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Abstract

Decision makers on supply chains face an uncertain, dy-
namic, and strategic multiagent environment. We report
on Deep Maize, an agent we designed to participate in the
2003 Trading Agent Competition Supply Chain Management
(TAC/SCM) game. Our design employs an idealized equi-
librium analysis of the SCM game to factor out the strategic
aspects of the environment and to define an expected prof-
itable zone of operation. Deep Maize applies distributed feed-
back control to coordinate its separate functional modules and
maintain its environment in the desired zone, despite the un-
certainty and dynamism. We evaluate our design with results
from the TAC/SCM tournament as well as from controlled
experiments conducted after the competition.

Introduction
Networks of interdependent production activities, controlled
by distinct organizations, are often characterized assupply
chains. Supply chains constitute a challenging class of en-
vironments for planning and scheduling, for several related
reasons. First, agents operating on a supply chain face sub-
stantialuncertainty. Though they may possess high-fidelity
information about their own local state, agents typically
have at best general knowledge of other operations on the
chain, and access to only noisy summarized data about their
states. Nevertheless, they cannot avoid making commit-
ments (e.g., to procure component supplies) before all rel-
evant uncertainty is resolved (e.g., about customer demand).
Second, supply chain operations can be highlydynamic. De-
cisions made at one time can propagate to affect conditions
elsewhere on the chain at disparate times, and external con-
ditions may cause sudden changes in resource availability
and production values. This dynamism can be viewed as just
another source of underlying uncertainty, but its temporal
structure may enable particular solutions based on dynamic
control. Third, the other production operations on the sup-
ply chain are also controlled by self-interested agents, whose
behavior is naturallystrategic. This also has the effect of
amplifying uncertainty, but again in a particular regular way
that should be exploited in reasoning about supply-chain en-
vironments.

As discussed in our section on related work below, pre-
vious research does not provide a comprehensive solution
for planning and scheduling on supply chains. Of course,

whether or not they expressly deal with all the issues raised
above, many existing methods are applicable to a large de-
gree in supply-chain environments. Rather than propose a
complete alternative, therefore, we consider how to adapt
or overlay methods designed for localized planning and
scheduling in support of operation within a supply-chain
context. The emphasis of our approach, therefore, is on how
to coordinate the local methods, and to ensure they are given
problems within their range of applicability.

We developed our approach in order to participate in the
2003 Trading Agent Competition, Supply Chain Manage-
ment game (TAC/SCM) (Sadehet al. 2003). As described
below, TAC/SCM presents an extremely challenging supply-
chain scenario, where agents representing PC manufacturers
compete in markets for components and finished goods to
maximize profits over a simulated year. The game is far too
complex to solve analytically or characterize optimal behav-
ior, due largely to the issues of uncertainty, dynamism, and
strategy mentioned above. Although evaluating research in
such an uncontrolled and complicated environment can be
quite difficult, there are distinct advantages to testing agent
strategies in a competitive setting where the other agents
and the scenario itself are designed by others. The com-
petition also allows comparison of competing approaches to
the same game rather than the more usual situation of differ-
ent researchers evaluating their approaches in different, or
at best slightly different, domains. These benefits are coun-
terbalanced somewhat by the distortions introduced by arti-
ficial constraints like tournament deadlines, compression of
the computational decision cycle, etc.

The basic underlying idea of our approach is a familiar
one: define a desired (from the agent’s point of view) orref-
erenceregion of operation, and then use feedback control ac-
tions to suppress deviations from the reference region. The
feedback control policy itself is complicated by the need to
manage interactions with entities at multiple tiers of the sup-
ply chain. A natural decomposition of the control architec-
ture would separate out the interactions with distinct agents
or classes (suppliers, customers), though of course the de-
cisions for each depend strongly on outcomes with respect
to others. We therefore investigate adistributedcontrol ar-
chitecture where the feedback mechanisms operate semi-
independently, coordinated through highly aggregated envi-
ronment parameters. Specifically, our feedback mechanisms



communicate viaprice signalsdefining the reference zone.
We show how to derive such prices in the TAC/SCM game
usingequilibrium analysis, which in turn applies Bayesian
evidence evaluation to update demand projections through-
out the game. In addition to describing our design principles
and the resulting system, we report on the results of the com-
petition, which served in effect as a large case study of our
distributed feedback control design ideas.

In the next two sections we discuss related work and de-
scribe the TAC/SCM game. We then introduce our agent
design, first as a high-level architecture, and then with de-
tails of the local decision methods and distributed feedback-
control mechanisms. We evaluate our methods in light of
results from TAC/SCM competition, as well as a more sys-
tematic analysis based on post-competition experiments.

Related Work

Most of the AI and OR literature on scheduling presumes a
single agent operating in a deterministic or stochastic en-
vironment, with uncertainty (if addressed) typically mod-
eled in terms of stochastic arrival of orders (tasks, jobs, . . . )
and perhaps some probabilistic resource shocks. There is
a large and growing literature in Operations Management
dealing directly with supply chains (Chopra & Meindl 2003;
Simchi-Levi, Kaminsky, & Simchi-Levi 2002), and in-
formation technology for decision support is increasingly
prevalent (Lucking-Reiley & Spulber 2001). Although the
prior work covers many aspects of supply chain manage-
ment, it is fair to characterize most of it as taking the per-
spective of a central optimizer, either of a particular firm
in a specified environment, or of some scope encompass-
ing multiple (typically two) interacting agents on the chain.
Whereas there are some notable exceptions that address self-
interested agents and private information (Carr & Duenyas
2000; Chen 1999), these studies tend (necessarily) to adopt
stylized models of the supply-chain environment, in order to
derive analytical design results.

In our work, we take the viewpoint of an individual agent
operating on the chain, not an overall designer. From this
perspective, the agent faces a standard operations manage-
ment problem in an environment defined by other opera-
tions on the chain. Here too, we recognize the existence
of a large body of relevant knowledge, and acknowledge
that our particular solution for TAC/SCM could undoubt-
edly make much better use of known techniques. However,
it is also clear that no off-the-shelf operations management
solution is a complete match for environments as complex as
the TAC/SCM game. Therefore, our design is geared toward
accommodating existing approaches and tools (optimization
and search techniques, simulation methodologies, analyti-
cal models, etc.), and coordinating them through aggregate-
level signals that may be employed in special-purpose ways
within the respective modules.

TAC/SCM Game
In the TAC/SCM scenario,1 six agents representing PC (per-
sonal computer) assemblers operate in a common market en-
vironment, over a simulated year. The environment consti-
tutes asupply chain, in that agents trade simultaneously in
markets for supplies (PC components) and the market for
finished PCs. Agents may assemble for sale 16 different
models of PCs, defined by the compatible combinations of
the four component types: CPU, motherboard, memory, and
hard disk.

Figure 1 diagrams the basic configuration of the supply
chain. The six agents (arrayed vertically in the middle) pro-
cure components from the eight suppliers on the left, and
sell PCs to the entity representing customers on the right.
Trades at both levels are negotiated through arequest-for-
quote (RFQ) mechanism, in which buyers issue requests,
sellers respond withoffers, and buyers choose which to ac-
cept asorders.

Figure 1: TAC/SCM supply chain.

The game runs for 220 simulated days. On each day, the
agent may receive offers and component delivery notices
from suppliers, and RFQs and orders from customers. It
then must make several decisions:

1. What RFQs to issue to component suppliers.

2. Given offers from suppliers in reponse to the previous
day’s RFQs, which to accept.

3. Given component inventory and factory capacity, what
PCs to manufacture.

4. Given inventory of finished PCs, which customer orders
to ship.

5. Given RFQs from customers, which to respond to and
with what offers.

In the simulation, the agent has 15 seconds to compute and
communicate its daily decisions to the game server. At the

1For complete details of the game rules, see the specification
document (Arunachalamet al. 2003). This is available athttp:
//www.sics.se/tac , as is much additional information about
TAC/SCM and TAC in general.



end of the game, agents are evaluated by total profit, with
any outstanding component or PC inventory valued at zero.

Deep Maize Architecture
Our agent,Deep Maize, comprises three functional modules,
each of which ran on a separate machine in the configuration
that played in the 2003 TAC/SCM tournament. Thepro-
curement modulehandles all the interactions with suppliers,
thesales moduledeals with the customer, while thefactory
modulecontrols the manufacturing and shipping operations.
The three modules connect to the TAC server via a com-
munication layer, which also provides a central cache for
inter-module information sharing. Factors motivating our
multi-processor distributed architecture included the need to
decompose a complex task and to accelerate the agent de-
velopment process through parallel design and implementa-
tion. The distributed architecture in turn raised coordination
issues, in particular how to keep the procurement and sales
modules working toward consistent ends, cognizant of the
state of the factory.

Distributed Feedback Control
As for real supply chains, agents operating in TAC/SCM are
presumed to be self-interested, and so the scenario consti-
tutes anon-cooperative game. The complexity of this game,
however, precludes the direct application of game-theoretic
solution methods. Therefore our first major goal was to
factor out (through summarization or mitigation, by meth-
ods discussed below) the possible effects of strategic play,
enabling us to view TAC/SCM as a stochastic dynamical
system to be controlled by our agent. Once we can view
the agent’s problem as a control problem instead of as a
game, then a number of different approaches from control
theory become available. One possible approach would be
to build (or learn) a model of the stochastic effects of all of
our agent’s actions and then to use dynamic programming
to solve the resulting optimal control problem. However,
both the model generation and solution tasks are intractable
in this setting. Another approach is that ofreference feed-
back control, in which one defines a reference trajectory in
state space and implements a policy that measures devia-
tion from the reference trajectory and takes (usually short-
term) corrective actions (Astrom & Wittenmark 1994). We
turned to feedback control in our design for two main rea-
sons: (1) it was conceptually straightforward and compu-
tationally efficient to implement, and (2) it promised some
robustness to the surprises we would inevitably encounter in
the TAC/SCM competition.

Consider how one might implement feedback control in
our agent, starting with the sales module. We would need
to define a reference customer sales trajectory for the year
and then employ a bidding policy to attempt to follow this
trajectory. Similarly, for the procurement module we would
define a reference delivery trajectory and employ a supplier
negotiation policy to follow it. Two complications arise im-
mediately. First, we cannot specify these references stati-
cally, given the dynamic, uncertain, and strategic nature of
the environment. Second, the procurement and sales activ-

ities interact, and by defining their control problems inde-
pendently of each other we preclude the possibility of coor-
dinating their response to events in their common environ-
ment. We address the second problem in part by defining
the goal for both modules in terms of a referenceinventory
trajectory, where inventory represents the accumulation of
deliveries net of depletion by sales. We then employ aggre-
gate market analysis techniques (described below) both to
set the reference trajectory dynamically based on observed
conditions on the supply chain, as well as to calibrate the
control actions available to each module.

Maintaining the Reference Trajectory
Figure 2 presents a high-level view of Deep Maize’s feed-
back control design. At this level, it is useful to partition the
agent’s experience of its complex and dynamic environment
into threezones: a middlereference zonein which the agent
is approximately meeting its reference inventory trajectory,
a lowershort-term deficitzone in which the agent has too
little inventory in the short run (thereby losing out on sales
opportunities and paying penalties on existing orders), and
an upperlong-term surpluszone in which the agent has too
much inventory in the long run (thereby likely to end up with
unused and wasted components). Too much inventory in the
short-term only is not a deviation from reference because we
expect to deplete it over time and there are no holding costs.
Similarly, too little in the long-term is not classified as a de-
viation because there remains ample opportunity to procure
supplies for the future.

Figure 2: Operating regions and control actions employed
by Deep Maize in response to environment changes.

The arrows on the left side of Figure 2 show some of the
stochastic events that can perturb the system away from the
reference zone. For example, demand may increase or the
agent may win an unexpectedly large number of PC orders,
pushing it into the bottom zone. In such a case, the sales
module can modify its bidding policy to reduce the rate of
new PC orders, and the procurement module can more ag-
gressively seek short-term component deliveries. A decrease
in demand or a large procurement of supplies can cause a
deviation from reference in the opposite direction. In that



case, the sales module will increase PC sales while the pro-
curement module will reduce future component purchases.

Market Analysis
The primary way that we account for competitive behavior
of the other agents is through an aggregate analysis of the
market for PCs and components. Deep Maize continually
evaluates the conditions of supply and demand, and attempts
to find their balance, orequilibriumpoint. It uses the results
of this market analysis to establish the reference inventory
trajectory, and to parametrize the control actions of the sales
and procurement modules.

Price Equilibrium
In the TAC/SCM market, suppliers set prices for compo-
nents based on an analysis of their available capacity. Prices
for finished PCs are determined by a competitive bidding
process. Conceptually, there exist separate prices for each
type of component, from each supplier, and for each individ-
ual PC order. Moreover, these prices vary over time: both
the time that the deal is struck, and the time that the good is
promised for delivery.

Our analysis simplifies this picture by assessing the equi-
librium of an idealized steady state, in which component de-
mand is constant and served uniformly over time. Symme-
tries inherent in the game specification then enable us to re-
duce the dimensionality of the price system by relating the
prices of every component and finished PC to a central in-
dex price,p. Specifically, the TAC/SCM component cata-
log (Arunachalamet al. 2003) associates every component
c with a base price, pc. The base price of a particular PC
model,PC, can then be defined as the sum of base prices of
its constitutent components,pPC ≡

∑
c∈PC pc. The over-

all price level,p, then represents the price of all goods, as
a multiple of their respective base prices. Anequilibrium
price levelis a value ofp such that the aggregate quantity
demanded at that price level equals the quantity supplied.
Supply Function: The correspondence between price and
quantity for component supplies is defined by the suppliers’
pricing formula (Arunachalamet al. 2003). The normal-
ized price offered by a supplier at dayd for an order to be
delivered on dayd + i is

p(d + i) = 1− 0.5
cavail(d + i)

500i
, (1)

wherecavail(j) denotes the cumulative capacity the supplier
projects to have available from the current day through day
j. The denominator,500i, represents thenominal capacity
controlled by the supplier overi days, not accounting for any
capacity committed to existing orders.

Supplier prices according to Eq. (1) are date-specific, de-
pending on the particular pattern of capacity commitments
in place at the time the supplier evaluates arequest for quote
(RFQ). In the steady state, commitments are uniform in any
given interval,2 in which case we can express supplier prices

2To the extent the pricing formula (1) reflects actual costs, we
see that costs are increasing with committed capacity. Efficient
production would thus indeed spread out component manufacture
as evenly as possible.

in a date-independent manner:

p = 1− 0.5
(500− qc)

500
= 0.5 +

qc

1000
, (2)

whereqc is the daily production quantity of this particular
component. Letq be the steady-state daily production level,
in units of PCs produced. By symmetry of the customer de-
mand and supplier costs and capacities, each PC model is
equally likely to be produced. Each CPU component, there-
fore, appears in 1/4 of PCs, for a total ofq/4 produced per
day in the steady state. Non-CPU components each appear
in 1/2 of PCs. These, however, are manufactured by two sup-
pliers each, so also are produced at the level ofq/4 per day
per supplier. Thus, for every supplier-component combina-
tion, the steady-state relationship between price level and PC
production quantity can be expressed as

p = 0.5 +
q/4
1000

= 0.5 +
q

4000
. (3)

Equation (3) is based on the actual pricing policy imple-
mented by suppliers, and therefore represents the effective
supply function. Note that the function dictates themarginal
price faced by a component buyer, that is, the cost of pur-
chasing an additional component unit given an overall PC
economy operating at production levelq. Given the incre-
mental formation of supply deals, theaverage pricepaid for
components is considerably less.
Demand Function: Demand for PCs on a given day is char-
acterized by the set of customer RFQs issued, each specify-
ing a PC model, quantity, late penalty, andreserve price.
The reserve price indicates the maximum the customer is
willing to pay. Although the actual price is determined by
competitive bidding among the manufacturing agents, the
customer is committed to buy if any bid is at or below its
reserve. Thus, we can define the overall demandq at price
level p as the aggregate number of PCs appearing in RFQs
with (normalized) reserve pricep or more.

The underlying demand level is defined by an integer pa-
rameterQ, which evolves according to a given stochastic
process, discussed below. Each day, the customer issues a
set ofQ̂ RFQs, whereQ̂ is drawn from a Poisson distribu-
tion with mean valueQ. The number of PCs requested in an
RFQ is drawn uniformly from the interval [1,20], and so the
expected total quantity of PCs requested is10.5Q. Reserve
prices are drawn uniformly from the interval [0.75, 1.25].
The expected total quantity of PCs requested at a price ofp
or less, therefore, can be described by

q =

 10.5Q if p ≤ 0.75
10.5Q

(
1.25−p

0.5

)
if 0.75 ≤ p ≤ 1.25

0 if p ≥ 1.25.
(4)

Equilibrium Price and Quantity: To derive the price equi-
librium, we simply solve for the intersection of supply (3)
and demand (4) functions. Combining the two equations for
the case when0.75 < p ≤ 1, we obtain

p∗ =
2000 + 26.25Q

4000 + 21Q
. (5)



We can verify that Eq. (5) leads to prices in the assumed
range, as long as95 < Q < 380. The actual range forQ is
[80,320], so we need consider only the lower boundary. For
Q ≤ 95, the effective demand quantity is the entire amount
requested, so prices are determined entirely by the supply
function (3), withq = 10.5Q.

Customer Demand Projection
The equilibrium price (5) depends centrally onQ, the
stochastic parameter controlling overall demand. In each
game instance, an initial value,Q0, is drawn uniformly from
[80,320]. IfQd is the value ofQ on dayd, then its value on
the next day is given by (Arunachalamet al. 2003):

Qd+1 = min(320,max(80, τdQd)), (6)

whereτ is a trend parameter that also evolves stochastically.
The initial trend is neutral,τ0 = 1, with subsequent trends
updated by a perturbationε ∼ U [−0.01, 0.01]:

τd+1 = max(0.95,min(1/0.95, τd + ε)). (7)

Each day, the agent observes a number of RFQs,Q̂d ∼
Poisson(Qd). We can represent the transition and obser-
vation graphically in a Bayesian network fragment, as illus-
trated in Figure 3. Note that the updated demand,Qd+1, is a
deterministic function ofQd andτd, as specified in Eq. (6).

Figure 3: Bayesian network model of demand evolution.

This deterministic relationship simplifies the update of
our beliefs about the demand state given a new observation.
Let Pr(Qd, τd) denote the probability distribution over de-
mand states given our observations through dayd. W can
incorporate a new observation̂Qd+1 as follows:

Pr(Qd, τd|Q̂d+1) ∝ Pr(Q̂d+1|Qd, τd) Pr(Qd, τd). (8)

Eq. (8) exploits the fact that the observation atd+1 is condi-
tionally independent of prior observations given the demand
state(Qd, τd). We can elaborate the first term of the RHS
using the demand update (6):

Pr(Q̂d+1|Qd, τd) = Poisson(min(320,max(80, τdQd))).

After calculating the RHS of Eq. (8) for all possible de-
mand states, we normalize to recover the updated proba-
bility distribution. We can then project forward our be-
liefs over(Qd, τd) using the demand and trend update equa-
tions (6) and (7), to obtain a probability distribution over
(Qd+1, τd+1).

A sequence of updates by Eq. (8) represents an exact pos-
terior distribution over demand state given a series of ob-
servations. To maintain a finite encoding of this joint dis-
tribution, we consider only integer values for demand,Q ∈

{80, . . . , 320}, and divide the trend rangeτ ∈ [0.95, 1/0.95]
into T discrete values, evenly spaced. For demand estima-
tion in the 2003 tournament, Deep Maize tookT = 11, for
a total of 2651 possible demand states.

Given a distribution over demand states, we can project
forward to evaluate the expected demand at future points in
time. Projection calculations yield the distribution overQ
for particular days, as well as the meanQ over a range of
days, up to the horizon of the game. The derivedQ values
can then be employed in equilibrium calculations, for par-
ticular days or longer periods.

Reference Inventory Trajectory Generation
The reference inventory trajectory is the sum of three
sources of component requirements. First, for the imme-
diate term,existing customer ordersfor PCs entail a definite
commitment of inventory. Second, beyond the horizon of
current orders, we derive the time series ofexpected com-
ponent utilization, based on the price equilibrium and de-
mand projection calculations described above. Deep Maize
assumes that the overall market activity level on a given day
will be the competitive equilibrium quantity corresponding
to the demand projected for that day, and expects that it will
garner 1/6 of that quantity on average. It also assumes that
the distributions of PC orders it gets will have, on average,
a uniform distribution over the possible PC types. To ac-
count for unpredictable movement in demand trends, Deep
Maize sets a somewhat more conservative reference, based
on the demand quantityQ′ satisfyingPr(Qd ≥ Q′) = 0.63,
as opposed to the expectedQd (the particular threshold 0.63
is somewhat arbitrary). Over the range where existing and
prospective customer orders overlap, we phase in the ex-
pected utilization proportionally.

The final component of our inventory reference is a base-
line level that we attempt to maintain in order to mitigate
short-term noise in our procurement and sales activity. Hav-
ing the buffer increases the agent’s flexibility, allowing it to
act more opportunistically. Deep Maize sets the buffer level
at 6.0 times the current expected daily utilization (this multi-
plier is also somewhat arbitrary). The baseline level is scaled
gradually to zero over the last 25 days of the game, at which
point accumulated inventories become worthless.

In tracking the reference inventory trajectory, the modules
take into account current inventory of components and fin-
ished PCs, as well as anticipated deliveries of components
the agent has already committed to purchasing.

Functional Modules
The procurement module can request supplies for delivery
on any future day, thereby excercising direct influence over
the inventory trajectory in both the short and long term.
However, this influence is one-directional, as procurement
can only add to inventory. The sales module can move in-
ventory in the other direction, by selling PCs. Since cus-
tomer RFQs have a maximum horizon of 12 days in advance,
the sales module can exert direct influence only in the short
term. The factory module does not attempt to influence the
overall inventory level, but rather serves as conduit between



procurement of components and PC sales. We describe the
particular policies of each module in turn.

Procurement Module

To acquire components, an agent sends RFQs to a supplier
(up to 10 per supplier per day), each specifying a desired
quantity and due date. The supplier responds with an offer
specifying quantity, due date, and price. If the supplier can-
not meet the requested quantity and date, it will instead offer
a partial quantity at the requested date and/or the full quan-
tity at a later date, to the best of its ability given its existing
commitments. Agents must accept or decline each offer the
day they receive it. Thus the procurement module has two
tasks:RFQ generationandoffer acceptance.

The RFQ mechanism generates RFQs to bridge the gap
between the current and reference inventory trajectory. One
RFQ is generated for each customer order that cannot be ful-
filled using current inventory, and one RFQ is sent to each
supplier of a component for any shortage in the baseline in-
ventory. The remaining RFQs request components address-
ing the long-term expected component utilization on partic-
ular days. To stay within the quota of10 RFQs per supplier,
we give priority to those addressing customer orders, then
baseline, then utilization for days expected to be available at
the lowest prices.3

The offer acceptance mechanism has to decide on the sub-
set of all offers to accept. This presents an optimization
problem: selecting the subset that leads to the state with
maximal value. The value of a state is the sum of incre-
mental values of the components accepted. Components
necessary to fill outstanding customer orders are assigned
high values (the entire value of the customer order plus any
penalties that may be due). Components that fill baseline
inventory are valued at the equilibrium price plus abase-
line premium, defined on a sliding scale from 25%-100% of
the component base price. Components addressing expected
component utilization are valued at theirequilibrium price,
based on our market analysis discussed above.

Given a representation of the value function, we can eval-
uate any subset of supplier orders in terms of the resulting
inventory trajectory and expense. Since our decision time is
limited, we search the space of candidate offer bundles using
hill-climbing, starting from the state accepting the maximal
offer set. Deep Maize terminates the search when it finds a
local minimum, or runs out of time.
Reference Zone Policy: Sufficient short-term inventory
means that there is no need to generate short-term RFQs.
Any long-term deficit in inventory for a component will
cause RFQs to be generated for that component. The re-
sulting offers will be accepted only if they are priced at less
than the projected equilibrium price.
Short-Term Deficit Zone Policy: For short-term deficits,
the procurement module generates customer-order and base-

3Deep Maize maintains an assessment of each supplier’s avail-
able capacity profile, based on the offers we have seen and the
specified supplier pricing function (1). This yields an estimated
upper-bound on price for each possible date. We then select prob-
abilistically favoring lower priced dates.

line inventory RFQs. If there is long-term deficit as well,
then RFQs for expected component utilization are also gen-
erated with lower priority. The offer acceptance algorithm
places high values on offers that can fill customer-orders or
baseline inventory needs, accepting them regardless of price.
Offers that fill long-term needs will be accepted if they are
priced at less than projected equilibrium prices.
Long-Term Surplus Zone Policy: RFQs for future ex-
pected component utilization will not be generated in this
zone. Any simultaneous short-term deficit is dealt with by
the policy for that case.

Sales Module
Each day, the sales module receives a set of customer RFQs,
each specifying a PC type, quantity, due date, late penalty,
and reserve price. It decides which customer RFQs to bid
on, and how much to bid on each one. The customer re-
ceives bids from all the agents and accepts the lowest offer,
as long as it is below the reserve price. The sales module acts
to maintain the reference inventory trajectory by bidding un-
der the assumption that components used to serve any new
customer orders must be replaced. It associates with each
order acomponent replacement cost, calculated as the sum
of equilibrium prices for the components necessary to fulfill
the order.

We simplify the parallel-bidding problem faced, by treat-
ing the auctions as strategically independent. We model each
RFQ as a first-price sealed-bid (FPSB) auction with inde-
pendent private values (negative costs), symmetric and uni-
formly distributed (Krishna 2002)). According to the stan-
dard FPSB analysis, the equilibrium bidding strategy is

b(c) = c +
1
N

(B − c) , (9)

wherec is the agent’s own cost,B is the upper bound on
the cost distribution, andN is the number of agents. We
setB to the summed base price (an upper bound on actual
component prices), and select2 ≤ N ≤ 6 by assessing the
effectivenumber of bidding agents (the maximum in low-
or moderate-demand situations, tapering off as overall de-
mand increases). Under idealized conditions (violated by
interdependencies between auctions in the actual TAC/SCM
environment), Eq. (9) maximizes expected profits, selecting
the optimal markup over costs given the competitive bidding
environment assumed.

The sales module bids on any RFQ that can be fulfilled,
taking into account current customer orders, current inven-
tory and pending component deliveries, and factory capac-
ity.4 RFQs are considered one-by-one. Successive consider-
ations assume that any bids placed on RFQs will be won, so
their associated resources are considered unavailable.
Reference Zone Policy:In this zone, short-term inventory
is not a binding constraint; the agent can bid on as many
customer RFQs as factory capacity allows. Prices offered to
customers are based on replacement costs, with profits taken
according to the second term in the bidding formula (9).

4In the tournament Deep Maize placed additional “aggressive”
bids beyond these constraints for premium prices. Discussion of
these bids is omitted for brevity.



Short-Term Deficit Zone Policy: The customer module
will bid on only as many PCs as can be produced with the
current inventory and pending component deliveries. This
helps to reduce the risk of paying large penalties if compo-
nents cannot be acquired in time to fill the customer RFQs.
Long-Term Surplus Zone Policy: The sales module tries
to increases its probability of winning customer orders by
discountingbid prices. In this zone, it is not presumed nec-
essary to replace all components used, and so the effective
costc in Eq. (9) can be reduced. Deep Maize employs a dis-
counted replacement cost ofce−kx, wherex is the number
of surplus components andk is a scaling parameter. In the
limit, as surplus increases, component costs are treated as
fully sunk.

Factory Module
The factory module decides which finished PCs to ship to
which customers, and how many of each type of PC to as-
semble on the following day. These are interesting schedul-
ing problems in their own right, but our discussion is brief
because they do not directly affect the overall inventory tra-
jectory. Given stochastic models of customer orders and
component arrivals, we could use dynamic programming to
solve these problems. Instead, for computational efficiency,
we optimize over a three-day horizon, considering only the
components that are already in inventory or due to arrive the
next day. This turns out to be an integer linear programming
problem, which we solve using CPLEX.

Using the local policies described above, the three Deep
Maize modules are able to coordinate their activies by com-
municating only information related to the reference inven-
tory trajectory: PC orders currently held, projected customer
demand, current inventory, and anticipated component de-
liveries. The local policies employed by the three modules
are designed to be profit maximizing when the TAC/SCM
market is in equilibrium and the agent is opertating in the
reference inventory zone. The procurement and sales mod-
ules deal with tumultuous conditions by using their joint ca-
pabilities to force Deep Maize back into the profitable refer-
ence zone as quickly as possible.

Empirical Analysis
We evaluate Deep Maize’s performance in the tournament
and in post-tournament controlled experiments.

Results from the TAC/SCM Tournament
Through a series of qualifying, seeding, and semifinal
rounds, the original pool of 20 competing in TAC/SCM was
whittled down to six finalists. The final round—held on 13
August 2003 in Acapulco, in conjunction with IJCAI-03—
featured a series of 16 games among the finalist group. Deep
Maize emerged with the second highest score.

There are many factors bearing on overall score, and so
gross tournament results provide only suggestive evidence
for the efficacy of Deep Maize’s strategy and approach. To
assess the specific performance of our distributed feedback-
control algorithms, we measured the short-term deficit and
long-term surplus deviations from the reference inventory

trajectory in the tournament games. Figures 4 and 5 present
deviation measurement results for a single component from
two different finals games.

Figure 4: Deviation analysis for a tournament game. For the
deficit graph, only negative regions represent deviations, and
for the suplus graph only the positive regions are deviating.

Figure 5: Results from another tournament game.

The x-axes in these diagrams represent the days of the
TAC/SCM year. Panel (a) depicts the time series of cus-
tomer demand, which as seen here, can swing from extreme
to extreme fairly quickly. Panel (b) displays the short-term
deficit, based on normalizing the reference inventory trajec-
tory to zero for all days. Panel (c) shows the long-term sur-
plus, again based on a normalized reference. The effects of
feedback control are apparent in both plots, as perturbations
are suppressed again and again. Panel (d) plots deviations
only: the curve above zero corresponds to long-term surplus
and the curve below to short-term deficits.

We can observe other interesting effects in these games.



In Figure 4, between day80 and day100 as the customer
demand bottoms, we accumulate both short-term and long-
term surplus. Shortly after day100, demand starts trending
higher, leading quite quickly to a short-term and long-term
deficit. Figure 5(b) reflects a very large delivery of compo-
nents around day30, a perturbation from which it takes Deep
Maize over50 days to recover. Around day140, the game
shifts from high to low demand, and we see on Panel (d)
a brief instance of the interesting (and difficult) situation
where there exists both short-term deficit and long-term sur-
plus.

Figures 4 and 5 are representative of the kinds of devi-
ation plots we obtained from the games of the tournament.
The tournament data indicate that Deep Maize was effec-
tive in suppressing deviations from the reference inventory
trajectory. What the tournament data results cannot show,
however, is how effective or ineffective different pieces of
our feedback control strategy were. For that we turned to
controlled experiments we conducted with a local copy of
the TAC/SCM game server since the tournament ended.

Results from Controlled Experiments
Our goal in these experiments was to measure the effective-
ness of specific feedback control loops by disabling them
and comparing performance with the full Deep Maize agent.
Performance can be sensitive to the strategies of other agents
in the game and there is no unique or correct choice for these
strategies. Experience showed that the agents’ initial pro-
curement policy is a particularly important strategic variable
(to be analyzed in a separate report), and so we paid specific
attention to this factor. Specifically, five of the agents in our
test environment use an initial procurement policy selected
randomly each game from a representative sample of the
policies actually used by the other tournament finalists. One
agent uses the Deep Maize policy. Except for this strategic
decision, the behavior of all agents is based on Deep Maize,
which provides a reasonable level of overall market activity.

no discount no premium
Profit -21.9%X +17.5%X
Customer Orders -17.9%X -4.5%X
Short-term Deficit (CPUs) -7.3%X -1.1%
Long-term Surplus (CPUs) +91.8%X +2.4%
Short-term Deficit (other) -3.6% +12.3%X
Long-term Surplus (other) +170.5%X -5.2%

Table 1: Table of results for controlled experiments, ex-
pressed as percentage differences from an unmodified ver-
sion of Deep Maize.

We tested the performance of two modified versions of
Deep Maize. InNo-Discounting, the sales module refrains
from discounting its customer bids, regardless of the long-
term surplus. InNo-Premiums, the procurement module
adds no premium to the value assigned to baseline inventory.
Both versions used the randomly selected initial procure-
ment policy, as did the other unmodified agents. We ran38
games with these two modified agents, and measured vari-

ous aspects of agent performance against the average perfor-
mance of the unmodified agents. The results are reported in
Table 1. Each column reports the percentage difference be-
tween the mean measurement for the modified version and
the full Deep Maize agents. Entries with check marks are
statistically significant at the0.05 level, using a paired t-test.

First, we analyze the results for the agent with no sales
module discounting. Our hypothesis is that failing to dis-
count should increase long-term surplus, decrease customer
orders, and decrease score. The data show strong support for
all of these effects. Long-term surplus more than doubles for
non-CPU components, and both customer orders and profits
fall off significantly. Interestingly, not discounting also has
the indirect effect of decreasing the short-term deficit. One
possible explanation for this is that the extra orders won by
discounting may use up short-term inventory stocks, caus-
ing deficits until additional components arrive. Overall, the
experimental data indicates that discounting is both conse-
quential and effective in achieving the reference trajectory.

Next, we analyze the results for the no-premiums agent,
which are mixed. The hypothesis for this case is that re-
moving premiums should increase the short-term deficit,
decrease customer orders, and decrease score. The ex-
pected differences did show up in customer orders, and in
the short-term deficit for non-CPU components. The short-
term deficit for CPU components did not show a significant
difference. We suspect that the fact that each CPU type is
available from a sole supplier makes CPU procurement more
noisy than buying other components.

More unexpected was the increase in profit obtained by
the no-premiums agent. Coupled with the difference in or-
ders, this implies that the agents using premiums succeed
in producing more but that this additional production is un-
profitable. Follow-on experiments will investigate whether
the control can be fixed by decreasing the baseline level or
premium, or whether some alternative mechanism would be
better. It would also be useful to analyze the effects of dif-
ferent configurations of other agents (we have checked some
small variations without observing qualitatively different re-
sults). Regardless, it seems clear that future versions of
Deep Maize could benefit from better policies for handling
short-term deficits in the procurement module.

Conclusion
Deep Maize makes decisions on the TAC/SCM supply chain
using a distributed feedback control algorithm, tracking a
reference inventory trajectory defined by aggregate market
analysis. The market analysis factors strategic interactions
out of the game by summarizing their expected effects. One
interaction not covered by this analysis is mitigated by a
special-case strategy.

The reference inventory trajectory is used to coordinate
Deep Maize’s procurement and sales activities, which are
controlled by separate functional modules. Maintaining the
reference zone globally also restricts the problems faced by
the individual modules. These problems are substantially
easier than the full SCM problem, and invite the use of ad-
ditional methods and analytic tools that may not be applica-
ble to all situations faced by Deep Maize. We believe that



feedback control designs could be applied to other complex
domains to aid in problem decomposition and limit the ef-
fective scope of subproblems to instances that can be solved
effectively using known techniques.

Evaluation of the results from the TAC-03 tournament
confirmed that feedback control was effective in Deep
Maize. The design led to profitable production through
many rounds of tournament play, and achieved the second
highest score in the finals. The robustness of the design was
apparent in solid overall performance in many qualitatively
different tournament environments, and at a finer level in
the agent’s ability to consistently recover from reference in-
ventory deviations. Controlled experiments support a higher
fidelity analysis, indicating that some of Deep Maize’s con-
trol actions should be modified for competition in next year’s
TAC/SCM tournament.
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