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Abstract

A long-lived agent continually faces new tasks in
its environment. Such an agent may be able to use
knowledge learned in solving earlier tasks to pro-
duce candidate policies for its current task. There
may, however, be multiple reasonable policies sug-
gested by prior experience, and the agent must
choose between them potentially without angri-

ori knowledge about their applicability to its cur-
rent situation. We present an “experts” algorithm
for efficiently choosing amongst candidate policies
in solving an unknown Markov decision process
task. We conclude with the results of experiments
on two domains in which we generate candidate
policies from solutions to related tasks and use our
experts algorithm to choose amongst them.

Introduction

on the number of experts, rather than the size of the problem.
In order to enforce this restriction, the algorithm we prase
makes no use of state observations or the actions being taken
by the experts, even if this information is available.

What can we expect from such an agent?7t2tdenote the
“best” expert, the one that has the largest expected asyiapto
average reward. One objective could be to have the agent’s
actual return aevery time stefpe near the asymptotic re-
turn of 72, This is clearly unreasonable because even if the
agent knew the identity of? to begin with,any mediator
would need time close to the (unknown) mixing timendt
to achieve that return. Intuitively, the mixing time of a joyl
is the amount of time it takes to thereafter guarantee return
close to its asymptotic return. Thus we need a more reason-
able objective. In this paper, we provide a mediator algaorit
that, in time polynomial irll”’, accomplishes an actual return
close to the asymptotic return of the best expert that has mix
ing time at mosf". Thus, as the mediator is given more time
to run it competes favorably with a larger subset of experts.

An agent in a sufficiently complex environment will likel . . I
face ?asks related to thosye it hag already solved. Given@ gool'l Relationship to Existing Work
policy for a related task, the agent could determine a reasorThe idea of using state mappings to known MDPs to gener-
able policy for its current task by mapping its current situa ate knowledge about other MDPs is not entirely novel. For
tion to an analogous one in the task it knows about, and theimstance, homomorphisms between MDPs have been used to
taking the action it would take in that situation. There may,generate abstractions of problems, allowing for compast re
however, be many reasonable ways for the agent to apply itesentations that induce policies in the full problERavin-
experience to its new situation and, without any knowledgedran and Barto, 2003 In this work, we do not restrict map-
about the new problem, there may be no way to evaluate themings to any special class, nor do we seek an optimal map-
a priori. ping. Rather, we consider that, though an optimal mapping
In particular, we represent the agent’s sequential datisiomay be difficult (or impossible) to calculate, a set of “reaso
making problem as a Markov decision process (MDP). Weable” mappings may be heuristically generated. Thougtether
assume it has learned an optimal policy for one MBP,  will be no guarantee on the quality of any of these policies, w
and now faces a new, unknown MDF}’. The agent has a will use “experts” algorithms to efficiently choose amongst
group of candidate policies fd/’ which are generated from them to find a good (albeit suboptimal) policy quickly.
mappings from the states if’ to those inM along with There is much work in learning to use the advice of
the agent’s policy inM/. Following terminology used often a team of “experts” to perform a task, though tradition-
in supervised learning settings, we can think of these galic ally this has been focused on a supervised learning setting
as “experts” that advise the agent on what to do. The agenfCesa-Bianchiet al, 1997; Herbster and Warmuth, 1998;
then, must mediate these experts in order to leverage thellordan and Xu, 1995However, because of its sequential na-
knowledge in learning a solution to its new task. ture, our problem is more clearly related to the multi-armed
The agent could simply ignore the expert advice and leartandit problenm{Robbins, 195P which has long stood as a
the new task from scratch. Ideally, however, the expert€anonical example of the “exploration-exploitation” teadf
would provide significant savings in learning time. Therefo in on-line learning. An agent is presented with a slot maghin
we desire an algorithm with a sample complexity dependentvith several arms. Each pull of an arm yields some reward,



drawn from an unknown, fixed distribution. The agent’'s goal A policy = on an MDPM is a probability distribution over

is to minimize its regret (the difference between the rewardactions, conditioned on state and time. We writés, a) =

it would have gotten by always pulling the best arm and theP(a|s, t), the probability of taking action in states at time
reward it actually receives). Lai and Robbins provided an al¢. A policy is stationary if mt(s,a) = Wt’(& a) Vt,t'. For the
gorithm that, for7" pulls, achieves a regret @(log7') as  remainder, all policies mentioned are assumed to be station
T — oo [Lai and Robbins, 1945 Though the similarity to ary unless otherwise stated.

our setting is clear, these results relied on the fact thetea A 7-path in M is a sequence of T states and we will

arm has a fixed reward distribution over time, which is not thewrite PY,(p) to mean the probability of traversingin M
case when the “arms” are policies on a shared MDP. _ while following policy 7. A policy is calledergodic if, as

An important generalization of the multi-armed bandit the number of steps approaches infinity, the probabilityesf b
problem removedall statistical assumptions about the se-jng in any particular state approaches a fixed limiting value
quence of rewards assigned to each arm, allowing an advegn MDP 1/ is calledunichain if all stationary policies are
sary to select the reward distribution of each arm at evergrgodic. We restrict our attention to unichain MDPs.
time step[Auer et al, 2004. Auer et al. provide @ (v/T) Let M be an MDP,r be a policy onM, andp be aT-
bound on the regret using their algorithm Exp3, even in thigpath in)/. Then the expected undiscounted return alpiigy
adversarial setting. In their analysis, Auer et al. assuthed (7, (p) = %(Ril +...+R;..), whereR, is the expected return
adversary creates an a priori fixed sequence of reward-distrat statel. The expected undiscount@dstep return from state
butions, yvhich is not affe_cted by the actions of the decision; when following policyr is U7, (i, T) = Zp Pi;(0)Uns ()
maker. Since choosing different sequences of experts may rend the asymptotic expected undiscounted return from state
sultin different dynamics on the underlying MDP, the bounds; is (/7 (i) = limy .., UF,(i,T). Note that for an ergodic
on Exp3 do not apply in our setting. Nevertheless, because Qfolicy , U7, () is independent of and so we will writel/7,
the clear similarity of its setting to ours, we will compan&o  for the asymptotic return. Hereafter, we will drop the egipli
algorithm to Exp3 in our empirical work. dependence on the unknown but fixed MDP

The algorithm we present here is most closely related to |, gur problem setting, an agent is acting on an unknown
a family of algorithms collectively called “Exploration EX \pp. |t is provided with a sef of stationary policies, or
ploitation Experts methods” (EEH}le Farias and Megiddo, «experts” At each step, the agent must choose one of the
2004. These algorithms select amongst experts in an advegxperts to act on its behalf. It does not perceive the current
sarial setting, in which the environment “chooses” observastate or the action taken, but it does receive the rewardkign
tionsb; depending on the agent's past actiomsas, .., a:—1,  The goal of the agent is to achieve an undiscounted return
giving the agent rewar@&(a(t), b(t)) at each time step. They ¢jose to the expected asymptotic return of the best expert in
say an expert has an achievable-value . if there exists a g efficient amount of time.

constanic, > 0 such that at any steg, with any possible  The central problem is that the agent does not know the

history 5, and any number of steps experts’ mixing times. It can never be sure that following an

| sott expert forany finite number of steps will provide it with a
Cr ood estimate of that expert’s asymptotic quality. We now
- > - = 9 . . Y| Vv
E 2;1 R(ac(s), bs)) | z ST present our algorithm, which explicitly addresses thigéss
S=Sp
The EEE algorithms achieve a return close to the highest . Lo .
achievabler-value in time polynomial in:, . 3 AtEase: A Policy-Mediating Algorithm

Our setting is a special case of that considered by de Farigg thjs section we present a stylized algorithm that facil-
and Megiddo, as we assume the environment is governed Bytes analysis. In our experiments, we will introduce a
an MDP, rather than allowing it to depend on the entire histe\ practically-minded alterations. We call our algorithm
tory. As such, our algorithm is quite similar to those in the otEasefor ” AlternatingtrustingExplorationand suspicious
EEE family. By considering this special case, however, Wesploitation.” It proceeds in iterations indexed by =
can characterize its direct dependence on the mixing time§’2737 .... Each iteration involves a trusting exploration
of the policies, rather than on the abstract quantity This  phase followed by a suspicious exploitation phase. In the
allows usto forma[ly understand how our.algonthm will Per- trusting exploration phasAtEasetries every expert fof .,
form during its entire run-time and also gives us strong-intu steps (wherd,,, is a fixed polynomial off’), regardless of

ition for when our algorithm will be most useful. any previous disappointments the expert may have caused
o and regardless of how poorly it may be doing during that
2 Preliminaries fixed time. In the suspicious exploitation pha&tEaseranks

In a Markov Decision Process(MDP) an agent perceives the experts according to their performance in the explonati
the state of the world (from a finite sé&) and decides on phase. It then tries using the best expert for a constant num-
an action (from a sef). Given that state and action, the ber of batches (which we shall c#)| eachl,, steps long. If
world probabilistically transitions to a new state and therst  the return of any of those batches is much lower than the ex-
receives some reward (drawn from a distribution associategert’s return in the exploration phaggEase stops using the
with the new state). We will assume that rewards are boundeexpert and proceeds to exploit the next best. This process of
and non-negative (if the former holds, the latter is easy teelimination is continued until either there are no more etge
obtain by adding the minimum reward to all reward signals). or until one expert lasts long enough in the exploitationggha



Arguments: € > 0,0 < § < 1, Rnax > 0, setE of experts

Initialize: T «— 1

Trusting Exploration Phase

1. Run each expert fdf.,, (polynomial of T) steps, recording théit,,—step returng
2. SetE’ +— F

3. Sort the experts iv’ by theirT,,,—step returns/.

Suspicious Exploitation Phase

4. If B’ = () then sefl’ — T + 1 and goto 1.

5. Lete be the expert with the highe$t,,—step return irg”.

6. Rune for a batch off,,, steps.

7. If return ofe for the batch is less thali® — ¢ then remove: from E’ and goto 4.
8. If e has run forlT.,,, steps therf’ — T + 1 and goto 1. Otherwise goto 6.

Table 1: Pseudocode for tii¢Ease algorithm

without being eliminated. These two phases are repeatéd witof opt(Hg’e) with probability at leasti — ¢ in time polynomial
increasing durations in order to allow for the possibiliiat  in 7, |E|, 1, 1, and R.x.

o . R
some experts may have long mixing times but will perform . T : _
well in the long run. Pseudocode is provided in Table 1. Note that if the mixing time of the asymptotically best ex

Note that if we ever reach an iteration which has an assoc'pert IST", then the actual return @ftEasewill compete with

U R fhat expert in time polynomial if™*. So, if the asymptoti-
ated exploration time greater than the mixing time of alhef t cally best expert mixes quickly, the performanceAtEase

experts, the problem of choosing the best expert is precisel - : -
the stochastic multi-armed bandit problem. Unfortunatelykg)l(lég%nﬁ:\:g rfgl\jgmglzgtgr tnf:&ti:;gﬁqrégwckly even if other

there is no way for the agent to ever know it has reached this At first glance, Theorem 1 seems to imply that the sample

T o roce o amscr e o o Sapon TPIEyOAEasorscompletly ndependent of heru
hat have mixing times less than the exploration time. Ex- er of states and actions in the MDP environment. This is not
t : d duri loitation in ord ininitze the case, however, because the mixing time of the expeits wil
g;gst%rfeerfjiﬁg thal:rrllr;?/sﬁ%?tstu?nriug dor er to minint in general be_ d_epe_ndent on the size of the MDP state space.
AtEasewFiJII take as input a cgnfidence.parame&ean ap- Indeed the mixing time qf the asymptotically best expert may
proximation parameter, a bound on the maximum reward be exponen_ual in the size of the state space. However, as
' ; NG we have pointed out before, no algorithm can avoid at least
Rmax, and a set of experts. We will show that with high running the best experts for its mixing time and the only de-

probability and for.aIIT, in time polynomiall inT the actual pendence oAtEaseon the complexity of the MDP is entirely
return of Atase will compare favorably with the expected due to this unavoidable dependence on the mixing time.
return of the best policy that mixes in tinfé

Rather than use the standard concept of mixing time, w . .
will use the weaker, but more directly applicable notiore-of 2 Emp”_"cal lllustrations _
expecteereturn mixing timefKearns and Singh, 2002(they  In this section, we use two toy problems to study the applica-
also related it to more standard definitions of mixing time).  bility of the AtEasealgorithm in comparison to other experts
Definition 1. Let M be an MDP and letr be an ergodic algorithms. It has been found that, despite the existence of

; 3 ) i more sophisticated techniques, a simpigreedy algorithm,
g?'}g{ﬁg gﬁ;gz}esffhc:ﬁgtrf%t# ;?ltrng'? g?ntg?'?]fﬂ(j(?r;())tid which either chooses the arm that looks the best so far or,

U7| < e with probability e chooses an action at random, was difficult
- to beat in practicéVermorel and Mohri, 2005 We therefore
Definition 2. Let E' be a set of stationary, ergodic experts ysee-greedy as our representative of bandit algorithms. We
on MDP M. Then HE"‘ denotes the set of experts i ~ comparee-greedy and the previously discussed Exp3 algo-

whosee-expected-return mixing time is at m@stand define  rithm to a slightly more practical version étEase, denoted

Opﬁ(Hg’e) = max__yr. U AtEasel (for AtEaselite), which contains a few modifica-
. - . L tions designed to help speed convergence.
So, with appropriate selection @t.,, and/, in time poly- AtEasel differs from AtEase in how it increases the ex-

nomial in any mixing time,T’, AtEase will achieve return  pioration time, the number of exploitation batches, and how
close toopt(IT ), with high probability. We now formalize it chooses experts to be eliminated in the exploitation phas

this claim in Theorem 1, which, because of its similarity to After each full iteration, the exploration time is multigt

de Farias and Megiddo’s results, we present without proof. by some constant;, rather than incremented. These larger

Theorem 1. For all T, given input parameters, §, and  JUmMps in exploration time help expand the number of mixing

Runax, the AtEase algorithm’s actual return will be withine ~ €Xperts more quickly. Rather than a large constant, the num-
ber of exploitation batches is set equal to the exploration,t

'Kearns & Singh called i¢-return mixing time. reducing the impact of earlier iterations. Finally, durithg
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Figure 1: Results from toy problems. See text for descmystidResults for all three algorithms were averaged over aG§.r

suspicious exploitation phase, experts are abandonee if th @ RoboCup Keepaway ®) Delivery Domain
performance of any batch falls below thext best expert's O~ v -
estimate minus some constanfThis ensures that even if the / @ Quee ) o)
best expert has not yet mixed, it will continue to be expbbite weerer @ A T
if it has been performing better than the alternatives. Rer t o e
sake of clarity in these simple experiments, we@Get 10 |
ande = oo (so the exploitation phase is not suspicious). Quete 2

(%) — 2 —

The first problem (Figure 1(a)) is a standard 10-armed ban-
dit problem. The underlying MDP has one state and two ac-
tions, one giving a reward of 1, the other a reward of 0. EaclFigure 2: The RoboCup Soccer Keepaway domain (a) and the
expert; € 1,2, ..., 10 chooses the rewarding action with prob- Delivery Domain (b). See text for descriptions.
ability 5 and so expert has an expected asymptotic return
of % _and ans-expecte_d—_returr_l mixing tir_ne _of 1 for all The 5 Applications To Transfer Learning
algorithms perform similarly in the beginning, though even - ) )
tually AtEasel is surpassed. This illustrates an aspect of thé/Ve now demonstrate the utility of experts algorithms insran
AtEasel algorithm, namely that it continues to explore low- fer settings. As described in the introduction, we imagine a
return experts for longer and longer periods of time in hopegigent that applies its knowledge from one task to another via
that they may perform better in the long run. This is necesSome mapping from the original state-space to the new one.
sary in the case that the underlying domain is an MDP with a>uch a mapping, combined with a policy for the old problem
long mixing time. In this case, however, the result imach  induces a policy on the new state space. Because the agent
slower convergence time in comparison to the bandit algomay not be able to identify the optimal mapping, it may be
rithms. The “sawtooth” pattern seen here shows clearly th@dvised by multiple “experts” which provide different stat
effects of the alternating exploration and exploitatiomgds. Mappings. The problem of automatically discovering a small

set of “reasonable” mappings is a deep one, and well outside

The second problem (Figure 1(b)) is a 2-state, 3-actiorthe scope of this paper. In our experiments the mappings are
MDP (shown in 1(c)). There are two experts. One alwaydheuristically created by hand.
choses action C in state 1 and action A in state 2. Thus, it has In this section, we consider two transfer learning problems
an expected asymptotic return of 0.5 and mixes very quicklyln the first, the agent is presented with a task more complex
The other expert always choses action C in state 2 and ithan the one it has learned. Its mappings will therefore rep-
state 1 choses B with probability 0.9 and A with probabil- resent different ways to discard some state information, in
ity 0.1. The second expert has an expected asymptotic retu@rder to make use of its knowledge about a simpler space. In
of 1, but takes longer to mix. This problem highlights the the second, we imagine an agent that loses the use of some of
strength ofAtEasel. Neithere-greedy nor Exp3 are likely to its sensors. This agent's mappings must be educated guesses
stay with one expert long enough to allow it to mix so they doabout how toadd state information so as to obtain advice
not receive good estimates of experts 2's quality. In cantra from a policy that depends on richer observations.

AtEasel discovers the second expert quickly and adopts it i

every subsequent iteration, which accounts for the swperi#-1 RoboCup Soccer Keepaway

return seen in 1(b). For the first experiment, we used a modified version of
Stone’s RoboCup Keepaway testij&toneet al., 2004. This

The results of these simple exeriments are intended to higldomain simulates two teams of robots: the keepers and the
light the strengths and weaknessesAtEase In particu- takers (see Figure 2(a)). The keepers attempt to keep a ball
lar we have seen tha#tEase is not effective at solving the from the takers for as long as possible. Though this is in-
stochastic bandit problem in comparison to algorithmsiépec tended to be a multi-agent learning problem, we considered
ically designed for that purpose, but when the mixing time ofa simpler problem by fixing all but one agent’s policy as the
the experts is unknown, it may significantly outperform algo provided hand-coded policy. The other modification made
rithms that do not take mixing time into account. was to the reward signal. As originally posed, the reward for
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Figure 3: Results from Keepaway. Figure (a) shows the pmidace of a typical set of experts. In (BtEasel (¢ = .001,
C = 100), is shown in solid lines, and SARSA (= .125, ¢ = .01), in dashed lines. In (c) we segreedy ¢ = .01).

any action was the number of steps until the agent next ré5.2 The Delivery Domain
cieved the ball. In this case the average reward will always

be 1. Instead, we used a reward signal in which the agent re- Delivery Domain Results
cieved no reward for any action and at the end of an episode, _ 02 \ \ -
recieved a reward of -1 (incidentally, we found that reigfor g o1H1 H-learning
ment learning agents learned faster with this reward sjgnal LI g —— Akasd
Following [Taylor and Stone, 2005ve used SARSA(0) C o e-Greedy
with 1D tile-coding and a linear function approximator to § Exp3
train agents in 3v2 keepaway for 2000 episodes and then g 01 Q1H2
asked if we could use the resulting policies to do well in g
4v2 keepaway. We generated 11 experts, each mapped to g 9.05
3v2 keepaway by ignoring a keeper using a different criterio g
(such as closest, furthest, “most open,” etc.). A typicalcsp 2
trum of the performance of the 11 experts in 4v2 keepaway is % 1 > 3 4 5
shown in Figure 3(a). Time Steps x 10°

In Figure 3(b) we see the performance of 10 representa-
tive runs of AtEasel compared to 10 representative runs of Figure 4: Results from experiments on the Delivery Domain
linear SARSA learning 4v2 keepaway from scratch. In this(averaged over 30 runs), compariAgEasel (¢ = .01 and
domain, the best expert has the longest mixing time. As sucl; = 10) to H-learning p = 1 anda = .001), Exp3.P.1
it is no surprise thaftEasel does not approach the perfor- (6§ = .1), ande-greedy € = 0.1). The label QxHy represents
mance of the best expert in the amount of time shown. It isthe expert that assumes queue 1 contains job x and after pick
however, in all cases able to quickly avoid the “bad” experts up from queue 1, assumes the agent is holding job y.
Also_note that, unless the optimal p_ollcy is among the espert | the delivery domairiTadepalli and Ok, 1998 a robot
provided toAtEasel, it will neveragh|eve op_t|mal return. Itis  nas to deliver jobs from two queues to two conveyor belts
therefore expected that the learning algorithm will e_valj]p (Figure 2(b)). Queue 2 produces only jobs of type 2, which
surpassAtEasel However, the learner spends a significanta e’ gestined for conveyor belt 2 and which provide reward
amount of time performing poorly. It is §h|s transient pekrio _of 1 when delivered. Queue 1 produces jobs of type 1 and 2
of poor performance that transfer learning attempts todavoi it equal probability. Jobs of type 1 are destined for con-
andAtEasel appears to side-step it effectively. veyor belt 1 and provide a reward of 5 when delivered. An

We note, however, that because of the episodic nature ajbstacle (open circle) moves up and down with equal prob-
this domain, the return of each episode is an unbiased esbility. The agent incurs a penalty of -5 if it collides with
timate of an expert’'s expected return. Therefore each exthe obstacle. The world is fully observable (with 6 sensors)
pert’s e-mixing time is one episode. Thus, by thinking of and the agent has 6 actions available to it: do nothing, bwitc
time in terms of episodes, the problem can be expressed d&nes, move up, move down, pick up, and drop off. The pick
a stochastic bandit problem. As such, we compitieasel  up action is only available when the agent has no job and is at
to e-greedy, where each “pull” chooses an expert for a fulla queue. Similarly, the drop off action is only availabletst t
episode. Figure 3(c) shows 10 representative ruagyofedy.  appropriate conveyor belt when the agent holds a job.
As we might expect from our toy examplesgreedy seems Following Tadepalli, we trained agents using H-learning,
to perform better, on the whole, th&tEasel. However, un- an average reward reinforcement learning algorithm (with
like in the toy experimentAtEasel does perform compet- p = 1 anda = .001). We then asked if those policies could
itively with e-greedy, and also provides theoretical perfor-still be used if the agents were to lose the 3 sensors that in-
mance guarantees thagreedy cannot. dicate which jobs are held in the queues and which job the
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