
Approximately Efficient Online Mechanism
Design

David C. Parkes
DEAS, Maxwell-Dworkin

Harvard University
parkes@eecs.harvard.edu

Satinder Singh
Comp. Science and Engin.

University of Michigan
baveja@umich.edu

Dimah Yanovsky
Harvard College

yanovsky@fas.harvard.edu

Abstract

Online mechanism design (OMD) addresses the problem of sequential
decision making in a stochastic environment with multiple self-interested
agents. The goal in OMD is to make value-maximizing decisions despite
this self-interest. In previous work we presented a Markov decision pro-
cess (MDP)-based approach to OMD in large-scale problem domains.
In practice the underlying MDP needed to solve OMD is too large and
hence the mechanism must consider approximations. This raises the pos-
sibility that agents may be able to exploit the approximation for selfish
gain. We adopt sparse-sampling-based MDP algorithms to implement ε-
efficient policies, and retain truth-revelation as an approximate Bayesian-
Nash equilibrium. Our approach is empirically illustrated in the context
of the dynamic allocation of WiFi connectivity to users in a coffeehouse.

1 Introduction

Mechanism design (MD) is concerned with the problem of providing incentives to im-
plement desired system-wide outcomes in systems with multiple self-interested agents.
Agents are assumed to have private information, for example about their utility for differ-
ent outcomes and about their ability to implement different outcomes, and act to maximize
their own utility. The MD approach to achieving multiagent coordination supposes the ex-
istence of a center that can receive messages from agents and implement an outcome and
collect payments from agents. The goal of MD is to implement an outcome with desired
system-wide properties in a game-theoretic equilibrium.

Classic mechanism design considers static systems in which all agents are present and a
one-time decision is made about an outcome. Auctions, used in the context of resource-
allocation problems, are a standard example. Online mechanism design [1] departs from
this and allows agents to arrive and depart dynamically requiring decisions to be made with
uncertainty about the future. Thus, an online mechanism makes a sequence of decisions
without the benefit of hindsight about the valuations of the agents yet to arrive. Without the
issue of incentives, the online MD problem is a classic sequential decision problem.

In prior work [6], we showed that Markov decision processes (MDPs) can be used to define
an online Vickrey-Clarke-Groves (VCG) mechanism [2] that makes truth-revelation by the
agents (called incentive-compatibility) a Bayesian-Nash equilibrium [5] and implements a
policy that maximizes the expected summed value of all agents. This online VCG model

differs from the line of work in online auctions, introduced by Lavi and Nisan [4] in that it
assumes that the center has a model and it handles a general decision space and any decision
horizon. Computing the payments and allocations in the online VCG mechanism involves
solving the MDP that defines the underlying centralized (ignoring self-interest) decision
making problem. For large systems, the MDPs that need to be solved exactly become large
and thus computationally infeasible.

In this paper we consider the case where the underlying centralized MDPs are indeed too
large and thus must be solved approximately, as will be the case in most real applications.
Of course, there are several choices of methods for solving MDPs approximately. We show
that the sparse-sampling algorithm due to Kearns et al. [3] is particularly well suited to
online MD because it produces the needed local approximations to the optimal value and
action efficiently. More challengingly, regardless of our choice the agents in the system can
exploit their knowledge of the mechanism’s approximation algorithm to try and “cheat” the
mechanism to further their own selfish interests. Our main contribution is to demonstrate
that our new approximate online VCG mechanism has truth-revelation by the agents as
an ε-Bayesian-Nash equilibrium (BNE). This approximate equilibrium supposes that each
agent is indifferent to within an expected utility of ε, and will play a truthful strategy in best-
response to truthful strategies of other agents if no other strategy can improve its utility by
more than ε. For any ε, our online mechanism has a run-time that is independent of the
number of states in the underlying MDP, provides an ε-BNE, and implements a policy with
expected value within ε of the optimal policy’s value.

Our approach is empirically illustrated in the context of the dynamic allocation of WiFi con-
nectivity to users in a coffeehouse. We demonstrate the speed-up introduced with sparse-
sampling (compared with policy calculation via value-iteration), as well as the economic
value of adopting an MDP-based approach over a simple fixed-price approach.

2 Preliminaries

Here we formalize the multiagent sequential decision problem that defines the online mech-
anism design (OMD) problem. The approach is centralized. Each agent is asked to report
its private information (for instance about its value and its capabilities) to a central planner
or mechanism upon arrival. The mechanism implements a policy based on its view of the
state of the world (as reported by agents). The policy defines actions in each state, and the
assumption is that all agents acquiesce to the decisions of the planner. The mechanism also
collects payments from agents, which can themselves depend on the reports of agents.

Online Mechanism Design We consider a finite-horizon problem with a set T of time
points and a sequence of decisions k = {k1, . . . , kT }, where kt ∈ Kt and Kt is the set of
feasible decisions in period t. Agent i ∈ I arrives at time ai ∈ T , departs at time li ∈ T ,
and has value vi(k) ≥ 0 for a sequence of decisions k. By assumption, an agent has no
value for decisions outside of interval [ai, li]. Agents also face payments, which can be col-
lected after an agent’s departure. Collectively, information θi = (ai, li, vi) defines the type
of agent i with θi ∈ Θ. Agent types are sampled i.i.d. from a probability distribution f(θ),
assumed known to the agents and to the central mechanism. Multiple agents can arrive and
depart at the same time. Agent i, with type θi, receives utility ui(k, p; θi) = vi(k; θi) − p,
for decisions k and payment p. Agents are modeled as expected-utility maximizers.

Definition 1 (Online Mechanism Design) The OMD problem is to implement the sequence
of decisions that maximizes the expected summed value across all agents in equilibrium,
given self-interested agents with private information about valuations.

In economic terms, an optimal (value-maximizing) policy is the allocatively-efficient, or
simply the efficient policy. Note that nothing about the OMD models requires centralized

execution of the joint plan. Rather, the agents themselves can have capabilities to perform
actions and be asked to perform particular actions by the mechanism. The agents can also
have private information about the actions that they are able to perform.

Using MDPs to Solve Online Mechanism Design. In the MDP-based approach to solv-
ing the OMD problem the sequential decision problem is formalized as an MDP with the
state at any time encapsulating both the current agent population and constraints on current
decisions as reflected by decisions made previously. The reward function in the MDP is
simply defined to correspond with the total reported value of all agents for all sequences of
decisions.

Given types θi ∈ f(θ) we define an MDP, Mf , as follows. Define the state of the MDP at
time t as the history-vector ht = (θ1, . . . , θt; k1, . . . , kt−1), to include the reported types up
to and including period t and the decisions made up to and including period t− 1.1 The set
of all possible states at time t is denoted Ht. The set of all possible states across all time is
H =

⋃T+1
t=1 Ht. The set of decisions available in state ht is Kt(ht). Given a decision kt ∈

Kt(ht) in state ht, there is some probability distribution Prob(ht+1|ht, kt) over possible
next states ht+1. In the setting of OMD, this probability distribution is determined by the
uncertainty on new agent arrivals (as represented within f(θ)), together with departures
and the impact of decision kt on state.

The payoff function for the induced MDP is defined to reflect the goal of maximizing the
total expected reward across all agents. In particular, payoff Ri(ht, kt) = vi(k≤t; θi) −
vi(k≤t−1; θi) becomes available from agent i upon taking action kt in state ht. With this,
we have

∑τ

t=1 Ri(ht, kt) = vi(k≤τ ; θi), for all periods τ to provide the required cor-
respondence with agent valuations. Let R(ht, kt) =

∑

i Ri(ht, kt), denote the payoff
obtained from all agents at time t. Given a (nonstationary) policy π = {π1, π2, . . . , πT }
where πt : Ht → Kt, an MDP defines an MDP-value function V π as follows: V π(ht) is
the expected value of the summed payoff obtained from state ht onwards under policy π,
i.e., V π(ht) = Eπ{R(ht, π(ht))+R(ht+1, π(ht+1))+ · · ·+R(hT , π(hT))}. An optimal
policy π∗ is one that maximizes the MDP-value of every state in H .

The optimal MDP-value function V ∗ can be computed by value-iteration, and is defined
so that V ∗(h) = maxk∈Kt(h)[R(h, k) +

∑

h′∈Ht+1
Prob(h′|h, k)V ∗(h′)] for t = T −

1, T − 2, . . . , 1 and all h ∈ Ht, with V ∗(h ∈ HT) = maxk∈KT (h) R(h, k). Given the
optimal MDP-value function, the optimal policy is derived as follows: for t < T , policy
π∗(h ∈ Ht) chooses action arg maxk∈Kt(h)[R(h, k) +

∑

h′∈Ht+1
Prob(h′|h, k)V ∗(h′)]

and π∗(h ∈ HT) = arg maxk∈KT (h) R(h, k). Let θ̂≤t′ denote reported types up to and

including period t′. Let Ri
≤t′(θ̂≤t′ ;π) denote the total reported reward to agent i up to and

including period t′. The commitment period for agent i is defined as the first period, mi,
for which ∀t ≥ mi, Ri

≤mi
(θ̂≤mi

;π) = Ri
≤t(θ̂≤mi

∪ θ′>mi
;π), for any types θ′>mi

still to
arrive. This is the earliest period in which agent i’s total value is known with certainty.

Let ht′(θ̂≤t′ ;π) denote the state in period t′ given reports θ̂≤t′ . Let θ̂≤t′\i = θ̂≤t′ \ θ̂i.

Definition 2 (Online VCG mechanism) Given history h ∈ H , mechanism Mvcg =
(Θ;π, pvcg) implements policy π and collects payment,

p
vcg
i (θ̂≤mi

;π) = Ri
≤mi

(θ̂≤mi
;π) −

[

V π(hâi
(θ̂≤âi

;π)) − V π(hâi
(θ̂≤âi\i;π))

]

(1)

from agent i in some period t′ ≥ mi.

1Using histories as state will make the state space very large. Often, there will be some function
g for which g(h) is a sufficient statistic for all possible states h. We ignore this possibility here.

Agent i’s payment is equal to its reported value discounted by the expected marginal value
that it will contribute to the system as determined by the MDP-value function for the policy
in its arrival period. The incentive-compatibility of the Online VCG mechanism requires
that the MDP satisfies stalling which requires that the expected value from the optimal
policy in every state in which an agent arrives is at least the expected value from following
the optimal action in that state as though the agent had never arrived and then returning to
the optimal policy. Clearly, property Kt(ht) ⊇ Kt(ht \ θi) in any period t in which θi has
just arrived is sufficient for stalling. Stalling is satisfied whenever an agent’s arrival does
not force a change in action on a policy.

Theorem 1 (Parkes & Singh [6]) An online VCG mechanism, Mvcg = (Θ;π∗, pvcg),
based on an optimal policy π∗ for a correct MDP model that satisfies stalling is Bayesian-
Nash incentive compatible and implements the optimal MDP policy.

3 Solving Very Large MDPs Approximately

From Equation 1, it can be seen that making outcome and payment decisions at any point
in time in an online VCG mechanism does not require a global value function or a global
policy. Unlike most methods for approximately solving MDPs that compute global approx-
imations, the sparse-sampling methods of Kearns et al. [3] compute approximate values and
actions for a single state at a time. Furthermore, sparse-sampling methods provide approx-
imation guarantees that will be important to establish equilibrium properties — they can
compute an ε-approximation to the optimal value and action in a given state in time inde-
pendent of the size of the state space (though polynomial in 1

ε
and exponential in the time

horizon). Thus, sparse-sampling methods are particularly suited to approximating online
VCG and we adopt them here.

The sparse-sampling algorithm uses the MDP model Mf as a generative model, i.e., as a
black box from which a sample of the next-state and reward distributions for any given
state-action pair can be obtained. Given a state s and an approximation parameter ε, it
computes an ε-accurate estimate of the optimal value for s as follows. We make the param-
eterization on ε explicit by writing sparse-sampling(ε). The algorithm builds out a depth-T
sampled tree in which each node is a state and each node’s children are obtained by sam-
pling each action in that state m times (where m is chosen to guarantee an ε approximation
to the optimal value of s), and each edge is labeled with the sample reward for that transi-
tion. The algorithm computes estimates of the optimal value for nodes in the tree working
backwards from the leaves as follows. The leaf-nodes have zero value. The value of a node
is the maximum over the values for all actions in that node. The value of an action in a
node is the summed value of the m rewards on the m outgoing edges for that action plus
the summed value of the m children of that node. The estimated optimal value of state s is
the value of the root node of the tree. The estimated optimal action in state s is the action
that leads to the largest value for the root node in the tree.

Lemma 1 (Adapted from Kearns, Mansour & Ng [3]) The sparse-sampling(ε) algorithm,
given access to a generative model for any n-action MDP M , takes as input any state
s ∈ S and any ε > 0, outputs an action, and satisfies the following two conditions:

• (Running Time) The running time of the algorithm is O((nC)T), where C =
f ′(n, 1

ε
, Rmax, T) and f ′ is a polynomial function of the approximation parameter

1
ε
, the number of actions n, the largest expected reward in a state Rmax and the

horizon T . In particular, the running time has no dependence on the number of
states.

• (Near-Optimality) The value function of the stochastic policy implemented by the
sparse-sampling(ε) algorithm, denoted V ss, satisfies |V ∗(s) − V ss(s)| ≤ ε si-

multaneously for all states s ∈ S.

It is straightforward to derive the following corollary from the proof of Lemma 1 in [3].

Corollary 1 The value function computed by the sparse-sampling(ε) algorithm, denoted
V̂ ss, is near-optimal in expectation, i.e., |V ∗(s) − E{V̂ ss(s)}| ≤ ε simultaneously for all
states s ∈ S and where the expectation is over the randomness introduced by the sparse-
sampling(ε) algorithm.

4 Approximately Efficient Online Mechanism Design

In this section, we define an approximate online VCG mechanism and consider the effect
on incentives of substituting the sparse-sampling(ε) algorithm into the online VCG mech-
anism. We model agents as indifferent between decisions that differ by at most a utility of
ε > 0, and consider an approximate Bayesian-Nash equilibrium. Let vi(θ;π) denote the
final value to agent i after reports θ given policy π.

Definition 3 (approximate BNE) Mechanism Mvcg = (Θ, π, pvcg) is ε-Bayesian-Nash in-
centive compatible if

Eθ|θ≤t′
{vi(θ;π) − p

vcg
i (θ;π)} + ε ≥ Eθ|θ≤t′

{vi(θ−i, θ̂i;π) − p
vcg
i (θ−i, θ̂i;π)}(2)

where agent i with type θi arrives in period t′, and with the expectation taken over future
types given current reports θ≤t′ .

In particular, when truth-telling is an ε-BNE we say that the mechanism is ε-BNE incentive
compatible and no agent can improve its expected utility by more than ε > 0, for any type,
as long as other agents are bidding truthfully. Equivalently, one can interpret an ε-BNE as
an exact equilibrium for agents that face a computational cost of at least ε to compute the
exact BNE.

Definition 4 (approximate mechanism) A sparse-sampling(ε) based approximate online
VCG mechanism, Mvcg(ε) = (Θ; π̃, p̃vcg), uses the sparse-sampling(ε) algorithm to imple-
ment stochastic policy π̃ and collects payment

p̃
vcg
i (θ̂≤mi

; π̃) = Ri
≤mi

(θ̂≤mi
; π̃) −

[

V̂ ss(hâi
(θ̂≤âi

; π̃)) − V̂ ss(hâi
(θ̂≤âi\i; π̃))

]

from agent i in some period t′ ≥ mi, for commitment period mi.

Our proof of incentive-compatibility first demonstrates that an approximate delayed VCG
mechanism [1, 6] is ε-BNE. With this, we demonstrate that the expected value of the pay-
ments in the approximate online VCG mechanism is within 3ε of the payments in the
approximate delayed VCG mechanism. The delayed VCG mechanism makes the same
decisions as the online VCG mechanism, except that payments are delayed until the final
period and computed as:

p
Dvcg
i (θ̂;π) = Ri

≤T (θ̂;π) −
[

R≤T (θ̂;π) − R≤T (θ̂−i;π)
]

(3)

where the discount is computed ex post, once the effect of an agent on the system value
is known. In an approximate delayed-VCG mechanism, the role of the sparse-sampling
algorithm is to implement an approximate policy, as well as counterfactual policies for the
worlds θ−i without each agent i in turn. The total reported reward to agents 6= i over this
counterfactual series of states is used to define the payment to agent i.

Lemma 2 Truthful bidding is an ε-Bayesian-Nash equilibrium in the sparse-sampling(ε)
based approximate delayed-VCG mechanism.

Proof: Let π̃ denote the approximate policy computed by the sparse-sampling algorithm.
Assume agents 6= i are truthful. Now, if agent i bids truthfully its expected utility is

Eθ|θ≤ai

{vi(θ; π̃) +
∑

j 6=i

R
j
≤T (θ; π̃) −

∑

j 6=i

R
j
≤T (θ−i; π̃)} (4)

where the expectation is over both the types yet to be reported and the random-
ness introduced by the sparse-sampling(ε) algorithm. Substituting R<ai

(θ<ai
; π̃) +

V ss(hai
(θ≤ai

; π̃)) for the first two terms in Equation (4) and R<ai
(θ<ai

; π̃) +
V ss(hai

(θ≤ai\i; π̃)) for the third term, then its expected utility is at least

V ∗(hai
(θ≤ai

; π̃)) − V ss(hai
(θ≤ai\i; π̃)) − ε (5)

because V ss(hai
(θ≤ai

; π̃)) ≥ V ∗(hai
(θ≤ai

; π̃)) − ε by Lemma 1. Now, ignore term
R≤T (θ−i; π̃) in Equation (4), which is independent of agent i’s bid θ̂i, and consider the
maximal expected utility to agent i from some non-truthful bid. The effect of θ̂i on the first
two terms is indirect, through a change in the policy for periods ≥ ai. An agent can change
the policy only indirectly, by changing the center’s view of the state by misreporting its
type. By definition, the agent can do no better than selecting optimal policy π∗, which is
defined to maximize the expected value of the first two terms. Putting this together, the
expected utility from θ̂i is at most V ∗(hai

(θ≤ai
; π̃)) − V ss(hai

(θ≤ai\i; π̃)) and at most ε

better than that from bidding truthfully.

Theorem 2 Truthful bidding is an 4ε-Bayesian-Nash equilibrium in the sparse-
sampling(ε) based approximate online VCG mechanism.

Proof: Assume agents 6= i bid truthfully, and consider report θ̂i. Clearly, the policy
implemented in the approximate online-VCG mechanism is the same as in the delayed-
VCG mechanism for all θ̂i. Left to show is that the expected value of the payments are
within 3ε for all θ̂i. From this we conclude that the expected utility to agent i in the
approximate-VCG mechanism is always within 3ε of that in the approximate delayed-VCG
mechanism, and therefore 4ε-BNE by Lemma 2. The expected payment in the approximate
online VCG mechanism is

Eθ|θ≤ai

{Ri
≤T (θ̂; π̃)} −

[

E{V̂ ss(hâi
(θ̂≤âi

; π̃)} − E{V̂ ss(hâi
(θ̂≤âi\i; π̃)}

]

The value function computed by the sparse-sampling(ε) algorithm is a random variable to
agent i at the time of bidding, and the second and third expectations are over the random-
ness introduced by the sparse-sampling(ε) algorithm. The first term is the same as in the
payment in the approximate delayed-VCG mechanism. By Corollary 1, the value function
estimated in the sparse-sampling(ε) is near-optimal in expectation and the total of the sec-
ond two terms is at least V ∗(hâi

(θ̂≤âi\i;π
∗))−V ∗(hâi

(θ̂≤âi
;π∗))− 2ε. Ignoring the first

term in p
Dvcg
i , the expected payment in the approximate delayed-VCG mechanism is no

more than V ∗(hâi
(θ̂≤âi\i;π

∗)) − (V ∗(hâi
(θ̂≤âi

;π∗)) − ε) because of the near-optimality
of the value function of the stochastic policy (Lemma 1). Putting this together, we have a
maximum difference in expected payments of 3ε. Similar analysis yields a maximum dif-
ference of 3ε when an upper-bound is taken on the payment in the online VCG mechanism
and compared with a lower-bound on the payment in the delayed mechanism.

Theorem 3 For any parameter ε > 0, the sparse-sampling(ε) based approximate online
VCG mechanism has ε-efficiency in an 4ε-BNE.

5 Empirical Evaluation of Approximate Online VCG

The WiFi Problem. The WiFi problem considers a fixed number of channels C with
a random number of agents (max A) that can arrive per period. The time horizon

T = 50. Agents demand a single channel and arrive with per-unit value, distributed i.i.d.
V = {v1, . . . , vk} and duration in the system, distributed i.i.d. D = {d1, . . . , dl}. The
value model requires that any allocation to agent i must be for contiguous periods, and be
made while the agent is present (i.e., during periods [t, ai + di], for arrival ai and duration
di). An agent’s value for an allocation of duration x is vix where vi is its per-unit value.
Let dmax denote the maximal possible allocated duration. We define the following MDP
components:
State space: We use the following compact, sufficient, statistic of history: a resource
schedule is a (weakly non-decreasing) vector of length dmax that counts the number of
channels available in the current period and next dmax − 1 periods given previous actions
(C channels are available after this); an agent vector of size (k × l) that provides a count
of the number of agents present but not allocated for each possible per-unit value and each
possible duration (the duration is automatically decremented when an agent remains in the
system for a period without receiving an allocation); the time remaining until horizon T .
Action space: The policy can postpone an agent allocation, or allocate an agent to a chan-
nel for the remaining duration of the agent’s time in the system if a channel is available,
and the remaining duration is not greater than dmax.
Payoff function: The reward at a time step is the summed value obtained from all agents
for which an allocation is made in this time step. This is the total value such an agent will
receive before it departs.
Transition probabilities: The change in resource schedule, and in the agent vector that
relates to agents currently present, is deterministic. The random new additions to the agent
vector at each step are unaffected by the actions and also independent of time.

Mechanisms. In the exact online VCG mechanism we compute an optimal policy,
and optimal MDP values, offline using finite-horizon value iteration [7]. In the sparse-
sampling(ε) approach, we define a sampling tree depth L (perhaps < T) and sample each
state m times. This limited sampling depth places a lower-bound on the best possible ap-
proximation accuracy from the sparse-sampling algorithm. We also employ agent pruning,
with the agent vector in the state representation pruned to remove dominated agents: con-
sider agent type with duration d and value v and remove all but C − N agents where N is
the number of agents that either have remaining duration ≤ d and value > v or duration
< d and value ≥ v. In computing payments we use factoring, and only determine VCG
payments once for each type of agent to arrive. We compare performance with a simple
fixed-price allocation scheme that given a particular problem, computes off-line a fixed
number of periods and a fixed price (agents are queued and offered the price at random as
resources become available) that yields the maximum expected total value.

Results In the default model, we set C = 5, A = 5, define the set of values V = {1, 2, 3},
define the set of durations D = {1, 2, 6}, with lookahead L = 4 and sampling width
m = 6. All results are averaged over at least 10 instances, and experiments were performed
on a 3GHz P4, with 512 MB RAM. Value and revenue is normalized by the total value
demanded by all agents, i.e. the value with infinite capacity.2 Looking first at economic
properties, Figure 1(A) shows the effect of varying the number of agents from 2 to 12,
comparing the value and revenue between the approximate online VCG mechanism and the
fixed price mechanism. Notice that the MDP method dominates the price-based scheme for
value, with a notable performance improvement over fixed price when demand is neither
very low (no contention) nor very high (lots of competition). Revenue is also generally
better from the MDP-based mechanism than in the fixed price scheme. Fig. 1(B) shows the
similar effect of varying the number of channels from 3 to 10.

Turning now to computational properties, Figure 1 (C) illustrates the effectiveness of
sparse-sampling, and also agent pruning, sampled over 100 instances. The model is very

2This explains why the value appears to drop as we scale up the number of agents— the total
available value is increasing but supply remains fixed.

2 4 6 8 10 12

 20

 40

 60

 80

Number of agents

%

value:mdp
rev:mdp
value:fixed
rev:fixed

3 4 5 6 7 8 9 10
 0

 20

 40

 60

 80

100

Number of channels

%

value:mdp
rev:mdp
value:fixed
rev:fixed

2 4 6 8 10
88

90

92

94

96

98

Sampling Width

%
 o

f E
xa

ct
 V

al
ue

%
 o

f E
xa

ct
 T

im
e

 0

0.2

0.4

0.6

0.8

1.0

time:pruning
time:no pruning

value:pruning
value:no pruning

vs. #agents
vs. #agents (no pruning)
vs. #channels

2 4 6 8 10 12
0

100

200

300

400

500

600

Number of Agents

R
un

 ti
m

e
(s

)

time:pruning
time:no pruning

Figure 1: (A) Value and Revenue vs. Number of Agents. (B) Value and Revenue vs. Number of
Channels. (C) Effect of Sampling Width. (D) Pruning speed-up.

small: A = 2, C = 2, D = {1, 2, 3}, V = {1, 2, 3} and L = 4, to allow a compari-
son with the compute time for an optimal policy. The sparse-sampling method is already
running in less than 1% of the time for optimal value-iteration (right-hand axis), with an
accuracy as high as 96% of the optimal. Pruning provides an incremental speed-up, and
actually improves accuracy, presumably by making better use of each sample. Figure 1 (D)
shows that pruning is extremely useful computationally (in comparison with plain sparse-
sampling), for the default model parameters and as the number of agents is increased from
2 to 12. Pruning is effective, removing around 50% of agents (summed across all states in
the lookahead tree) at 5 agents.

Acknowledgments. David Parkes was funded by NSF grant IIS-0238147. Satinder Singh
was funded by NSF grant CCF 0432027 and by a grant from DARPA’s IPTO program.

References

[1] Eric Friedman and David C. Parkes. Pricing WiFi at Starbucks– Issues in online mechanism
design. In Fourth ACM Conf. on Electronic Commerce (EC’03), pages 240–241, 2003.

[2] Matthew O. Jackson. Mechanism theory. In The Encyclopedia of Life Support Systems. EOLSS
Publishers, 2000.

[3] Michael Kearns, Yishay Mansour, and Andrew Y Ng. A sparse sampling algorithm for near-
optimal planning in large Markov Decision Processes. In Proc. 16th Int. Joint Conf. on Artificial
Intelligence, pages 1324–1331, 1999. To appear in Special Issue of Machine Learning.

[4] Ron Lavi and Noam Nisan. Competitive analysis of incentive compatible on-line auctions. In
Proc. 2nd ACM Conf. on Electronic Commerce (EC-00), 2000.

[5] Martin J Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press, 1994.

[6] David C. Parkes and Satinder Singh. An MDP-based approach to Online Mechanism Design. In
Proc. 17th Annual Conf. on Neural Information Processing Systems (NIPS’03), 2003.

[7] M L Puterman. Markov decision processes: Discrete stochastic dynamic programming. John
Wiley & Sons, New York, 1994.

