfamiliar
spaces than eat; they will endure the pain of crossing electrified
grids to explore novel spaces; monkeys will bar-press for a
chance to look out of a window. Moreover, the opportunity
to explore can be used to reinforce other behavior. Deci and
Ryan [9] chronicle these and a collection of similar findings
under the heading of intrinsic motivation.

Why did most psychologists reject the view that exploration,
manipulation, and other curiosity-related behaviors derived
their motivational potency only through secondary reinforce-
ment, as would be required by a theory like Hull’s? There
are clear experimental results showing that such behavior is
motivationally energizing and rewarding on its own and not
because it predicts the satisfaction of a primary biological
need. Children spontaneously explore very soon after birth, so
there is little opportunity for them to experience the extensive
pairing of this behavior with the reduction of a biologically
primary drive that would be required to account for their
zeal for exploratory behavior. In addition, experimental results
show that the opportunity to explore retains its energizing
effect without needing to be re-paired with a primary rein-
forcer, whereas a secondary reinforcer will extinguish, that is,
will lose its reinforcing quality, unless often re-paired with
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the primary reinforcer it predicts. Berlyne summarized the
situation as follows:

As knowledge accumulated about the conditions that
govern exploratory behavior and about how quickly
it appears after birth, it seemed less and less likely
that this behavior could be a derivative of hunger,
thirst, sexual appetite, pain, fear of pain, and the
like, or that stimuli sought through exploration are
welcomed because they have previously accompa-
nied satisfaction of these drives. (p. 26, Berlyne [5])

Note that the issue was not whether exploration, manipula-
tion, and other curiosity-related behaviors are important for an
animal’s survival and reproductive success. Clearly they are if
deployed in the right way. Appropriately cautious exploration,
for example, clearly has survival value because it can enable
efficient foraging and successful escape when those needs
arise. The issue was whether an animal is motivated to perform
these behaviors because previously in its own lifetime behaving
this way predicted decreases in biologically-primary drives, or
whether this motivation is built-in by the evolutionary process.
The preponderance of evidence supports the view that the
motivational forces driving these behaviors are built-in by the
evolutionary process.

V. EVOLUTIONARY PERSPECTIVE

It is therefore natural to investigate what an evolutionary
perspective might tell us about the nature of intrinsic reward
signals and how they might differ from extrinsic reward
signals. We adopt the view discussed above that intrinsic
reward is not the same as secondary reward. It is likely that
the evolutionary process gave exploration, play, discovery, etc.,
positive hedonic valence because these behaviors contributed
to reproductive success throughout evolution. Consequently,
we regard intrinsic rewards in the RL framework as primary
rewards, hard-wired from the start of the agent’s life. Like
any other primary reward in RL, they come to be predicted
by the value-function learning system. These predictions can
support secondary reinforcement so that predictors of intrinsi-
cally rewarding events can acquire rewarding qualities through
learning just as predictors of extrinsically rewarding events
can.

The evolutionary perspective thus leads to an approach in
which adaptive agents, and therefore their reward functions,
are evaluated according to their expected fitness given an
explicit fitness function and some distribution of environments
of interest. The fitness function maps trajectories of agent-
environment interactions to scalar fitness values, and may
take any form (including functions that are similar in form
to discounted sums of extrinsic rewards). In our approach,
we search a space of primary reward functions for the one
that maximizes the expected fitness of an RL agent that learns
using that reward function. Features of such an optimal reward

function3 and how these features relate to the environments
in which agent lifetimes are evaluated provide insight into
the relationship between extrinsic and intrinsic rewards (as
discussed in Section VI and thereafter).

We turn next to a formal framework that captures the req-
uisite abstract properties of agents, environments, and fitness
functions and defines the evolutionary search for good reward
functions as an optimization problem.

A. Optimal Reward Functions

As shown in the right panel of Figure 1, an agent A in
some (external) environment E receives an observation and
takes an action at each time step. The agent has an internal
environment that computes a state, a summary of history,
at every time step (e.g., in Markovian environments the last
observation is a perfect summary of history and thus state can
be just the last observation). The agent’s action is contingent
on the state. The reward function can in general depend on the
entire history of states or equivalently on the entire history of
observations and actions. Agent A’s goal or objective is to
attempt to maximize the cumulative reward it receives over
its lifetime. In general, defining agent A includes making
very specific commitments to particular learning architectures,
representations, and algorithms as well as all parameters. Our
evolutionary framework abstracts away from these details to
define a notion of optimal reward function as follows.

For every agent A, there is a space of reward functions RA
that maps features of the history of observation-action pairs to
scalar primary reward values (the specific choice of features is
determined in defining A). There is a distribution P over se-
quential decision making environments in some set E in which
we want our agent to perform well. A specific reward function
rA ∈ RA and a sampled environment E ∼ P (E) produces h,
the history of agent A adapting to environment E over its
lifetime using the reward function rA, i.e., h ∼ 〈A(rA), E〉,
where 〈A(rA), E〉 makes explicit that agent A is using reward
function rA to interact with environment E and h ∼ 〈·〉
makes explicit that history h is sampled from the distribution
produced by the interaction 〈·〉. A given fitness function F
produces a scalar evaluation F(h) for each such history h.
An optimal reward function r∗A ∈ RA is the reward function
that maximizes the expected fitness over the distribution of
environments, i.e.,

r∗A = arg max
rA∈RA

EE∼P (E)Eh∼〈A(rA),E〉{F(h)}, (1)

where E denotes the expectation operator. A special reward
function in RA is the fitness-based reward function, denoted
rF , that most directly translates fitness F into an RL reward
function, i.e., the fitness value of a lifetime-length history is the
cumulative fitness-based reward for that history. For example,
if the fitness value of a history was the number of children

3We use this term despite the fact that none of our arguments depend on
our search procedure finding true globally-optimal reward functions. We are
concerned with reward functions that confer advantages over others and not
with absolute optimality. Similarly, the fact that optimization is at the core of
the RL framework does not imply that what an RL system learns is optimal.
What matters is the process of improving, not the final result.
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produced, then a corresponding fitness-based reward function
could assign unit reward to the state resulting from the birth
of a child and zero otherwise (additional concrete examples
are in our experimental results reported below).

Our formulation of optimal rewards is very general because
the constraints on A, RA, F , and E are minimal. Agent A is
constrained only to be an agent that uses a reward function
rA ∈ RA to drive its search for good behavior policies. The
space RA is constrained to be representable by the internal
architecture of agent A as well as to contain the fitness-based
reward rF . Fitness F is constrained only to be a function that
maps (lifetime-length) histories of agent-environment interac-
tions to scalar fitness values. The space E is constrained only
to be a (finite or infinite) set of discrete-time decision making
environments (Markovian or non-Markovian4, and indeed our
empirical results will use both). Finally, the evolutionary or
fitness pressure that defines optimal rewards is represented by
an optimization or search problem (Equation 1) unconstrained
by a commitment to any specific evolutionary process.5

Note an immediate consequence of Equation 1: in terms
of the expected fitness achieved, the agent with the optimal
reward function will by definition outperform (in general,
and never do worse than) the same agent with the fitness-
based reward function. Crucially, it is this possibility of
outperforming the fitness-based reward in the amount of
fitness achieved that produces the evolutionary pressure to
reward not just actions that directly enhance fitness— what
might be termed extrinsically motivated behavior—but actions
that intermediate evolutionary success—what might be termed
intrinsically motivated behaviors.

B. Regularities Within and Across Environments

The above formulation of Equation 1 defines a search
problem—the search for r∗A. This search is for a primary
reward function and is to be contrasted with the search
problem faced by an agent during its lifetime, that of learning
a good value function (and hence a good policy) specific
to its environment leading to history h ∼ 〈A(rA), E〉 (cf.
Equation 1). These two (nested) searches are at the heart of our
evolutionary perspective on reward in this article. Specifically,
our concrete hypotheses are (1) the optimal reward r∗A derived
from search will capture regularities across environments in
E as well as complex interactions between E and specific
structural properties of the agent A (note that the agent A
is part of its environment and is constant across all environ-
ments in E), and (2) the value functions learned by an agent
during its lifetime will capture regularities present within its
specific environment that are not necessarily shared across
environments. It is the first hypothesis, that of the primary
reward capturing regularities across environments and between

4Specifically, we allow both for Markov decision processes, or MDPs, as
well as for partially observable MDPs, or POMDPs. See Sutton and Barto [47]
and Kaelbling et.al. [16] for a discussion of the different mathematical
formalisms of RL problems.

5However, in many cases the space of reward functions will have structure
that can be exploited to gain computational efficiency, and many classes of
optimization algorithms might prove useful in a practical methodology for
creating reward functions for artificial agents.

environments and agents, that should lead to the emergence of
both extrinsic and intrinsic rewards, the former from objects
or other sources of primal needs present across environments
and the latter from behaviors such as play and exploration that
serve the agents well across environments in terms of expected
fitness.

Next we describe experiments designed to test our hypothe-
ses as well as to illustrate the emergence of both extrinsic and
intrinsic rewards in agents through search for optimal reward
functions.

VI. COMPUTATIONAL EXPERIMENTS

We now describe two sets of computational experiments in
which we directly specify the agent A with associated space
of reward functions RA, a fitness function F , and a set of
environments E , and derive r̂∗A via (approximately) exhaus-
tive search. These experiments are designed to serve three
purposes. First, they will provide concrete and transparent
illustrations of the basic optimal reward framework above.
Second, they will demonstrate the emergence of interesting
reward function properties that are not direct reflections of the
fitness function—including features that might be intuitively
recognizable as candidates for plausible intrinsic and extrin-
sic rewards in natural agents. Third, they will demonstrate
the emergence of interesting reward functions that capture
regularities across environments, and similarly demonstrate
that value function learning by the agent captures regularities
within single environments.

A. Experiment 1: Emergent Intrinsic Reward for Play and
Manipulation

This first experiment was designed to illustrate how our
optimal reward framework can lead to the emergence of
an intrinsic reward for actions such as playing with and
manipulating objects in the external environment, actions that
do not directly meet any primal needs (i.e., are not fitness
inducing) and thus are not extrinsically motivating.Greedy Policy at Step 1000000

when Not Hungry, Box1 open, Box2 open
Fig. 2. Boxes environments used in Experiment 1. Each boxes environment
is a 6× 6 grid with two boxes that can contain food. The two boxes can be
in any two of the four corners of the grid; the locations are chosen randomly
for each environment. The agent has four (stochastic) movement actions in
the four cardinal directions, as well actions to open closed boxes and eat food
from the boxes when available. See text for further details.

(Boxes) Environments. We use a simulated physical space
shown by the 6 × 6 grid in Figure 2. It consists of four
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subspaces (of size 3 × 3). There are four movement actions,
North, South, East and West, that if successful move the
agent probabilistically in the direction implied, and if they fail
leave the agent in place. Actions fail if they would move the
agent into an outer bound of the grid or across a barrier, which
are represented by the thick black lines in the figure. Conse-
quently, the agent has to navigate through gaps in the barriers
to move to adjacent subspaces. In each sampled environment
two boxes are placed in randomly chosen special locations
(from among the four corners and held fixed throughout the
lifetime of the agent). This makes a uniform distribution over
a space of six environments (the six possible locations of two
indistinguishable boxes in the four corners). In addition to the
usual movement actions, the agent has two special actions:
open, which opens a box if it is closed and the agent is at
the location of the box and has no effect otherwise (when a
closed box is opened it transitions first to a half-open state
for one time step and then automatically to an open state at
the next time step regardless of the action by the agent), and
eat, which has no effect unless the agent is at a box location,
the box at that location is half-open, and there happens to be
food (prey) in that box, in which case the agent consumes that
food.

An open box closes with probability 0.1 at every time step.6

A closed box always contains food. The prey always escapes
when the box is open. Thus to consume food, the agent has
to find a closed box, open it, and eat immediately in the next
time step when the box is half-open. When the agent consumes
food it feels satiated for one time step. The agent is hungry at
all other time steps. The agent-environment interaction is not
divided into trials or episodes. The agent’s observation is 6
dimensional: the x and y coordinates of the agent’s location,
the agent’s hunger-status, the open/half-open/closed status of
both boxes, as well the presence/absence of food in the square
where the agent is located. These environments are Markovian
because the agent senses the status of both boxes regardless of
location and because closed boxes always contain food; hence
each immediate observation is a state.

Fitness. Each time the agent eats food its fitness is incre-
mented by one. This is a surrogate for what in biology would
be reproductive success (we could just as well have replaced
the consumption of food event with a procreation event in our
abstract problem description). The fitness objective, then, is to
maximize the amount of food eaten over the agent’s lifetime.
Recall that when the agent eats it becomes satiated for one
time step, and thus a direct translation of fitness into reward
would assign a reward of c > 0 to all states in which the agent
is satiated and a reward of d < c to all other states. Thus, there
is a space of fitness-based reward functions. We will refer to
fitness-based reward functions in which d is constrained to be
exactly 0 as simple fitness-based reward functions. Note that
our definition of fitness is incremental or cumulative and thus
we can talk about the cumulative fitness of even a partial (less
than lifetime) history.

6A memoryless distribution for box-closing was chosen to keep the en-
vironment Markovian for the agent; otherwise, there would be information
about the probability of a box closing from the history of observations based
on the amount of time the box had been open.

Agent. Our agent (A) uses the lookup-table ε-greedy Q-
learning [52] algorithm with the following choices for its
parameters: 1) Q0, the initial Q-function (we use small values
chosen uniformly randomly for each state-action pair from
the range [−0.001, 0.001]) that maps state-action pairs to their
expected discounted sum of future rewards, 2) α, the step-size,
or learning-rate parameter, and 3) ε, the exploration parameter
(at each time step the agent executes a random action with
probability ε and the greedy action with respect to the current
Q-function with probability (1− ε)).

For each time step t, the current state is denoted st, the
current Q-function is denoted Qt, the agent executes an action
at, and the Q-learning update is as follows:
Qt+1(st, at) = (1−α)Qt(st, at)+α[rt+γmaxb(Qt(st+1, b)],
where rt is the reward specified by reward function rA for
the state st, and γ is a discount factor that makes immediate
reward more valuable than later reward (we use γ = 0.99
throughout).

We emphasize that the discount factor is an agent parameter
that does not enter into the fitness calculation. That is, the
fitness measure of a history remains the total amount of food
eaten in that history for any value of γ the agent uses in
its learning algorithm. It is well known that the form of
Q-learning used above will converge asymptotically to the
optimal Q-function7 and hence the optimal policy [53]. Thus,
our agent uses its experience to continually adapt its action
selection policy to improve the discounted sum of rewards, as
specified by rA, that it will obtain over its future (remaining
in its lifetime). Note that the reward function is distinct from
the fitness function F .

Space of Possible Rewards Functions. To make the search
for an optimal reward function tractable, each reward function
in the search space maps abstract features of each immediate
observation to a scalar value. Specifically, we considered
reward functions that ignore agent location and map each
possible combination of the status of the two boxes and the
agent’s hunger-status to values chosen in the range [−1.0, 1.0].
This range does not unduly restrict generality because one
can always add a constant to any reward function without
changing optimal behavior. Including the box-status features
allows the reward function to potentially encourage “playing
with” boxes while the hunger-status feature is required to
express the fitness-based reward functions that differentiate
only between states in which the agent is satiated from all
other states (disregarding box-status and agent location).

Finding a Good Reward Function. The psuedo-
code below describes how we use simulation to estimate
the mean cumulative fitness for a reward function rA
given a particular setting of agent (Q-learning) parameters
(α, ε).

set (α, ε)
for i = 1 to N do

Sample an environment Ei from E
In A, intialize Q-function

7Strictly speaking, convergence with probability one requires the step-size
parameter α to decrease appropriately over time, but for our purposes it
suffices to keep it fixed at a small value.
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Generate a history hi over lifetime for A and Ei

Compute fitness F (hi)
end for
return average of {F (h1), . . . , F (hN )}
In the experiments we report below, we estimate the mean

cumulative fitness of rA as the maximum estimate obtained
(using the pseudo-code above) over a coarse discretization
of the space of feasible (α, ε) pairs. Finding good reward
functions for a given fitness function thus amounts to a large
search problem. We discretized the range [−1.0, 1.0] for each
feasible setting of the three reward features such that we
evaluated 54, 000 reward functions in the reward function
space. We chose the discretized values based on experimental
experience with the boxes environments with various reward
functions.

Note that our focus is on demonstrating the generality of
our framework and the nature of the reward functions found
rather than on developing efficient algorithms for finding good
reward functions. Thus, we attempt to find a good reward
function r̂∗A instead of attempting the usually intractable task
of finding the optimal reward function r∗A, and we are not
concerned with the efficiency of the search process.

Results. Recall the importance of regularities within and
across environments to our hypotheses. In this experiment,
what is unchanged across environments is the presence of
two boxes and the rules governing food. What changes across
environments—but held fixed within a single environment—
are the locations of the boxes.

We ran this experiment under two conditions. In the first,
called the constant condition, the food always appears in
closed boxes throughout each agent’s lifetime of 10, 000 steps.
In the second, called the step condition, each agent’s lifetime
is 20, 000 steps, and food appears only in the second half
of the agent’s lifetime, i.e., there is never food in any of the
boxes for the first half of the agent’s lifetime, after which food
always appears in a closed box. Thus in the step condition,
it is impossible to increase fitness above zero until after the
10, 000th time step.

The step condition simulates (in extreme form) a develop-
mental process in which the agent is allowed to “play” in
its environment for a period of time in the absence of any
fitness-inducing events (in this case, the fitness-inducing events
are positive, but in general there could also be negative ones
that risk physical harm). Thus, a reward function that confers
advantage through exposure to this first phase must reward
events that have only a distal relationship to fitness. Through
the agent’s learning processes, these rewards give rise to the
agent’s intrinsic motivation. Notice that this should happen in
both the step and constant conditions; we simply expect it to
be more striking in the step condition.

The left and middle panels of Figure 3 show the mean (over
200 sampled environments) cumulative fitness as a function of
time within an agent’s lifetime under the two conditions. As
expected, in the step condition, fitness remains zero under any
reward function for the first 10, 000 steps. Also as expected,
the best reward function outperforms the best fitness-based
reward function over the agent’s lifetime. The best fitness-
based reward function is the best reward function in the reward

function space that satisfies the definition of a fitness-based
reward function for this class of environments. We note that
the best fitness-based reward function assigns a negative value
to states in which the agent is hungry (this makes the agent’s
initial Q-values optimistic and leads to efficient exploration;
see Sutton and Barto [47] for an explanation of this effect).
The best reward function outperforms the best simple fitness-
based reward by a large margin (presumably because the latter
cannot make the initial Q-values optimistic).

Table I shows the best reward functions and best fitness-
based reward functions for the two conditions of the experi-
ment (e.g., the best reward function for the Step condition is
as follows: being satiated has a positive reward of 0.5 when
both boxes are open and 0.3 when one box is open, being
hungry with one box half-open has a small negative reward
of −0.01, and otherwise being hungry has a reward of −0.05.
Note that the agent will spend most of its time in this last
situation.) Of course, as expected and like the best fitness-
based reward function, the best reward function has a high
positive reward for states in which the agent is satiated. More
interestingly, the best reward function in our reward function
space rewards opening boxes (by making their half-open state
rewarding relative to other states when the agent is hungry).
This makes the agent “play” with the boxes and as a result
learn the environment-specific policy to optimally navigate to
the location of the boxes and then open them during the first
half of the step condition so that when food appears in the
second half, the agent is immediately ready to exploit that
situation.

The policy learned under the best reward function has an
interesting subtle aspect: it makes the agent run back and forth
between the two boxes, eating from both boxes, because this
leads to higher fitness (in most environments)8 than staying
at, and taking food from, only one box. This can be seen
indirectly in the rightmost panel where the mean cumulative
number of times both boxes are open is plotted as a function
of time. It is clear that an agent learning with the overall
best reward function keeps both boxes open far more often
than one learning from the best fitness-based reward function.
Indeed the behavior in the latter case is mainly to loiter near
(an arbitrary) one of the boxes and repeatedly wait for it to
close and then eat.

Finally, it is also noteworthy that there are other reward
functions that keep both boxes open even more often than the
best reward function (this is seen in the rightmost panel), but
this occurs at the expense of the agent not taking the time to
actually eat the food after opening a box. This suggests that
there is a fine balance in the best reward function between
intrinsically motivating “playing” with and manipulating the
boxes and extrinsically motivating eating.

Summary. This experiment demonstrates that the evolution-
ary pressure to optimize fitness captured in the optimal reward

8The agent could hang out at one box and repeatedly wait for it to close
randomly and then open it to eat, but the probability of an open box closing
was specifically (experimentally) chosen so that it is better for the agent in
the distribution over environments to repeatedly move between boxes to eat
from both. Specifically, an open box closes with probability 0.1 and thus on
average in 10 time steps, while the average number of time steps to optimally
travel between boxes across the 6 environments is less than 10 time steps.
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Fig. 3. Results from Boxes environments. The leftmost panel shows for the constant condition the mean cumulative (over agent lifetime) fitness achieved by
all the reward functions sampled in our search for good reward functions. The middle panel shows the same results but for the step condition. The rightmost
panel shows for the step condition the mean cumulative growth in the number of time steps both boxes were open for all the reward functions explored.
In each panel, the curves for the best reward function, for the best fitness-based reward function, and for the best simple fitness-based reward functions are
distingusihed. See text for further details.

TABLE I
RESULTS FOR THE step AND constant CONDITIONS OF EXPERIMENT 1. EACH ROW OF PARAMETER VALUES DEFINES A REWARD FUNCTION BY

SPECIFYING REWARD VALUES FOR EACH OF SEVEN FEASIBLE COMBINATIONS OF STATE FEATURES. THE COLUMN HEADINGS O, NOT-O, AND HALF-O,
ARE SHORT FOR OPEN, NOT-OPEN AND HALF-OPEN RESPECTIVELY. SEE TEXT FOR FURTHER DETAILS.

CONDITION REWARD TYPE REWARD AS A FUNCTION OF STATE

Satiated Hungry

o/o o/not-o o/o o/not-o o/half-o not-o/half-o not-o/not-o

Constant Best 0.7 0.3 −0.01 −0.05 0.2 0.1 −0.02
Best fitness-based 0.7 0.7 −0.005 −0.005 −0.005 −0.005 −0.005

Step Best 0.5 0.3 −0.05 −0.05 −0.01 −0.01 −0.05
Best fitness-based 0.5 0.5 −0.01 −0.01 −0.01 −0.01 −0.01

framework can lead to the emergence of reward functions that
assign positive primary reward to activities that are not directly
associated with fitness. This was especially evident in the step
condition of the Boxes experiment: during the first half of the
agent’s lifetime, no fitness-producing activities are possible,
but intrinsically rewarding activities (running between boxes
to keep both boxes open) are pursued that have fitness payoff
later. The best (primary) reward captures the regularity of
needing to open boxes to eat across all environments, while
leaving the learning of the environment-specific navigation
policy for the agent to accomplish within its lifetime by
learning the (secondary reward) Q-value function.

B. Experiment 2: Emergent Intrinsic Reward Based on Inter-
nal Environment State

This second experiment was designed with two aims in
mind. The first is to emphasize the generality of our optimal
reward framework by using a model-based learning agent in
non-Markovian environments instead of the model-free Q-
learning agent in the Markovian environments of Experiment
1. The second is to demonstrate the emergence of optimal
reward functions that are contingent on features of the internal
environment (cf. Figure 1) of the agent rather than features of
the external environment (as, for example, boxes and their
status in Experiment 1).

(Foraging) Environments. We use the foraging environ-
ment illustrated in Figure 4. It consists of a 3 × 3 grid with
three dead-end corridors (as rows) separated by impassable
walls. The agent, represented by the bird, has four movement
actions available in every location which deterministically
move the agent in each of the cardinal directions. If the
intended direction is blocked by a wall or the boundary,
the action results in no movement. There is a food source,
represented by the worm, randomly located in one of the
three right-most locations at the end of each corridor. The
agent has an eat action, which consumes the worm when the
agent is at the worm’s location. The agent is hungry except
when it consumes a worm, which causes the agent to become
satiated for one time step. Immediately, the consumed worm
disappears and a new worm appears randomly in one of the
other two potential worm locations. This creates a distribution
over foraging environments based on random sequences of
worm appearances.

The agent observations are four-dimensional: the agent’s
x and y coordinates and whether it is hungry (binary), and
whether or not it is co-located with the worm (binary). The
agent cannot see the worm unless it is co-located with it. In the
environments of Experiment 1 the agent could also not see the
food unless it was co-located with it, but the food locations
were fixed throughout an agent’s lifetime. Crucially, in the
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foraging environments here, the location of every new worm
within an agent’s lifetime is chosen randomly. Thus, unlike
the environments of Experiment 1, the foraging environments
here are non-Markovian because the agent’s past observations
predict where the worm cannot be (specifically, the worm
cannot be at any end-of-corridor location that the agent has
visited since the last time it ate the worm), and this information
is not available from just the current observation.

Fig. 4. Foraging environments used in Experiment 2. Each foraging
environment is a 3×3 grid arranged in (row) corridors. The food represented
by a worm appears at the rightmost end of a corridor. The agent represented by
a bird has the usual movement actions in the four cardinal directions as well
as an eat action when co-located with the worm. Crucially, once the agent eats
a worm, a new worm appears at a random corridor-end location and the agent
cannot see the worm unless co-located with it. These foraging environments
are non-Markovian unlike the boxes environments of Experiment 1. See text
for further details.

Fitness. Each time the agent eats a worm, its fitness is
incremented by one. The fitness objective is to maximize the
number of worms eaten over an agent lifetime of 10, 000 time
steps. When the agent eats, it becomes satiated for one time
step, and thus a direct translation of fitness into reward would
assign a positive reward to all states in which the agent is
satiated and a strictly lower reward to all other states. In
Experiment 1, because of the interaction of the choice of
reward values with the initial Q-value function, we needed
to consider a space of possible fitness-based rewards. In this
experiment the agent does complete estimated-model-based
planning via dynamic programming at each time step and it
is easily seen that all fitness-based rewards yield exactly the
same policy, and thus we define rF to map all satiated states
to 1.0 and all other states to 0.0.

Agent. We used a standard model-based learning agent for
this experiment. Specifically, the agent updates an estimated
model of its environment after each time step and always acts
greedily according to a (certainty equivalent) policy optimal
with respect to its latest estimated model. The transition-
dynamics of the environment are estimated assuming that the
agent’s observations (x and y coordinates, hunger-status, co-
located-with-worm-status) are Markovian, i.e., assuming that
these observations comprise a state.

Specifically, let ns,a be the number of times that action a
was taken in state s. Let ns,a,s′ be the number of times a
transition to state s′ occurred after action a was taken in state
s. The agent models the probability of a transition to s′ after

taking a in state s as T̂ (s′|s, a) = ns,a,s′

ns,a
.9 The optimal policy

with respect to the current model is computed at every time
step via repeated Q-value iteration: for all (s, a),

Qd(s, a) = rA(s, a) + γ
∑
s′∈S

T̂ (s′|s, a) max
a′

Qd−1(s′, a′),

where Q0(s, a)
def= 0, γ = 0.99 is the discount factor,10 and

iteration is performed until the maximal (across state-action
pairs) absolute change in Q-values is less than a very small
threshold. If, after convergence, the Q-values of multiple
actions in a current state are equal, the agent selects randomly
among those equal-valued actions.

Space of Reward Functions. We selected a reward function
space consisting of linear combinations of the features of
the state of the internal environment, i.e., of the history, h,
of the observations and actions. This is another departure
from Experiment 1, where we used a tabular representation of
reward functions with features based solely on the immediate
observations from the external environment.

Our choice of reward-features for this domain is driven by
the following intuition. With a fitness-based reward function
that only distinguishes satiated states from hungry states, even
the policy found via infinite Q-value iteration on the estimated
model cannot, from most locations, take the agent to the
worm (and make it eat). This is because the agent cannot
see the worm’s location when it is not co-located with it.
Indeed there is little guidance from a fitness-based reward
unless the agent is co-located with the worm. Reward functions
that encourage systematic exploration of the grid locations
could be far more effective in expected fitness than the fitness-
based reward function. In fact, unlike most applications of RL
wherein exploration serves a transient purpose to be eliminated
as soon as possible, here it is essential that the agent explore
persistently throughout its lifetime.

What kind of reward function could generate systematic
and persistent exploration? We consider the reward function
space rA(s, a) = βFφF (s) + βcφc(s, a, h), where βF and
βc are parameters of a linear reward function, feature φF (s)
is 1 when the agent is satiated in state s and 0 otherwise,
and feature φc(s, a, h) = 1 − 1

c(s,a,h) , where c(s, a, h) is
the number of time steps since the agent previously executed
action a in state s within current history h11 (see Sutton [46]
for an earlier use of a similar feature with the similar goal of
encouraging exploration). Feature φc(s, a, h) captures inverse-
recency: the feature’s value is high when the agent has not
experienced the indicated state-action pair recently in history
h, and is low when the agent has experienced it recently. Note
that it is a feature of the history of the agent’s interaction
with the external environment and not a feature of the state
of the external environment. It can be thought of as a feature

9Before an observation-action pair is experienced (i.e., when ns,a = 0)
the transition model is initialized to the identity function: T̂ (s′|s, a) = 1 iff
s′ = s.

10A discount factor is used to ensure convergence of Q-value iteration used
for planning. As for Experiment 1, we emphasize that the discount factor is
an agent parameter and does not effect the calculation of fitness for a history.

11We encoded the feature in this way to normalize its value in the range
(0, 1].
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maintained by the internal environment of the agent. When
the parameter βc is positive, the agent is rewarded for taking
actions that it has not taken recently from the current state.
Such a reward is not a stationary function of the external
environment’s state. Finally, feature φF (s) is a hunger-status
feature, and thus when βF = 1 and βc = 0, the reward
function is the fitness-based reward function.

Finding a Good Reward Function. Our optimization
procedure adaptively samples reward vectors on the unit
sphere, as it can be shown that for the (linear) form of the
reward functions and for the agent presented here, searching
this subset is equivalent to searching the entire space. More
specifically, multiplying the linear reward function parameters
by a positive scalar preserves the relative magnitude and signs
of the rewards and thus we only need to search over the
possible directions of the parameter vector (βF and βc as a
2d vector) and not its magnitude. Our optimization procedure
samples reward vectors on the unit sphere using an adaptive
approach that samples more finely where needed; we test the
origin βc = βF = 0 separately (for the agents presented here,
this reward function results in random behavior).

TABLE II
RESULTS FROM THE FORAGING ENVIRONMENTS. THE FIRST COLUMN
PRESENTS THE DIFFERENT REWARD FUNCTION TYPES OF INTEREST IN

THIS EXPERIMENT. THE SECOND COLUMN SPECIFIES THE SETTING OF THE
TWO LINEAR REWARD FUNCTION PARAMETERS FOR EACH TYPE OF

REWARD FUNCTION. THE THIRD COLUMN PRESENTS THE MEAN
CUMULATIVE (OVER LIFETIME) FITNESS AND THE STANDARD DEVIATION

(OVER 200 RANDOMLY SAMPLED ENVIRONMENTS) ACHIEVED BY THE
AGENT WITH EACH REWARD FUNCTION TYPE. SEE TEXT FOR FURTHER

DETAILS.

reward function βF βc mean cumulative
type fitness
Random 0 0 60.51 ± 0.868
Fitness-based 1 0 1.086 ± 0.037
Best 0.147 0.989 408.70 ± 13.685

Results. In this experiment, unchanged across foraging
environments are the motion dynamics and the action needed
to consume food when the agent is co-located with it. Chang-
ing across environments is the sequence of food-appearance
locations.

In Table II, we compare the agent using the fitness-based
reward function rF with the agent using the (approximately)
best reward function r̂∗A. The fitness in the rightmost column
of the table is cumulative over agent lifetimes of 10, 000 time
steps and averaged over 200 randomly sampled environments.
The table also shows the specific values of reward parameters.
Noteworthy is the relatively large coefficient for the inverse-
recency feature relative to the coefficient for the hunger-status
feature in the best reward. Clearly, an intrinsic reward for
executing state-action pairs not experienced recently emerges
in the best reward function.

As can be seen in the table, the best reward function signif-
icantly outperforms the fitness-based reward function; indeed,
with the latter the agent gets stuck and fails to accumulate
fitness in most of the sampled environments. Agents using the
best reward function, on the other hand, manage to achieve
several orders of magnitude improvement in the amount of

fitness obtained despite being coupled with a model that is
wholly inadequate at predicting the food location (the partial
observability causes the Markovian model to “hallucinate”
about food at locations where the agent has experienced food
before). Indeed, the advantage conferred by the best reward
function is the (depth-first search like) systematic and persis-
tent exploration that results from rewarding the experiencing
of state-action pairs not experienced recently. Of course, the
best reward function also has a positive reward value for the
activity of eating (which leads to satiation), for otherwise the
agent would not eat the worm even when co-located with it
(except as an exploration effect).

To provide a reference point for the effect of exploration, we
also implemented an agent that acts purely randomly and thus
explores persistently though not systematically. As can been
seen from the results in the table, the random agent does much
better than the agent with the fitness-based reward (which gets
stuck because the model hallucinates about food and thus the
agent does not explore systematically or persistently). The
agent with the best reward function, however, again outper-
forms the random agent (the former’s model also hallucinates
about food but the high positive coefficient associated with the
inverse-recency feature overcomes this effect).

Summary. As in the results for Experiment 1, the best
reward function positively rewards the activity of eating. What
is most interesting about this experiment is that the agent’s
internal environment—which is of course invariant across the
distribution over external environments—provides an inverse-
recency feature. The best reward function exploits this feature
to intrinsically reward activities that lead to the agent expe-
riencing state-action pairs it has not visited recently, leading
to systematic and persistent exploration. This exploration, in
turn, distally produces much greater fitness than achieved
by an agent using the fitness-based reward. Of course, the
environment-specific movements to explore and find food
are the result of the agent’s planning processes executed
throughout its lifetime.

VII. RELATION TO OTHER RESEARCH

The study most closely related to ours is that of Elfwing et
al. [11] in which a genetic algorithm is used to search for
“shaping rewards” and other learning algorithm parameters
that improve an RL learning system’s performance. Like ours,
this work uses an evolutionary framework to demonstrate
that performance can be improved by a suitable choice of
reward function. However, its focus on shaping rewards re-
veals important differences. The key fact about what Ng et
al. [23] called shaping rewards is that adding them to an
RL agent’s primary reward function does not change what
policies are optimal.12 In other words, shaping rewards do
not alter the learning problem the agent is facing in the
sense that the optimal solution remains the same, but they
do offer the possibility—if suitably selected—of providing
more informative performance feedback which can accelerate
learning. Wiewiora [54] showed that adding shaping rewards

12This use of the term shaping differs from its original meaning due to
Skinner [42].
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is equivalent to initializing the agent’s Q-function to non-zero
values. Since these initial values are eventually “learned away,”
the problem reverts asymptotically to the problem initially set
by the agent’s primary reward function.

Although some shaping rewards might be considered to be
intrinsic rewards, the fact that their influence disappears with
continued learning is at odds with what psychologists call
intrinsic rewards, which are as primary and as long-lived as an
animal’s more biologically-relevant primary rewards. From a
theoretical perspective, since shaping rewards disappear with
continued learning, they tend not to be useful in non-stationary
environments. For example, the Boxes environment of our
Experiment 1 with the step condition is non-stationary. Here, a
shaping reward for manipulating boxes would only be useful if
it lasted long enough to prevent the box-manipulating behavior
from extinguishing before it became useful for incrementing
fitness in the second half of the agent’t life.

A more fundamental limitation of shaping rewards is that
their property of leaving optimal policies unaltered is of
limited use in situations where optimal policies cannot be
attained due to limitations of the agent’s learning algorithm
or of the circumstances under which the agent must operate.
For example, in our Experiment 1, agents’ lives are generally
not long enough to allow convergence to an optimal policy.
If they could learn over a long enough period of time in a
stationary environment, and with a learning algorithm and
state representation that ensured convergence to an optimal
policy, then a simple fitness-based reward function would
allow convergence to a fitness-maximizing policy. Even if this
were possible, though, the fitness of the entire lifetime is the
most important factor, and this usually depends on learning
efficiency more than the asymptotic result. Sutton et al. [48]
make related observations about the limitations of asymptotic
optimality.

The need for a departure from shaping rewards is even more
clear in our Experiment 2 in which the agent cannot sense
the location of food and the planning algorithm uses a learned
model that makes the assumption that the environment is fully
observable. With these limitations, the optimal policy with
respect to the best fitness-based reward function gets stuck
and is unable to systematically find food via planning. Thus,
the best reward function should significantly alter behavior
as achieved in our experiments by encouraging persistent
and systematic exploration; such an alteration—or indeed
any persistent alteration—can not be achieved via shaping
rewards. In general, a major function of intrinsic rewards is
to compensate for agent limitations, such as the short agent
lifetimes in Experiment 1 or the non-Markovian nature of the
environments in Experiment 2 (see [44] for further exploration
of such compensation).

Although they did not directly touch on the issue of intrinsic
versus extrinsic reward, Samuelson and Swinkels [29] put
forward a related view regarding the nature of peoples’ utility
functions. They argue that their analysis shows

. . . that if the agent fully understands the causal and
statistical structure of the world, the utility function
“maximize the expected number of your descen-
dants” does strictly better than one that puts weight

on intermediate actions like eating and having sex.
In the absence of such a perfect prior understanding
of the world, however, there is evolutionary value
in placing utility on intermediate actions. (p. 120,
Samuelson and Swinkels [29])

Also related is research on transfer learning [49], which
focuses on how learning to perform one task is useful in
helping an agent learn to perform a different task. Multi-
task learning, also reviewed in [49], explores transfer across
multiple tasks dawn from a task distribution. Because our
methodology assesses agent fitness over a task distribution,
it has implications for transfer learning, especially multi-task
learning, which remain to be explored. Good reward functions
found by searching reward-function space tap into common as-
pects of these tasks to facilitate learning across the distribution.
We are not aware of approaches to multi-task learning that
rely on such searches. Although the variable-reward approach
of Mehta et al. [21] involves multiple reward functions, it is
quite different in that the tasks in the distribution differ in
their reward functions rather than in other features, and no
reward-function search is involved. However, the distinction
between agent-space and problem-space in Konidaris and
Barto’s [17] approach to transfer learning is closely related to
our observations because agent-space is determined by features
associated with the agent that remain constant across multiple
tasks. Thus, in Experiment 2, for example, we could say that
the inverse-recency feature given significant weight in the best
reward function is a feature of agent-space, suggesting that
the agent-space/problem-space distinction may be a natural
outcome of an evolutionary process.

The present paper used simple learning and planning agents
and thus does not address hierarchical RL [2] and its implica-
tions for transfer learning, but our approach sets the stage for
further examination of the claim made by Barto et al. [3] and
Singh et al. [40] that intrinsic rewards facilitate the acquisition
of skills that can form reusable building blocks for behavioral
hierarchies. Evolutionary approaches to discovering useful
hierarchical structure for RL, such as the work of Elfwing et
al. [10], suggest that progress can be made in this direction.

VIII. DISCUSSION AND CONCLUSIONS

We believe that the new optimal reward framework pre-
sented by Singh et al. [41] and elaborated here clarifies the
computational role and origin of intrinsic and extrinsic moti-
vation. More specifically, the experimental results support two
claims about the implications of the framework for intrinsic
and extrinsic motivation.

First, both intrinsic and extrinsic motivation can be under-
stood as emergent properties of reward functions selected be-
cause they increase the fitness of learning agents across some
distribution of environments. When coupled with learning, a
primary reward function that rewards behavior that is useful
across many environments can produce greater evolutionary
fitness than a function exclusively rewarding behavior directly
related to fitness. For example, in both experiments above,
eating is necessary for evolutionary success in all environ-
ments, so we see primary rewards generated by (satiated)
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states resulting immediately from eating-related behavior. But
optimal primary reward functions can also motivate richer
kinds of behavior less directly related to basic needs, such as
play and manipulation of the boxes in Experiment 1, that can
confer significantly greater evolutionary fitness to an agent.
This is because what is learned as a result of being intrinsically
motivated to play with and manipulate objects contributes,
within the lifetime of an agent, to that agent’s ability to survive
and reproduce.

Second, the difference between intrinsic and extrinsic moti-
vation is one of degree—there are no hard and fast features that
distinguish them. A stimulus or activity comes to elicit reward
to the extent that it helps the agent attain evolutionary success
based on whatever the agent does to translate primary reward
to learned secondary reward, and through that to behavior
during its lifetime. What we call intrinsically rewarding stimuli
or activities are those that bear only a distal relationship to
evolutionary success. Extrinsically rewarding stimuli or events,
on the other hand, are those that have a more immediate and
direct relationship to evolutionary success. In fact, in a strict
sense, all stimuli or activities that elicit primary reward can
be considered intrinsically motivated because they bear only
a distal relationship to evolutionary success. Having sex is
more directly related to evolutionary success (e.g., as measured
by the longevity of one’s genes in the population) than is
childhood play, but both are merely predictors of evolutionary
success, not that success itself. Crucially, however, all across
this continuum the evolved (optimal) reward function has to
be ubiquitously useful across many different environments in
that the behavior learned from the reward function in each
environment has to be good for that environment.

The experiments also clearly demonstrate that learning
(specifically RL) exploits regularities within a single agent’s
lifetime, while the (evolutionary) reward function optimiza-
tion exploits regularities across environments and agents. For
example, in Experiment 1 the location of the boxes did not
change within a single agent’s lifetime (though they varied
across environments) and so the value function learned via
RL captured those within-environment regularities. Even more
potentially significant and interesting is the role of the internal
environment (cf. right panel in Figure 1) that remains relatively
unchanged across individuals (whether within or across gener-
ations). This can lead the optimal primary reward function to
encourage behaviors that involve features from this part of the
agent’s environment. In general, this might include behaviors
that we think of as involving curiosity, novelty, surprise,
and other internally-mediated features usually associated with
intrinsic reward. Specifically, in Experiment 2 this led the
primary reward to encourage the behavior of experiencing
state-action pairs that had not been experienced recently.
This in turn led to systematic and persistent exploration
behavior by the agent which was beneficial across foraging
environments. Although our observations do not support the
view that dependence on internal environment states is a
defining characteristic of intrinsic motivation, they nonetheless
provide an explanation for why the archetypical examples of
intrinsically rewarding behavior often exhibit this dependency.
Prominent among the environmental features that are shared

across populations of evolving agents are features of the
agents’ internal environments.

Our optimal reward framework and experimental results
thus explain why evolution would give exploration, manip-
ulation, play, etc. positive hedonic valence, i.e., make them
rewarding, along with stimuli and activities that are more
directly related to evolutionary success. The distinction be-
tween intrinsic and extrinsic motivation is therefore a matter of
degree, but their source and role is computationally clear: both
intrinsic and extrinsic motivation are emergent properties of a
process that adjusts reward functions in pursuit of improved
evolutionary success.

Finally, our optimal reward framework also has implications
for a basic tenet of RL:

. . . the reward signal is not the place to impart to the
agent prior knowledge about how to achieve what
we want it to do. ... The reward signal is your way
of communicating to the robot what you want it to
achieve, not how you want it achieved. (p. 56, Sutton
and Barto [47])

This remains good cautionary advice for the agent designer
attempting to impart prior knowledge through the reward
function heuristically. The limitations of this approach is illus-
trated by many examples in which the agent learns to achieve
rewarded subgoals without learning to achieve a problem’s
ultimate goal (e.g., [27]). However, our results demonstrate
that reward functions do exist that incorporate prior knowledge
in a way that produces significant gains in performance toward
the ultimate goal of maximizing fitness. That these reward
functions are the result of extensive search supports the essen-
tial role that evolution has in making biological reinforcement
learning a useful component of adaptive natural intelligence.
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