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Abstract
When its human operator cannot continuously supervise

(much less teleoperate) an agent, the agent should
be able to recognize its limitations and ask for help
when it risks making autonomous decisions that could
significantly surprise and disappoint the operator. Inspired
by previous research on making exploration-exploitation
tradeoff decisions and on inverse reinforcement learning,
we develop Expected Myopic Gain (EMG), a Bayesian
approach where an agent explicitly models its uncertainty
and how possible operator responses to queries could
improve its decisions. With EMG, an agent can weigh the
relative expected utilities of seeking operator help versus
acting autonomously. We provide conditions under which
EMG is optimal, and preliminary empirical results on
simple domains showing that EMG can perform well even
when its optimality conditions are violated.

Keywords- Human-robot/agent Interaction, Planning, Value
of Information

I. INTRODUCTION

We consider a single agent (e.g., a robotic vehicle [1]) acting
on behalf of a human operator in a sequential decision-
making environment modeled as a Markov Decision Process
(MDP). The agent knows only the aspects of the environ-
ment and operator preferences that the operator has given
it, expecting that more details can be provided as needed.
However, fatigue, distraction, and other attentional demands
mean the operator cannot reliably volunteer, unprompted,
such details. Thus, the focus of this paper is on allowing the
agent itself to rationally determine whether to ask for help
(and if so, what to ask) or to act autonomously.

Our research extends prior work on value of perfect
information for exploration-exploitation (EE). Like other
methods (e.g. [2]), our agent models its incomplete knowl-
edge about the MDP using a Bayesian representation via
parametric probability distributions over possible MDPs.
Bayesian Inverse Reinforcement Learning [3] focuses on
improving the distribution over the MDPs based on sample
optimal behavior (such as during teleoperation). The adapted
distribution leads to an improved policy for the agent. In con-
trast, in EE research the agent itself decides what and when

to learn when it chooses an action, since the consequences of
taking an action in its current state provides the agent both
exploration value (a more informed distribution over MDPs)
as well as exploitation value (an immediate reward). Since
future action selections will also have exploration and ex-
ploitation values, a theoretically powerful EE approach is to
solve such a Bayes-Adaptive MDP (e.g., [4]) for a policy that
selects the action in each information-state that optimizes
the long-term ability to explore and exploit. Unfortunately,
doing so is computationally intractable in all but the simplest
cases. A useful approximation (see [2]) optimizes long-
term exploitation but only short-term (“myopic”) exploration
by assuming that the distribution over MDPs will only be
changed by the single current action choice, and that any
resulting change in policy applies forever afterward. Our
research adopts this “myopic” approximation, where our
agent picks the querying action that, in expectation, will
provide the highest value of information for guiding current
and future action choices.

This paper’s main contribution is the Expected Myopic
Gain (EMG) algorithm that an agent can use to compute
the expected gain in long-term value of asking the operator
a query. Like the value of information calculation in [2],
EMG is myopic in exploration but long-term in exploitation.
EMG extends this concept to allow the agent to evaluate
the gain of knowing any aspect of its MDP distribution
(rather than just the optimal action for the current state),
and applies this capability to decide online whether and
what to ask an operator who is able to answer such queries.
In the following, we begin by explaining more fully the
background ideas EMG builds on, then move on to describe
the details of EMG and conditions under which it is optimal,
and show preliminary empirical results confirming that EMG
can perform well even when its optimality conditions are
compromised. We then discuss methods for scaling EMG
to larger problems, and end by contrasting EMG with other
selective querying approaches.

II. BACKGROUND ON BAYESIAN MDPS

MDPs: The agent’s sequential decision making envi-
ronment is modeled as an MDP M defined by a tuple
〈 S,A, T,R 〉: at each time step the agent observes the
state s ∈ S of the environment, takes an action a ∈ A



which transitions the environment to a random next state
s′ ∈ S chosen from the multinomial transition probability
distribution T (s, a), and receives a random reward chosen
from R(s′) (a multinomial over a discrete set of real values).
For a policy π : S → A, the long-term value of behaving
according to π from state s in MDP M is denoted V πM (s) and
is the expected sum of discounted rewards obtained by the
agent when it behaves according to π from start state s. The
optimal policy π∗ achieves the maximum value among all
policies π, i.e., π∗ ∈ arg maxπ V πM (in MDPs, there always
exists a policy that simultaneously maximizes the value of
every state). The value function for policy π∗ is denoted
V π

∗

M . Finally, algorithms from dynamic programming, e.g.,
value iteration or policy iteration, or from linear program-
ming, can be used to find the optimal policy for an MDP.

Bayesian MDPs: An agent may have uncertainty about
any of the parameters of the MDP including the transition
function T and the reward function R. This uncertainty
translates into a distribution over possible MDPs (all with
the same state and action spaces in this paper). However the
distribution over MDPs is represented, let the parameters of
the distribution be denoted µ. Later we make precise the
specific representation we use in this paper’s experiments.
The expected value for policy π over distribution µ is
EM∼µ[V πM ] where M ∼ µ denotes a random MDP sampled
from the distribution over the space of MDPs defined by
parameters µ. The Bayes-optimal policy for distribution µ is
π∗µ = arg maxπ(EM∼µ[V πM ]), and the associated expected

optimal value function for µ is therefore EM∼µ[V
π∗µ
M ].

III. EXPECTED MYOPIC GAIN

We now consider what it would mean for an agent, whose
current distribution over MDPs is parameterized by µ, to
pose query q to the operator and receive response o. This
will lead to a revised or posterior distribution over MDPs
parameterized (by abuse of notation) as µ,< q, o >. Our
EMG algorithm computes an expected long-term gain in
reward of asking q. The value can be compared with other
possible queries, and with the costs of querying the operator,
to decide which, if any, query to ask.

Gain: An agent in current state sc with a distribution
µ over possible MDPs expects value EM∼µ[V

π∗µ
M (sc)] if it

simply behaves forever according to π∗µ. If the agent asks
the operator query q and receives response o, its new Bayes-
optimal policy would be π∗µ,<q,o> and it should expect

value EM∼µ,<q,o>[V
π∗µ,<q,o>
M (sc)]. How much did it gain by

asking q and receiving answer o? One possibility is to define
the gain as EM∼µ,<q,o>[V

π∗µ,<q,o>
M (sc)] − EM∼µ[V

π∗µ
M (sc)]

but this ignores one of the two effects of the new knowledge
from the operator. This possible definition does account
for the change in policy from π∗µ to π∗µ,<q,o> (the long-
term exploitation effect) but ignores the change in the
distribution over possible MDPs from µ to µ,< q, o > (the

myopic exploration effect). To illustrate this point, suppose
what it learns from the operator induces a distribution over
MDPs where the expected value of the agent’s current state
is actually lower than before. In such cases, the gain as
described above would be negative even though the agent
would actually know more about its world (and would be
able to use this information to change its policy). A better
definition of gain should compare the value of the new
optimal policy to the old optimal policy with respect to the
new distribution over MDPs. Accordingly, we define gain
as:

Gain(< q, o > |µ, sc) = EM∼µ,<q,o>[V
π∗µ,<q,o>
M (sc)]

− EM∼µ,<q,o>[V
π∗µ
M (sc)]. (1)

This takes into account both effects of the new information
from the operator, and moreover has the intuitively desirable
property that Gain(< q, o > |µ, sc) ≥ 0.

Since the agent does not know how the operator will
respond to a query q, it predicts the probabilities of responses
using its current distribution over MDPs defined by µ.
Expected gain is thus (similar to Dearden et al. [2]):

E[Gain(q|µ, sc)] =
∫
Gain(< q, o > |µ, sc)P (o |µ, q) do,

(2)
where we integrate over all possible operator responses o to
query q.

EMG Query and Optimality: Assuming cost function
C of querying the operator, our EMG algorithm asks query

(q∗|µ, sc) = arg max
q∈Q

(
E[Gain(q|µ, sc)]− C(q)

)
, (3)

provided E[Gain(q∗|µ, sc)] > C(q∗), and where Q is the
space of possible queries. Next we present a result that states
the conditions under which EMG is optimal. Intuitively, the
theorem below states that for the case of myopic exploration
and long-term exploitation EMG is optimal.

Theorem 1. For any distribution µ over MDPs and denoting
the arbitrary current state of the agent as sc, the EMG query
as defined in Equation 3 is optimal under the following
conditions:

1) The agent can ask exactly one query while in state sc;
and

2) The agent commits to a policy after receiving an
answer to the one query in current state sc and never
changes that policy thereafter.

Proof: (Sketch) The proof follows immediately from
the definition of expected gain in Equation 2. Intuitively,
the best the agent can do with respect to a distribution over
MDPs if its knowledge of the distribution is fixed for all
time is to execute the Bayes-optimal policy with respect
to that distribution (this follows by definition of Bayes-
optimal policy). Thus, given that µ defines the distribution



over MDPs for the agent and that the operator response will
be determined by µ, the EMG query q∗ is by construction
the best the agent can do if it can only ask one query
immediately and can never change its distribution over
MDPs thereafter.

A. EMG Implementation

We have defined EMG as a general method for query
selection, where query responses reveal some information
about the agent’s MDP distribution. A practical implemen-
tation must define a particular form for queries, and also be
able to compute the effect query responses have on the MDP
distribution. To avoid confounding factors in evaluating the
core EMG algorithm, in this paper we focus on two types
of queries for which computing posterior distributions is
straightforward, and assume that the operator is capable of
responding to those particular query types. In addition, since
the agent’s goal is to behave optimally with respect to the
operator’s model of the world, it always treats the operator’s
response as correct even if inconsistent with the agent’s own
experience of the environment. We now describe those query
types, and summarize the computational strategies we chose
to implement them.

Unknown Transition Probabilities: The agent knows
the reward function of the operator’s model of the true
MDP exactly, but only has a prior distribution over a space
of multinomial transition probabilities, expressed as inde-
pendent Dirichlet distributions across the state-action space.
That is, each state-action pair’s distribution over next state
is modeled as an independent Dirichlet distribution which
amounts to maintaining a separate count of transitions to
each possible next state (see [2] for more detail on modeling
MDP distributions using the Dirichlet distribution). The form
of the query q is an arbitrary state-action pair, i.e., q = (s, a)
and the form of the response is the transition probabilities
for (s, a) from the operator’s model. The update procedure
overwrites the Dirichlet parameterization for (s, a) so that all
MDPs sampled from the post-query distribution would have
the transition probabilities for (s, a) set to the operator’s
response.

Unknown Reward Function: The agent knows the tran-
sition probabilities of the operator’s model of the true MDP
exactly but begins with a prior over a space of multinomial
random reward functions, expressed as independent Dirichlet
distributions across the state space (recall that in this paper
we consider reward a function of state only). The form of
the query q is a state s and the response is the multinomial
reward distribution for s, which as before overwrites the
Dirichlet representation.

Computational Challenges: Even for these simple query
types, it is not clear that Equation 3 can be generally
computed exactly due to three computational challenges:
(1) the integral in Equation 2 is generally not analytically
computable, (2) it is generally infeasible to compute the two

Bayes-optimal policies for Equation 1, and (3) it is generally
infeasible to compute the expected value, E·[·], of the Bayes-
optimal policies for Equation 1. We handle (1) by approx-
imating the integral using Monte-Carlo methods, sampling
possible operator answers from the distribution P (o | µ, q)
and averaging gain over the sampled operator answers.
We handle (2) with the mean-MDP method below. Finally,
we handle (3) again with Monte-Carlo methods, sampling
MDPs from the appropriate distribution and averaging the
values for the MDPs’ Bayes-optimal policies. Obviously,
for the two Monte-Carlo approximations, increased sampling
improves approximation accuracy. For our experiments, we
empirically determined that 200 (500) samples approximated
transition (reward) queries well.

Mean-MDP method for computing Bayes-optimal poli-
cies: For the case of unknown reward functions, the Bayes-
optimal policy is known to be the optimal policy with respect
to the mean MDP [3]. For the case of unknown transition
probabilities in acyclic domains, a similar result is easy
to prove. In the more general case of cyclic domains, the
mean-MDP method is only an approximation. However our
empirical tests on small cases suggest it is generally a good
approximation (henceforth, we refer to the optimal mean-
MDP policy as Bayes-optimal even if approximate). An
advantage of using independent Dirichlet distributions for
both cases is that the mean-MDP is extremely simple to
compute: one simply uses the counts to compute empirical
probabilities for the mean-MDP parameters.

IV. EMPIRICAL RESULTS

We examine EMG’s performance on a pair of problem
domains that are small enough to exhaustively compare
EMG’s choice against other possibilities, but that are in-
teresting enough to allow us to begin testing the degree to
which the conditions of Theorem 1 are critical for EMG’s
optimality. The first, called the “tree” domain, takes the
form of a (acyclic) tree shown in Figure 1 (left), where the
agent starts in state 0 and takes 2 actions, ending in one of
the 4 “terminal” states 3 − 6. In each of states 0, 1, and
2, the agent has two action choices, depicted with “solid”
and “dotted” lines. For example, taking action s (solid) in
state 0 has probability ps0 and 1 − ps0 of transitioning into
states 1 and 2, respectively. The agent knows the transition
topology (e.g., from state 0 the next state is either 1 or 2). For
transition queries the agent also knows the expected rewards
(R4 = 0.4 and R5 = 1.0 and zero for the other states).
For reward queries, the agent also knows the transition
probabilities (ps0 = ps1 = ps2 = .9 and pd0 = pd1 = pd2 = .8),
that states 0 − 2 have zero reward, and that rewards for
states 3− 6 can be {0, 1, 2}.

Our second domain, called “grid” (Figure 1 right), has
nine states, where the agent starts in state 0, and state 8
is the terminal goal state (the episode ends once the agent
reaches it). The agent has a choice of four different actions



Figure 1. The “tree” and “grid” domains.

in each non-goal state, where each action can stochastically
transition to neighboring states as indicated by the solid ar-
rows. The agent knows this topology. For transition queries,
the agent also knows the rewards of all states (R5 = −10,
R6 = −2, R8 = 1, and the rest are all 0). For reward
queries, the agent also knows the actions’ transition proba-
bilities: each action (conceptually, North, South, East, and
West) moves in its corresponding direction with probability
.9 and in the opposite direction with probability .1, and
knows that rewards can be {−10,−2, 0, 1} for all states.

As described in the previous section, for both query types
in both domains, the agent’s prior is a set of independent
Dirichlet distributions. All counts are initialized to 1 so that
the prior is uniform over multinomial transition (reward)
probabilities for transition (reward) queries. Also, in all of
our experiments, the operator had a correct model of the
environment.

A. Experimental Procedure

For a particular type of query and a particular domain,
the agent computes the Bayes-optimal policy given its initial
knowledge, and it also computes the EMG query. To evaluate
the actual value of asking a query, we adopt the following
procedure. We randomly draw some number (10,000 unless
otherwise noted) of sample (fully specified) MDPs from the
prior distribution. For a given sampled MDP and a query,
we use the sampled MDP’s answer to the query to update
the agent’s distribution over MDPs, from which it computes
a (possibly new) Bayes-optimal policy. The query’s value
for the MDP is the difference in long-term expected reward
from executing the new versus the old policy in the sampled
MDP.

Given such a measure for the value of each query, we
can compare EMG to other query selection methods by
studying the average value of the query selected by each
method across the sample MDP set. The first method we
analyze is random, which simply chooses a query randomly.
We execute this strategy by choosing a query randomly
for each sample MDP (as opposed to using the same
query throughout the sample MDP set). The next query
selection method, best-fixed, asks the query with maximum
average value across the sample MDP set. The last method,

omniscent, chooses the query with highest value separately
for each sample MDP (so it may choose a different query
for each sample). Of course, neither Best-Fixed nor Omni
are realizable query selection methods, as they both identify
queries to ask using after-the-fact information that the agent
could not possibly have. We include them in order to get a
sense for how well EMG performs relative to upper bounds
(best-fixed is an upper bound since both it and EMG must
select 1 query for the entire sample set, and best-fixed
chooses the query with best average value; omni is an upper
bound since it selects the best query for each individual
sample, resulting in a set of optimal queries across the
sample set).

As an example, suppose we are considering reward
queries in the tree domain and draw 2 MDPs as our sample
set. Random will choose a random state to ask about for
each sample; suppose it chooses states 0 and 1, respectively.
EMG will choose to ask about state 3 (as explained in
the next section). Best-fixed will look at the two sample
MDPs in the set and choose to ask about whatever state
yields the highest average value across both sample MDPs;
suppose that is state 4. Omni will choose the best state to
ask about for each sample; suppose it chooses states 1 and 2,
respectively. Our evaluation of each query selection method
then consists of averaging the value of each method’s queries
throughout the sample set: in this example, random’s choice
of (0,1), EMG’s choice of (3,3), best-fixed’s choice of (4,4),
and omni’s choice of (1,2).

Due to symmetries in our environments, an arbitrary
choice sometimes is made over equally good (in expectation)
queries, and what we see experimentally is that due to the
luck of the draw sometimes the EMG choice is the same as
the best-fixed query for the specific trials, and sometimes it is
not. To account for this variability, our data presents results
that average the value of each query selection method over
10 independently-generated experiments of 10000 sampled
MDPs each.

B. EMG Optimality

We begin by comparing in Table I the average values of
EMG, best-fixed, omni, and random queries in the tree and
grid domains. For transition queries in the tree domain, the
EMG query is arbitrarily either ps2 or pd2. Though derivable
analytically, we can intuitively explain why asking about an
action in state 2 is rational. State 2 dominates state 1 because
(since they are equally likely to be reached) a better decision
in state 2 in expectation will be more beneficial given the
high reward of state 5. Comparing states 0 and 2, information
about an action in either would be expected to equally
increase the probability of reaching state 5. However, such
a better decision in state 0 also decreases the probability
of reaching state 4 (the only other positive reward), while a
better decision in state 2 leaves the probability of reaching
state 4 unchanged. Hence, asking about a state 2 action is



Query Domain Rand EMG BF Omni
Trans Tree 0.0137 0.0202 0.0203 0.0473
Trans Grid 0.382 0.715 0.740 3.12

Reward Tree 0.0530 0.0576 0.0586 0.127
Reward Grid 0.851 1.23 1.34 4.04

Table I
RESULTS FOR THE OPTIMALITY EXPERIMENT.

the optimal choice (in expectation). The top row in Table I
shows that EMG performed considerably better than random,
and approaches best-fixed as we would hope. Omni provides
an upper bound for how well the agent could do if it could
miraculously guess the right query for every sample MDP.

In the grid domain, the EMG transition query asks about
an action in state 4 (intuitively, the point on the best path to
goal state 8 where a misstep is most costly). With 4 actions
in state 4 that are initially indistinguishable, its chances of
guessing the best for a particular set of trials is smaller than
in the tree domain, so EMG is more noticeably lower than
best-fixed. The optimal reward query in the tree domain is
to ask about state 3, since the agent has the most control in
getting to state 3 if it finds out it has high reward, and also
the most control in avoiding state 3 if it finds out it has low
reward. For reward queries in the grid domain, the symmetry
of transition probabilities means that asking about states 1
and 3 are equivalently the best choice, since the agent must
pass through at least one of them on its path to the goal and
it may choose which to pass through. Table I shows that in
the grid domain, EMG’s performance beats that of random
and approaches best-fixed, just as in the tree domain.

Accounting for cost: The above confirms empirically
that EMG finds optimal queries when its conditions are
met, but recall that even the optimal query should only
be made when its expected gain is no less than its cost
(Equation 3). The value of each entry in Table I provides
an empirically-derived maximum cost the agent should be
willing to incur for posing that query; otherwise in ex-
pectation it would do better by autonomously following
its initial Bayes-optimal policy than asking for help. We
confirmed that EMG predicts the value of its query well
by comparing the expected gain computed by EMG for
the optimal query with the corresponding empirical gain
in Table I. For example, 100 independent executions of
our implementation of EMG for transition queries on the
tree domain yielded an average expected gain of 0.0212
(st.dev. 0.0018), which closely estimated the corresponding
empirical gain in Table I, 0.0202. But we next examine how
EMG’s predictions about query value and its willingness to
query can change as its optimality conditions are violated.

C. Post-Query Updates

The empirical results so far have served largely to illus-
trate and benchmark what we already justified theoretically:
when the myopic assumptions are met, EMG will find a
query that, in expectation, will be optimal. Throughout the

Query Domain Rand EMG BF Omni
Trans Tree-1 0.0242 0.0298 0.0299 0.0530
Trans Grid-1 0.739 1.03 1.05 3.18
Trans Tree-2 0.0336 0.0382 0.0385 0.0566
Trans Grid-2 1.05 1.35 1.35 3.35

Reward Tree-1 0.0796 0.0819 0.0825 0.129
Reward Grid-1 1.46 1.82 1.84 4.04
Reward Tree-2 0.102 0.103 0.104 0.131
Reward Grid-2 1.97 2.27 2.28 4.08

Table II
RESULTS WITH 1 AND 2 POST-QUERY UPDATES.

remainder of our experiments, we develop insights into how
well EMG can perform even when the myopic assumptions
are violated.

EMG’s optimality conditions in Theorem 1 require that
once the agent receives the operator’s response to its query
(if it chooses to ask) and builds its new Bayes-optimal policy,
it cannot update its policy any further. For example, an
agent executing in a state space that includes cycles (like
the grid domain) could potentially learn from its experiences
to update its model so as to build a better policy given it
might return to that state. The EMG algorithm’s myopic
exploration does not consider how a state-action pair that
can be learned at runtime might be less valuable to ask about
beforehand.

Because of the myriad ways in which an agent could
gather and incorporate knowledge at runtime, we examine
the same phenomenon but in a simpler way. Our experiments
assume that after it asks its one query, an agent is also
unexpectedly (to it) given information for either 1 or 2
randomly-selected queries, where a random query could
duplicate what the agent asked, and in experiments with 2
random queries they are distinct. The entries in the table
represent the average value for knowing both the answer to
its query and the post-query information.

As shown in Table II, EMG continues to track best-
fixed closely, suggesting that EMG’s initial query choice
(which is the same as for the previous set of experiments)
tends to remain optimal despite not anticipating the possible
additional information. Obviously, it would not be difficult to
construct other problems where EMG performs much more
poorly, such as problems where it is known up-front that the
same information that EMG asks for will definitely also be
in the post-query information; being myopic, EMG cannot
use this knowledge, whereas a non-myopic approach could.

Notice also in Table II the narrowing gap between
EMG/best-fixed and random, and with omni. This is not
surprising, since given more randomly-chosen additional
information, we would expect the agent’s initial query choice
to make less difference. This has implications on the value
of incurring the overhead of EMG (random might become
preferable) as well as on whether to query at all.

Accounting for cost: As the impact of the EMG query
is diluted by other gathered information, the value-added



by the query will fall. For example, we’ve experimentally
determined that the value-added of the EMG query in row 1
Table II (by comparing to the case where no query is asked
but random information is received) is 0.0164, and for row 3
is 0.0121. EMG, as we have seen, computes a gain of 0.0212
for its query, and thus EMG could myopically overestimate
the acceptable cost for querying the operator.

D. Sequences of Queries

EMG also assumes that the agent can only ask a single
query. If the agent can ask multiple queries, then EMG can
make incorrect decisions by failing to factor into its gain
calculations the (exploration) value a query has for asking
better queries downstream. In general, computing optimal
sequences of queries to reliably derive such a strategy
involves solving Bayes-Adaptive Markov decision processes
which are known to be intractable [4].

The hypothesis we will empirically test is as follows:
If an agent can ask two queries, then using EMG to
determine these queries yields an expected added value
competitive with the best possible query sequence. We
tested this hypothesis in our domains by slightly modifying
our experimental procedure: for each trial (sampled true
MDP), after computing and asking the EMG query and
incorporating the response, the agent ran EMG a second
time to identify the most valuable (next) query to ask given
its new distribution over MDPs. After the response to this,
the Bayes-optimal policy given the combined information of
the two responses was evaluated against the true MDP. For
each of the 10,000 trials, we also computed the value for
every possible fixed pair of queries.

As seen in Table III, the sequence of two EMG queries
together yielded an average value similar to that of the
average value of the best-fixed-pair (omni and random
query-pair values are also given for completeness). In fact,
in some cases, EMG did even better. EMG has an advantage
over any fixed-pair, because EMG is not fixed: it can choose
a different second query based on the response to the first.
On the other hand, EMG is at a disadvantage because it
does not look ahead to how the first query can “set up” the
second.1 As the data shows, sometimes EMG’s advantage
of following a policy (conditionally branching to a different
second query) outweighs being myopic, and other times
it does not. Unfortunately, experimentally evaluating the
continuous space of all possible 2-step policies to see how
close EMG gets to the best such policy is infeasible.

Accounting for cost: We can of course ask even longer
sequences of queries. Figure 2a shows, for the transition-
query grid domain, a comparison between the value of the
posterior policies induced by sequential EMG or random
queries, as well as the optimal (in expectation) policy the

1If each query EMG considered was instead about a pair of pieces of
information, EMG could find the pair with the highest expected gain, but
then would be limited to considering a fixed pair.

Query Domain Rand EMG BF Omni
Trans Tree 0.0254 0.0386 0.0379 0.0592
Trans Grid 0.640 1.17 1.25 3.98

Reward Tree 0.0907 0.0960 0.0968 0.134
Reward Grid 1.60 2.31 2.13 4.42

Table III
RESULTS FOR THE SEQUENCE OF QUERIES EXPERIMENT.

agent is attempting to obtain. We see that repeatedly asking
EMG queries improves agent value faster than a sequence of
random queries, which is not very surprising. The important
thing to note, however, is in general the improvement in
value for each additional query decreases as the sequence
gets longer. This suggests that, if EMG is used for problems
where multiple (even unlimited) queries can be asked, there
will likely be a tipping point where the cost of querying
exceeds the expected gain of doing so. This is shown in
Figure 2b, where a few different costs for querying are
shown. The higher the cost, the fewer queries can be asked
before the expected net value to the agent starts falling.

E. Online Query Asking

Finally, we try relaxing Theorem 1’s condition that the
agent ask its query before taking any action. Now, an agent
could benefit by waiting to ask its query until after taking
some actions. In the tree domain for transition queries, for
example, as we have seen if the agent must ask its query
before it begins acting, it should ask about an action in state
2. However, the response will not change the agent’s action
choice in state 0. If it takes its action in state 0 first, taking
it to state 1 or 2 with equal probability in expectation, then
it can ask about an action in whichever of those states it
ended up in. Its expected value increases because it improves
the chances of reaching a non-zero reward state however its
action in state 0 turns out, compared to asking first (where
information it gets about an action in state 2 will only be
useful 50% of the time in expectation).

This suggests a heuristic strategy for deciding when
to query: if the Bayes-optimal policies for every possible
answer to the (proposed) EMG query all prescribe the same
action for the current state, there is no advantage in asking
the query at this time. The agent should instead take an
action. It can then repeat this procedure, postponing asking
a query until it has reached a state where that query will
impact its next action choice.

This Ask When Impacts Next Action (AWINA) heuristic
clearly would work in the simple example we’ve been con-
sidering so far. However, because the tree domain involves
taking exactly two actions, it does not provide much latitude
for more comprehensive evaluation, so we use the grid world
(with all other EMG optimality conditions met) to compare
standard (prior to any actions) EMG to the AWINA heuristic.
We also consider the case where the decision about asking
the EMG query is made randomly (with probability .5) at
each time step (until a query has been asked), and the results



a) b)

Figure 2. a) Value of the policy obtained after a sequence of EMG queries, compared with a random query sequence and the optimal policy with full
information. b) Value of the policy obtained after a sequence of EMG queries, minus the total cost to obtain it for various costs of querying.

Query EMG EMG+AWINA EMG+Random
Trans 0.715 0.869 0.750
Reward 1.23 1.23 1.18

Table IV
RESULTS FOR THE ONLINE EXPERIMENTS (GRID DOMAIN).

are given in Table 4. These results suggest that, in the grid
domain, the agent will do well to use EMG with the AWINA
heuristic when dealing with transition queries because it is
better off waiting until it knows which negative state it has
wandered near. Note that even waiting randomly to ask does
better than always asking at the start. For reward queries, in
contrast, finding out anything about the reward landscape
before setting off is useful, so AWINA does not improve
EMG, and EMG+random does worse than the others. In
summary, AWINA can sometimes help, but a more complete
exploration for additional interesting heuristics is an area for
future research.

Accounting for Cost: The costs of querying induce
another simple heuristic: postpone querying until the ex-
pected gain exceeds the querying cost by some amount. For
example, in the tree domain with transition queries discussed
earlier, the EMG query’s expected gain when the agent is
in state 0 is lower than the gain for that same query when
it is in state 2. Similarly, the gains for queries about state
1 dominate after the agent moves from state 0 to 1. If the
operator cost is greater than the expected gain for asking
while in state 0 but less than that of asking while in states
1 or 2, the agent will correctly delay asking its one query.
Thus, the EMG computation in Equation 3 implicitly helps
balance the value of asking about a distant state far enough in
advance to improve near-term decisions, against the disutility
of getting information that environmental stochasticity might
render immaterial.

V. SCALING TO LARGER PROBLEMS

In this paper, we aimed to introduce EMG as a general
query strategy for agents in MDPs. As such, our evaluation
of EMG considered toy problems, chosen to be small enough
to allow exhaustive evaluation of EMG’s query choices

but flexible enough to allow for testing the violation of
EMG’s optimality conditions. Applying EMG to larger, more
realistic problems inevitably involves computation reduction
afforded by particular query types or induced by heuristics.

A. Other Query Types

A strength of EMG is its generality in the form queries
may take. However, this generality is a large factor in the
intractability of Equation 2. Our reward and transition query
implementations assumed that query answers may span a
continuous interval, resulting in the necessity for Monte-
Carlo methods to evaluate Equation 2. However, for queries
whose possible responses span a small discrete set, using
EMG becomes significantly more practical as the integral in
Equation 2 becomes a sum with relatively few terms. As an
example, for reward queries, if the agent knows that reward
values may only take on the values 0, 1, or 2, Equation 2
can be computed exactly rather than relying on Monte-Carlo
methods.

A particularly powerful application of queries is when
there is special structure in the domain. Namely, if the
domain may be represented compactly as a parameterization
depending on some property of the MDP, the agent may
query those properties and infer a great deal of information
about its world while only needing to consider a small
number of queries, even if the world is quite large. Our
preliminary experiments running EMG on a domain with
10000 states but a compact parameterization have so far been
positive.

B. Applying Heuristics

There exist a variety of heuristics one can apply in order
to trade computational efficiency for further approximation
of the EMG calculation. Since EMG’s computation scales
linearly with the number of queries it considers, a natural
inclination is to prune the set of queries considered. As
an example, for the reward and transition query types
discussed in this paper, queries depending on nearby states
are most frequently chosen by EMG, so a simple heuristic
would be to consider only the K nearest states as queries,



where “nearest” and K are determined depending on the
application. Another example would be to only consider
queries that disambiguate what the agent should do at key
parts of the statespace, such as choke points or intersections,
where the choice of action greatly influences the portion of
the statespace the agent spends time in. For a given domain
and query type, other heuristics that only consider a subset
of possible queries might make sense.

VI. OTHER SELECTIVE QUERYING APPROACHES

Other selective querying approaches in the literature
generally focus on queries that are demonstration requests
(“What is an optimal action for state s?”). Chernova and
Veloso [5] describe an interactive policy learning approach,
which begins with an offline learning from demonstration
[6] phase where the agent estimates a policy from demon-
stration data using supervised learning. Their approach then
transitions to an online phase where the agent can request
a demonstration for its current state if it cannot confidently
classify (choose an action for) that state. The method relies
on the assumption that the same or similar actions are
optimal in similar regions of the state space, rather than
on learning to improve an MDP model over which it
could perform sequential reasoning. Without a model, the
method cannot make predictions about downstream effects
of actions. For example, suppose any action taken in a given
state will take the agent to the same next state s – this implies
that any action for s is optimal. But the agent only has a
policy and confidence values for the policy in each state, and
if it has low confidence for s it may ask for help. As such,
the method proposed in [5] can sometimes ask unnecessary
queries that a model-building agent, such as one using EMG,
could filter out (EMG would not output a positive gain for
such a query, since any response from the operator would
not cause the agent to change its policy).

Active learning [7] is another concept similar to ours,
but differs in that it involves querying in an offline manner.
Nevertheless, strategies for selecting training data for active
learning could be applied in an online setting as well. In
particular, recent work by Lopes et al [8] presents an active
learning method for inverse reinforcement learning [9],
where potential demonstration requests are ranked based on
an entropy measure of the optimal action density (estimated
from acquired demonstration data and prior knowledge) for
their corresponding states. However, in contrast to EMG,
their query ranking algorithm does not take into account
the agent’s current state and as a result their algorithm may
query states that the agent is unlikely to ever reach.

VII. CONCLUSIONS AND ONGOING WORK

We have introduced the EMG algorithm and identified
conditions under which it computes an optimal single query.
By comparing the expected gain of the optimal query to
the cost of asking that query, an agent can determine

whether to ask for help, or to autonomously pursue its
current best policy. Our empirical results confirm EMG’s
optimality when its myopic conditions are met, and that it
can often continue to be effective even when the conditions
are violated.

Our ongoing work is examining other query types,
such as demonstration requests: “What would you do
in state s” where s can be a hypothetical future state.
The operator’s response indirectly provides information
about her model of transitions and rewards for inducing
a posterior distribution over the MDPs. To estimate this
distribution, we have been drawing on ideas from Bayesian
Inverse Reinforcement Learning [3], as well as particle-
filtering techniques. In addition, we have been investigating
methods to scale EMG to larger and more realistic problems.
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