
An Experts Algorithm for Transfer Learning

Erik Talvitie and Satinder Singh
University of Michigan

Computer Science and Engineering
{etalviti, baveja}@umich.edu

Abstract

A long-lived agent continually faces new tasks in
its environment. Such an agent may be able to use
knowledge learned in solving earlier tasks to pro-
duce candidate policies for its current task. There
may, however, be multiple reasonable policies sug-
gested by prior experience, and the agent must
choose between them potentially without anya pri-
ori knowledge about their applicability to its cur-
rent situation. We present an “experts” algorithm
for efficiently choosing amongst candidate policies
in solving an unknown Markov decision process
task. We conclude with the results of experiments
on two domains in which we generate candidate
policies from solutions to related tasks and use our
experts algorithm to choose amongst them.

1 Introduction
An agent in a sufficiently complex environment will likely
face tasks related to those it has already solved. Given a good
policy for a related task, the agent could determine a reason-
able policy for its current task by mapping its current situa-
tion to an analogous one in the task it knows about, and then
taking the action it would take in that situation. There may,
however, be many reasonable ways for the agent to apply its
experience to its new situation and, without any knowledge
about the new problem, there may be no way to evaluate them
a priori.

In particular, we represent the agent’s sequential decision
making problem as a Markov decision process (MDP). We
assume it has learned an optimal policy for one MDP,M ,
and now faces a new, unknown MDP,M ′. The agent has a
group of candidate policies forM ′ which are generated from
mappings from the states inM ′ to those inM along with
the agent’s policy inM . Following terminology used often
in supervised learning settings, we can think of these policies
as “experts” that advise the agent on what to do. The agent,
then, must mediate these experts in order to leverage their
knowledge in learning a solution to its new task.

The agent could simply ignore the expert advice and learn
the new task from scratch. Ideally, however, the experts
would provide significant savings in learning time. Therefore
we desire an algorithm with a sample complexity dependent

on the number of experts, rather than the size of the problem.
In order to enforce this restriction, the algorithm we present
makes no use of state observations or the actions being taken
by the experts, even if this information is available.

What can we expect from such an agent? LetπB denote the
“best” expert, the one that has the largest expected asymptotic
average reward. One objective could be to have the agent’s
actual return atevery time stepbe near the asymptotic re-
turn of πB . This is clearly unreasonable because even if the
agent knew the identity ofπB to begin with,any mediator
would need time close to the (unknown) mixing time ofπB

to achieve that return. Intuitively, the mixing time of a policy
is the amount of time it takes to thereafter guarantee return
close to its asymptotic return. Thus we need a more reason-
able objective. In this paper, we provide a mediator algorithm
that, in time polynomial inT , accomplishes an actual return
close to the asymptotic return of the best expert that has mix-
ing time at mostT . Thus, as the mediator is given more time
to run it competes favorably with a larger subset of experts.

1.1 Relationship to Existing Work
The idea of using state mappings to known MDPs to gener-
ate knowledge about other MDPs is not entirely novel. For
instance, homomorphisms between MDPs have been used to
generate abstractions of problems, allowing for compact rep-
resentations that induce policies in the full problem[Ravin-
dran and Barto, 2003]. In this work, we do not restrict map-
pings to any special class, nor do we seek an optimal map-
ping. Rather, we consider that, though an optimal mapping
may be difficult (or impossible) to calculate, a set of “reason-
able” mappings may be heuristically generated. Though there
will be no guarantee on the quality of any of these policies, we
will use “experts” algorithms to efficiently choose amongst
them to find a good (albeit suboptimal) policy quickly.

There is much work in learning to use the advice of
a team of “experts” to perform a task, though tradition-
ally this has been focused on a supervised learning setting
[Cesa-Bianchiet al., 1997; Herbster and Warmuth, 1998;
Jordan and Xu, 1995]. However, because of its sequential na-
ture, our problem is more clearly related to the multi-armed
bandit problem[Robbins, 1952], which has long stood as a
canonical example of the “exploration-exploitation” tradeoff
in on-line learning. An agent is presented with a slot machine
with several arms. Each pull of an arm yields some reward,

drawn from an unknown, fixed distribution. The agent’s goal
is to minimize its regret (the difference between the reward
it would have gotten by always pulling the best arm and the
reward it actually receives). Lai and Robbins provided an al-
gorithm that, forT pulls, achieves a regret ofO(log T) as
T → ∞ [Lai and Robbins, 1985]. Though the similarity to
our setting is clear, these results relied on the fact that each
arm has a fixed reward distribution over time, which is not the
case when the “arms” are policies on a shared MDP.

An important generalization of the multi-armed bandit
problem removedall statistical assumptions about the se-
quence of rewards assigned to each arm, allowing an adver-
sary to select the reward distribution of each arm at every
time step[Auer et al., 2002]. Auer et al. provide aO(

√
T)

bound on the regret using their algorithm Exp3, even in this
adversarial setting. In their analysis, Auer et al. assumedthe
adversary creates an a priori fixed sequence of reward distri-
butions, which is not affected by the actions of the decision
maker. Since choosing different sequences of experts may re-
sult in different dynamics on the underlying MDP, the bounds
on Exp3 do not apply in our setting. Nevertheless, because of
the clear similarity of its setting to ours, we will compare our
algorithm to Exp3 in our empirical work.

The algorithm we present here is most closely related to
a family of algorithms collectively called “Exploration Ex-
ploitation Experts methods” (EEE)[de Farias and Megiddo,
2004]. These algorithms select amongst experts in an adver-
sarial setting, in which the environment “chooses” observa-
tionsbt depending on the agent’s past actionsa1, a2, ..., at−1,
giving the agent rewardR(a(t), b(t)) at each time step. They
say an experte has an achievableτ -valueµ if there exists a
constantcτ ≥ 0 such that at any steps0 with any possible
historyhs0

and any number of stepst,

E

[

1

t

s0+t
∑

s=s0+1

R(ae(s), b(s))

]

≥ µ− cτ

sτ

The EEE algorithms achieve a return close to the highest
achievableτ -value in time polynomial incτ .

Our setting is a special case of that considered by de Farias
and Megiddo, as we assume the environment is governed by
an MDP, rather than allowing it to depend on the entire his-
tory. As such, our algorithm is quite similar to those in the
EEE family. By considering this special case, however, we
can characterize its direct dependence on the mixing times
of the policies, rather than on the abstract quantitycτ . This
allows us to formally understand how our algorithm will per-
form during its entire run-time and also gives us strong intu-
ition for when our algorithm will be most useful.

2 Preliminaries
In a Markov Decision Process(MDP) an agent perceives
the state of the world (from a finite setS) and decides on
an action (from a setA). Given that state and action, the
world probabilistically transitions to a new state and the agent
receives some reward (drawn from a distribution associated
with the new state). We will assume that rewards are bounded
and non-negative (if the former holds, the latter is easy to
obtain by adding the minimum reward to all reward signals).

A policy π on an MDPM is a probability distribution over
actions, conditioned on state and time. We writeπt(s, a) =
P(a|s, t), the probability of taking actiona in states at time
t. A policy isstationary if πt(s, a) = πt′(s, a) ∀t, t′. For the
remainder, all policies mentioned are assumed to be station-
ary unless otherwise stated.

A T -path inM is a sequencep of T states and we will
write Pπ

M (p) to mean the probability of traversingp in M
while following policy π. A policy is calledergodic if, as
the number of steps approaches infinity, the probability of be-
ing in any particular state approaches a fixed limiting value.
An MDP M is calledunichain if all stationary policies are
ergodic. We restrict our attention to unichain MDPs.

Let M be an MDP,π be a policy onM , andp be aT -
path inM . Then the expected undiscounted return alongp is
UM (p) = 1

T
(Ri1 +...+RiT

), whereRi is the expected return
at statei. The expected undiscountedT -step return from state
i when following policyπ is Uπ

M (i, T) =
∑

p Pπ
M (p)UM (p)

and the asymptotic expected undiscounted return from state
i is Uπ

M (i) = limT→∞ Uπ
M (i, T). Note that for an ergodic

policy π, Uπ
M (i) is independent ofi and so we will writeUπ

M

for the asymptotic return. Hereafter, we will drop the explicit
dependence on the unknown but fixed MDPM .

In our problem setting, an agent is acting on an unknown
MDP. It is provided with a setE of stationary policies, or
“experts.” At each step, the agent must choose one of the
experts to act on its behalf. It does not perceive the current
state or the action taken, but it does receive the reward signal.
The goal of the agent is to achieve an undiscounted return
close to the expected asymptotic return of the best expert in
an efficient amount of time.

The central problem is that the agent does not know the
experts’ mixing times. It can never be sure that following an
expert forany finite number of steps will provide it with a
good estimate of that expert’s asymptotic quality. We now
present our algorithm, which explicitly addresses this issue.

3 AtEase: A Policy-Mediating Algorithm
In this section we present a stylized algorithm that facil-
itates analysis. In our experiments, we will introduce a
few practically-minded alterations. We call our algorithm
AtEase for ”AlternatingtrustingExplorationand suspicious
exploitation.” It proceeds in iterations indexed byT =
1, 2, 3, Each iteration involves a trusting exploration
phase followed by a suspicious exploitation phase. In the
trusting exploration phase,AtEasetries every expert forTexp

steps (whereTexp is a fixed polynomial ofT), regardless of
any previous disappointments the expert may have caused
and regardless of how poorly it may be doing during that
fixed time. In the suspicious exploitation phase,AtEaseranks
the experts according to their performance in the exploration
phase. It then tries using the best expert for a constant num-
ber of batches (which we shall calll), eachTexp steps long. If
the return of any of those batches is much lower than the ex-
pert’s return in the exploration phase,AtEasestops using the
expert and proceeds to exploit the next best. This process of
elimination is continued until either there are no more experts
or until one expert lasts long enough in the exploitation phase

Arguments: ǫ > 0, 0 < δ < 1, Rmax > 0, setE of experts
Initialize: T ← 1
Trusting Exploration Phase
1. Run each expert forTexp (polynomial of T) steps, recording theirTexp–step returns
2. SetE′ ← E

3. Sort the experts inE′ by theirTexp–step returns,̃U .
Suspicious Exploitation Phase
4. If E′ = ∅ then setT ← T + 1 and goto 1.
5. Lete be the expert with the highestTexp–step return inE′.
6. Rune for a batch ofTexp steps.
7. If return ofe for the batch is less thañUe − ǫ

4
then removee from E′ and goto 4.

8. If e has run forlTexp steps thenT ← T + 1 and goto 1. Otherwise goto 6.

Table 1: Pseudocode for theAtEasealgorithm

without being eliminated. These two phases are repeated with
increasing durations in order to allow for the possibility that
some experts may have long mixing times but will perform
well in the long run. Pseudocode is provided in Table 1.

Note that if we ever reach an iteration which has an associ-
ated exploration time greater than the mixing time of all of the
experts, the problem of choosing the best expert is precisely
the stochastic multi-armed bandit problem. Unfortunately,
there is no way for the agent to ever know it has reached this
point. Thus, each iteration is conceptually like a bandit al-
gorithm trying to choose amongst the unknown set of experts
that have mixing times less than the exploration time. Ex-
perts are rejected during exploitation in order to minimizethe
effect of experts that have not yet mixed.

AtEasewill take as input a confidence parameterδ, an ap-
proximation parameterǫ, a bound on the maximum reward
Rmax, and a set of expertsE. We will show that with high
probability and for allT , in time polynomial inT the actual
return ofAtEase will compare favorably with the expected
return of the best policy that mixes in timeT .

Rather than use the standard concept of mixing time, we
will use the weaker, but more directly applicable notion ofǫ-
expected-return mixing time[Kearns and Singh, 2002]1 (they
also related it to more standard definitions of mixing time).

Definition 1. Let M be an MDP and letπ be an ergodic
policy onM . Theǫ-expected-return mixing time ofπ, denoted
T ǫ

π is the smallestT such that for allt ≥ T,maxi |Uπ(i, t)−
Uπ| ≤ ǫ.

Definition 2. Let E be a set of stationary, ergodic experts
on MDP M . ThenΠT,ǫ

E denotes the set of experts inE
whoseǫ-expected-return mixing time is at mostT and define
opt(ΠT,ǫ

E) = max
π∈Π

T,ǫ

E

Uπ.

So, with appropriate selection ofTexp andl, in time poly-
nomial in any mixing time,T , AtEase will achieve return
close toopt(ΠT,ǫ

E), with high probability. We now formalize
this claim in Theorem 1, which, because of its similarity to
de Farias and Megiddo’s results, we present without proof.

Theorem 1. For all T , given input parametersǫ, δ, and
Rmax, theAtEasealgorithm’s actual return will be withinǫ

1Kearns & Singh called itǫ-return mixing time.

of opt(ΠT,ǫ
E) with probability at least1−δ in time polynomial

in T , |E|, 1

ǫ
, 1

δ
, andRmax.

Note that if the mixing time of the asymptotically best ex-
pert isT ∗, then the actual return ofAtEasewill compete with
that expert in time polynomial inT ∗. So, if the asymptoti-
cally best expert mixes quickly, the performance ofAtEase
will compare favorably to that expert quickly even if other
experts have much longer mixing times.

At first glance, Theorem 1 seems to imply that the sample
complexity ofAtEaseis completely independent of the num-
ber of states and actions in the MDP environment. This is not
the case, however, because the mixing time of the experts will
in general be dependent on the size of the MDP state space.
Indeed the mixing time of the asymptotically best expert may
be exponential in the size of the state space. However, as
we have pointed out before, no algorithm can avoid at least
running the best experts for its mixing time and the only de-
pendence ofAtEaseon the complexity of the MDP is entirely
due to this unavoidable dependence on the mixing time.

4 Empirical Illustrations
In this section, we use two toy problems to study the applica-
bility of the AtEasealgorithm in comparison to other experts
algorithms. It has been found that, despite the existence of
more sophisticated techniques, a simpleǫ-greedy algorithm,
which either chooses the arm that looks the best so far or,
with probabilityǫ chooses an action at random, was difficult
to beat in practice[Vermorel and Mohri, 2005]. We therefore
useǫ-greedy as our representative of bandit algorithms. We
compareǫ-greedy and the previously discussed Exp3 algo-
rithm to a slightly more practical version ofAtEase, denoted
AtEasel (for AtEase-lite), which contains a few modifica-
tions designed to help speed convergence.

AtEasel differs from AtEase in how it increases the ex-
ploration time, the number of exploitation batches, and how
it chooses experts to be eliminated in the exploitation phase.
After each full iteration, the exploration time is multiplied
by some constant,C, rather than incremented. These larger
jumps in exploration time help expand the number of mixing
experts more quickly. Rather than a large constant, the num-
ber of exploitation batches is set equal to the exploration time,
reducing the impact of earlier iterations. Finally, duringthe

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Time Step

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

e
S

te
p

10−armed Bandit Problem

AtEasel

Exp3

ε−Greedy

(a)

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Time Step

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

e
S

te
p

Mixing Problem

AtEasel

ε−Greedy

Exp3

(b)

1 2

A:0

A:0

B:0B:0

C:0.5 C:1

The Mixing Problem

Expert 1 Expert 2

1.0
1.0 1.0

0.1
0.9

(c)

Figure 1: Results from toy problems. See text for descriptions. Results for all three algorithms were averaged over 100 runs.

suspicious exploitation phase, experts are abandoned if the
performance of any batch falls below thenext best expert’s
estimate minus some constantǫ. This ensures that even if the
best expert has not yet mixed, it will continue to be exploited
if it has been performing better than the alternatives. For the
sake of clarity in these simple experiments, we setC = 10
andǫ =∞ (so the exploitation phase is not suspicious).

The first problem (Figure 1(a)) is a standard 10-armed ban-
dit problem. The underlying MDP has one state and two ac-
tions, one giving a reward of 1, the other a reward of 0. Each
experti ∈ 1, 2, ..., 10 chooses the rewarding action with prob-
ability i

10
and so experti has an expected asymptotic return

of i
10

and anǫ-expected-return mixing time of 1 for allǫ. The
algorithms perform similarly in the beginning, though even-
tually AtEasel is surpassed. This illustrates an aspect of the
AtEasel algorithm, namely that it continues to explore low-
return experts for longer and longer periods of time in hopes
that they may perform better in the long run. This is neces-
sary in the case that the underlying domain is an MDP with a
long mixing time. In this case, however, the result is amuch
slower convergence time in comparison to the bandit algo-
rithms. The “sawtooth” pattern seen here shows clearly the
effects of the alternating exploration and exploitation phases.

The second problem (Figure 1(b)) is a 2-state, 3-action
MDP (shown in 1(c)). There are two experts. One always
choses action C in state 1 and action A in state 2. Thus, it has
an expected asymptotic return of 0.5 and mixes very quickly.
The other expert always choses action C in state 2 and in
state 1 choses B with probability 0.9 and A with probabil-
ity 0.1. The second expert has an expected asymptotic return
of 1, but takes longer to mix. This problem highlights the
strength ofAtEasel. Neitherǫ-greedy nor Exp3 are likely to
stay with one expert long enough to allow it to mix so they do
not receive good estimates of experts 2’s quality. In contrast
AtEasel discovers the second expert quickly and adopts it in
every subsequent iteration, which accounts for the superior
return seen in 1(b).

The results of these simple exeriments are intended to high-
light the strengths and weaknesses ofAtEase. In particu-
lar we have seen thatAtEase is not effective at solving the
stochastic bandit problem in comparison to algorithms specif-
ically designed for that purpose, but when the mixing time of
the experts is unknown, it may significantly outperform algo-
rithms that do not take mixing time into account.

(a) RoboCup Keepaway

Taker

Keeper

Ball

1

2

Queue 1

Queue 2

1

2

Conveyor

Belts

Delivery Domain(b)

Figure 2: The RoboCup Soccer Keepaway domain (a) and the
Delivery Domain (b). See text for descriptions.

5 Applications To Transfer Learning
We now demonstrate the utility of experts algorithms in trans-
fer settings. As described in the introduction, we imagine an
agent that applies its knowledge from one task to another via
some mapping from the original state-space to the new one.
Such a mapping, combined with a policy for the old problem
induces a policy on the new state space. Because the agent
may not be able to identify the optimal mapping, it may be
advised by multiple “experts” which provide different state
mappings. The problem of automatically discovering a small
set of “reasonable” mappings is a deep one, and well outside
the scope of this paper. In our experiments the mappings are
heuristically created by hand.

In this section, we consider two transfer learning problems.
In the first, the agent is presented with a task more complex
than the one it has learned. Its mappings will therefore rep-
resent different ways to discard some state information, in
order to make use of its knowledge about a simpler space. In
the second, we imagine an agent that loses the use of some of
its sensors. This agent’s mappings must be educated guesses
about how toadd state information so as to obtain advice
from a policy that depends on richer observations.

5.1 RoboCup Soccer Keepaway
For the first experiment, we used a modified version of
Stone’s RoboCup Keepaway testbed[Stoneet al., 2006]. This
domain simulates two teams of robots: the keepers and the
takers (see Figure 2(a)). The keepers attempt to keep a ball
from the takers for as long as possible. Though this is in-
tended to be a multi-agent learning problem, we considered
a simpler problem by fixing all but one agent’s policy as the
provided hand-coded policy. The other modification made
was to the reward signal. As originally posed, the reward for

0 5 10 15
−8

−7

−6

−5

−4

−3

−2
x 10

−3

Training Time (hours)

A
vg

. R
ew

ar
d

pe
r

S
im

ul
at

io
n

S
te

p
RoboCup Experts(a)

0 5 10 15
−8

−7

−6

−5

−4

−3

−2
x 10

−3

Training Time (hours)

A
vg

. R
ew

ar
d

pe
r

S
im

ul
at

io
n

S
te

p

AtEasel and SARSA(b)

0 5 10 15
−8

−7

−6

−5

−4

−3

−2
x 10

−3

Training Time (hours)

A
vg

. R
ew

ar
d

pe
r

S
im

ul
at

io
n

S
te

p

ε−Greedy(c)

Figure 3: Results from Keepaway. Figure (a) shows the performance of a typical set of experts. In (b),AtEasel (ǫ = .001,
C = 100), is shown in solid lines, and SARSA (α = .125, ǫ = .01), in dashed lines. In (c) we seeǫ-greedy (ǫ = .01).

any action was the number of steps until the agent next re-
cieved the ball. In this case the average reward will always
be 1. Instead, we used a reward signal in which the agent re-
cieved no reward for any action and at the end of an episode,
recieved a reward of -1 (incidentally, we found that reinforc-
ment learning agents learned faster with this reward signal).

Following [Taylor and Stone, 2005] we used SARSA(0)
with 1D tile-coding and a linear function approximator to
train agents in 3v2 keepaway for 2000 episodes and then
asked if we could use the resulting policies to do well in
4v2 keepaway. We generated 11 experts, each mapped to
3v2 keepaway by ignoring a keeper using a different criterion
(such as closest, furthest, “most open,” etc.). A typical spec-
trum of the performance of the 11 experts in 4v2 keepaway is
shown in Figure 3(a).

In Figure 3(b) we see the performance of 10 representa-
tive runs ofAtEasel compared to 10 representative runs of
linear SARSA learning 4v2 keepaway from scratch. In this
domain, the best expert has the longest mixing time. As such,
it is no surprise thatAtEasel does not approach the perfor-
mance of the best expert in the amount of time shown. It is,
however, in all cases able to quickly avoid the “bad” experts.
Also note that, unless the optimal policy is among the experts
provided toAtEasel, it will never achieve optimal return. It is
therefore expected that the learning algorithm will eventually
surpassAtEasel. However, the learner spends a significant
amount of time performing poorly. It is this transient period
of poor performance that transfer learning attempts to avoid
andAtEaselappears to side-step it effectively.

We note, however, that because of the episodic nature of
this domain, the return of each episode is an unbiased es-
timate of an expert’s expected return. Therefore each ex-
pert’s ǫ-mixing time is one episode. Thus, by thinking of
time in terms of episodes, the problem can be expressed as
a stochastic bandit problem. As such, we compareAtEasel
to ǫ-greedy, where each “pull” chooses an expert for a full
episode. Figure 3(c) shows 10 representative runs ofǫ-greedy.
As we might expect from our toy examples,ǫ-greedy seems
to perform better, on the whole, thanAtEasel. However, un-
like in the toy experiment,AtEasel does perform compet-
itively with ǫ-greedy, and also provides theoretical perfor-
mance guarantees thatǫ-greedy cannot.

5.2 The Delivery Domain

0 1 2 3 4 5

x 10
5

0

0.05

0.1

0.15

0.2

Time Steps

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

e
S

te
p

Delivery Domain Results

H−learning

AtEasel

Exp3

Q1H1

Q2H1
Q2H2

Q1H2

ε−Greedy

Figure 4: Results from experiments on the Delivery Domain
(averaged over 30 runs), comparingAtEasel (ǫ = .01 and
C = 10) to H-learning (ρ = 1 and α = .001), Exp3.P.1
(δ = .1), andǫ-greedy (ǫ = 0.1). The label QxHy represents
the expert that assumes queue 1 contains job x and after pick
up from queue 1, assumes the agent is holding job y.

In the delivery domain[Tadepalli and Ok, 1998], a robot
has to deliver jobs from two queues to two conveyor belts
(Figure 2(b)). Queue 2 produces only jobs of type 2, which
are destined for conveyor belt 2 and which provide reward
of 1 when delivered. Queue 1 produces jobs of type 1 and 2
with equal probability. Jobs of type 1 are destined for con-
veyor belt 1 and provide a reward of 5 when delivered. An
obstacle (open circle) moves up and down with equal prob-
ability. The agent incurs a penalty of -5 if it collides with
the obstacle. The world is fully observable (with 6 sensors)
and the agent has 6 actions available to it: do nothing, switch
lanes, move up, move down, pick up, and drop off. The pick
up action is only available when the agent has no job and is at
a queue. Similarly, the drop off action is only available at the
appropriate conveyor belt when the agent holds a job.

Following Tadepalli, we trained agents using H-learning,
an average reward reinforcement learning algorithm (with
ρ = 1 andα = .001). We then asked if those policies could
still be used if the agents were to lose the 3 sensors that in-
dicate which jobs are held in the queues and which job the

agent is holding. In this new problem, we can imagine “ex-
perts” that fill in the missing 3 sensors and ask the original
policy what it would do. Since queue 2 always produces the
same job, we will let all experts assume that queue 2 is hold-
ing job type 2, which leaves two sensors to fill in. Each miss-
ing sensor can take on two values (job 1 or job 2) and so we
will have four experts total. Each expert will assume queue
1 either contains job 1 at all times or job 2 at all times. We
allow the agents to be slightly more sophisticated regarding
the remaining sensor (what job the agent is carrying) by pro-
viding them two pieces of historical information. The first
tells the agent at which conveyor belt (if any) it has tried and
failed to drop off its job. Thus, if the agent has attempted a
drop off and failed, it knows exactly what job it is carrying.It
is when the agent has not yet attempted a drop off that it must
make a guess. It does this with the help of the second histori-
cal feature: the queue from which the agent picked up a job it
is holding. Every expert assumes that when picking up a job
from queue 2, that it is of type 2. Each expert then has an as-
sumption of what job type it is carrying when it picks up from
queue 1 (which may be different than what job it assumes is
contained in queue 1).

Figure 4(a) shows the performance of the experts,AtEasel
ǫ-greedy, Exp3.P.1 (see[Auer et al., 2002] for details), and
H-learning from scratch. For fairness of comparison the H-
learning algorithm was provided with the same historical in-
formation used by the experts. We see that learning from
scratch eventually surpassesAtEasel, but AtEasel performs
well quickly. Exp3 andǫ-greedy both do worse on aver-
age because they are unlikely to try a better expert for long
enough for it to demonstrate its quality.

6 Conclusion
We presented an algorithm for mediating experts that simul-
taneously competes favorably with all experts in a number
of steps polynomial in the mixing time of each expert. We
performed experiments in two transfer learning contexts, in
which experts were policies induced by mappings from the
state space of a new problem to the state space of an al-
ready known problem. We found that experts algorithms
were effective in avoiding the transient period of poor perfor-
mance experienced by uninformed learners. We found that
in episodic domains, since the mixing time of the experts is
known, standard experts algorithms such asǫ-greedy were
most effective. In non-episodic domains, however, it is likely
that mixing times would be unknown and variable. In these
cases, an algorithm that specifically takes mixing time into
account, such asAtEasemay significantly outperform algo-
rithms that do not.

7 Acknowledgements
Erik Talvitie was supported by a NSF funded STIET fellow-
ship from the University of Michigan. Satinder Singh was
funded by NSF grant CCF-0432027, and by a grant from
DARPA’s IPTO program. Any opinions, findings and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the NSF or DARPA.

References
[Aueret al., 2002] Peter Auer, Nicol̀o Cesa-Bianchi, Yoav

Freund, and Robert E. Schapire. The non-stochastic multi-
armed bandit problem. SIAM Journal on Computing,
32(1):48–77, 2002.

[Cesa-Bianchiet al., 1997] Nicolò Cesa-Bianchi, Yoav Fre-
und, David Haussler, David P. Helmbold, and Robert E.
Schapire. How to use expert advice.Journal of the Asso-
ciation for Computing Machinery, 44(3):427–485, 1997.

[de Farias and Megiddo, 2004] Daniela Pucci de Farias and
Nimrod Megiddo. Exploration-exploitation tradeoffs for
experts algorithms in reactive environments. InAdvances
in Neural Information Processing Systems 17, pages 409–
416, 2004.

[Herbster and Warmuth, 1998] Mark Herbster and Manfred
Warmuth. Tracking the best expert.Machine Learning,
32(2):151–78, 1998.

[Jordan and Xu, 1995] Michael I. Jordan and Lei Xu. Cover-
gence results for the EM approach to mixtures of experts
architectures.Neural Networks, 8:1409–1431, 1995.

[Kearns and Singh, 2002] Michael Kearns and Satinder
Singh. Near-optimal reinforcement learning in polyno-
mial time. Machine Learning, 49:209–232, 2002.

[Lai and Robbins, 1985] T. L. Lai and Herbert Robbins.
Asymptotically efficient allocation rules.Advances in Ap-
plied Mathematics, 6:4–22, 1985.

[Ravindran and Barto, 2003] Balaraman Ravindran and An-
drew Barto. SMDP homomorphisms: An algebraic ap-
proach to abstraction in semi markov decision processes.
In Proceedings of the Eighteenth International Joint Con-
verence on Artificial Intelligence (IJCAI 03), pages 1011–
1016, 2003.

[Robbins, 1952] Herbert Robbins. Some aspects of the se-
quential design of experiments.Bulletins of the American
Mathematical Society, 58:527–535, 1952.

[Stoneet al., 2006] Peter Stone, Gregory Huhlmann,
Matthew E. Taylor, and Yaxin Liu. Keepaway soccer:
From machine learning testbed to benchmark. In Itsuki
Noda, Adam Jacoff, Ansgar Bredenfeld, and Yasutake
Takahashi, editors,RoboCup-2005: Robot Soccer World
Cup IX. Springer Verlag, Berlin, 2006. To appear.

[Tadepalli and Ok, 1998] Prasad Tadepalli and DoKyeong
Ok. Model-based average reward reinforcement learning.
Artificial Intelligence, 100:177–224, 1998.

[Taylor and Stone, 2005] Matthew E. Taylor and Peter
Stone. Behavior transfer for value-function-based rein-
forcement learning. InThe Fourth International Joint Con-
ference on Autonomous Agents and Multiagent Systems,
pages 53–59, 2005.

[Vermorel and Mohri, 2005] Joanǹes Vermorel and Mehryar
Mohri. Multi-armed bandit algorithms and empirical eval-
uation. InProceedings of the 16th European Conference
on Machine Learning, pages 437–448, 2005.

