
Long Term Potentiation, Navigation & Dynamic Progamming

Peter Dayan
CBCL

E25-210, MIT
Cambridge, MA 02139

Satinder Pal Singh
Harlequin, Inc

1 Cambridge Center
Cambridge, MA 02142

Abstract

Blum andAbbott (1995) recently proposed an algorithm for learned navigation that is based
on Hebbian changes to adaptive connections between place cells in the hippocampus. This
paper suggests using a temporal difference rule (Sutton, 1988) for synaptic plasticity instead,
and shows how this alters the resulting behaviour. It also recasts the problem of navigation
into the reinforcement learning context of adaptive optimising control, and shows how to learn
new trajectories that are not based only on averaging old ones.
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1 Introduction

Blum & Abbott (1995) (henceforth BA; see also Abbott & Blum, 1995) considered the problem of
learning about sequential behaviour in such tasks as navigating to a goal in a maze (Morris, 1981).
They treated the case in which a rat has a distributed representation of its current state in the
activities of a set of place cells whose centres are at and whose firing profiles start by
being roughly Gaussian:

(1)
The rat has the wherewithal to extract from this group of place cells using a weighted-average
scheme as:

(2)

Place cell is also connected to place cell through changeable weight , and BA noted
that changes to synaptic efficacies caused by long term potentiation require a particular temporal
asymmetry – the activation of pre-synaptic fibres should generally precede that of postsynaptic
fibres (Levy & Steward, 1983; Gustafsson et al, 1987). Based on the rat’s path through the
world, the weights are given by:

(3)

where models the timecourse for LTP. This implies that the order inwhich states are traversed
is reflected in asymmetric coupling strengths between the cells mediating the representation. BA
took these connections as exerting influence over the firing of the representing cells:

(4)

BA show that if the rat uses in equation 2 to decode its location, without taking into account the
fact that is now incorrect, it would believe itself to be at rather than , where, to first order in

(5)
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BA also treat a differentmethod for extracting based on amaximum likelihoodprinciple, but show that the results

using it are very similar to those based on the simpler average.
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Using some fairly mild approximations, BA showed further that:

(6)

where is a constant and is a characteristic time constant for LTP that is determined by .
BA modeled the case in which the animal can use the difference to control its actions.
The exponential factor weighs how close the trajectory of the rat came to point .
The term depending on forces the rat to move in the direction of the averaged trajectory near
to . In maze-like tasks, BA ensured that this averaging took place only over those trajectories
that resulted in the animal reaching the goal. This implies that the average trajectory will often
result in the animal reaching the goal too, and, in simple tasks, reaching it more efficiently. The
term depending on tends to force the rat to approach places that it frequently visits. In
the context of achieving a goal, this can be suboptimal – it can even pull the rat backwards along
trajectories as well as forwards.

2 Temporal Difference Learning

Consider replacing the update rule in equation 3 by:

(7)

using the difference in postsynaptic activity rather than its absolute level. Montague & Sejnowski
(1994) discuss the neurobiological and computational bases of a version of this rule – its use here
is inspired by the temporal difference rules (Sutton, 1988) that we describe in the next section.

Making learning sensitive to the averaged temporal difference in postsynaptic activity rather than
its absolute level has two beneficial effects for BA. First, in the continuum limit, it preserves the
sum total activity . Since this expression is the denominator in equation 2, it is required to
turn the activities into estimates of location, and so it is desirable that it remain fixed.

We show this in the continuum case studied by BA in which sums over are converted into
integrals over the two-dimensional , sums over into integrals over the two-dimensional ,
both representing the centres of the place fields, is converted into and

Then

(8)

(9)

(10)
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(11)

(12)

where equation 11 follows on making the approximations that is small for large and the
animal does not move too fast and that therefore:

and equation 12 follows on performing the integral

Therefore remains constant.

The second and more interesting desirable outcome from using equation 7 for setting the weights
is that the term in equation 6 that depends on is eliminated. The same arguments that led
to equation 12, imply that

:

(13)

(14)

(15)

(16)

(17)

where equation 15 follows on integrating out , equation 16 on integrating over , and
equation 17 since:

where is the Kronecker-delta.

Comparing equations 6 and 17, we can see that this way of defining implies that
points exactly in the direction of the averaged neighbouring velocity, eliminating the unwanted
component.

3 Optimal Control

Averaging the velocity over the trajectories that result in the animal attaining the goal should be
enough to guarantee that it can return there using this method of navigation, at least provided
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that the space is not too tortuous and the sampled trajectories cover enough of it. Indeed, BA
show empirically the success of their learning rule in simple environments. However, one might
also be interested in having the animal learn good paths to the goal, not just any path to the goal.
The substrate for continual improvement certainly looks as if it is available. For instance, the
centres of the place cells could adapt to absorb the changes coming from , and then new
values of could be learnt, driving the animal in a new direction, and then leading to further
adaptation of , and so forth. Unfortunately, this process would not work in general. Equation 17
suggests that it is only ever possible to average over existing trajectories. For instance, consider
the case in which there aremultiple ways to get to the goal. If the initial actions of the animal never
encompassed one of these ways, then no amount of averaging would be guaranteed to reveal it.
Furthermore, if different routes to the goal cost different amounts in a metric other than time (eg
one demands more effort), then it would be convenient to have some way of favouring cheap
routes over expensive ones.

An appropriate framework in which to analyse optimising behaviour is the algorithm called
policy improvement, which is Howard’s (1960) method for finding optimal policies inMDPs. This
formalises the problem in a slightly different way. Consider the task of controlling a deterministic
system to maximise

(18)

where is the state at time , is the control,
and is the scalar return or cost for performing action at state . A

simple model of a maze task would have and everywhere away
from the goal, where we may assume that is fixed so that the animal maintains a constant
speed. is called the optimal value function, and in this case, assigns to states a value
proportional to minus the minimal length of time it could take the animal to get to the goal from
. Minimising the time is the aim – however, different values for could be used, for instance to

model extra penalties for being in particular parts of the maze.

In the complete version of this paper, we show that we can take a policy , which assigns
controls to states, and learn a the value function for policy , , which estimates the worth
of state under policy . is represented as:

(19)

with parameters and therefore requires a set of adaptive connections between the place cells
and a neuron (or more likely, a collection of neurons) that learns . It is a form of radial basis
function representation for (Broomhead & Lowe, 1988; Poggio & Girosi, 1990).

With , are updated according to:

(20)

where the stands in for the negative reinforcement coming from swimming being aversive to
the rat. This is again a form of temporal difference rule. In this case of constant reinforcement,
a method akin to BA’s can be used to calculate the new direction for the rat to move that comes

5



from one step of Howard’s policy improvement algorithm. We show that if the firing of each place
cell is increased by the magnitude of its contribution to , namely , then the direction

calculated in the same way as BA will point in the direction of the improved policy.

Therefore, using a separate set of connections to learn the value function, and changing the
activities of the place cells according to their contributions to rather than their links with
each other, BA’s systemcanbemade to performpolicy improvement and thereforenot only average
trajectories over ones that have been successful, but actually find successively better trajectories.
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