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Abstract 

This paper describes the current state o f  our exploration of 
how motor program concepts may be related to neural mech- 
anisms. We have proposed a model o f  sensorimotor networks 
with architectures inspired by the anatomy and physiology of 
the cerebellum and its interconnections with the red nucleus 
and the motor cortex. We proposed the concept of rubrocere- 
belkar and corticocerebellar information processing modules 
that function as adjustable pattern generators (APGs) capable 
of the storage, recall, and execution o f  motor programs. The 
APG array model described in this paper extends the single 
APG model of Houk et a!. (1990) to an array of APGs whose 
collective activity controls movement of a simple two degree- 

INTRODUCTION 

The concept that movements are controlled by motor 
programs has evolved from a long line of studies in 
experimental psychology (cf. Schmidt, 1988). The basic 
idea is that movement commands are centrally specified 
and then executed in essentially an open-loop manner. 
In other words, the system is said to operate in a feed- 
forward mode, as opposed to using sensory feedback 
from the periphery. In his text on motor control and 
learning, Schmidt (1988) points out that this view is 
oversimplified since sensory information is ordinarily 
utilized in several ways. It is used to select parameters 
of a motor program before the program is initiated, it 
can modify ongoing programs in certain limited ways, 
and it guides the adaptive process that mediates motor 
learning. With these qualifications in mind, the idea that 
the brain commands movements by recalling and exe- 
cuting “quasi-feedforward” motor programs remains a 
very useful concept in motor control. Unfortunately, 
progress toward understanding the neural mechanisms 
that might implement this type o f  control has been slow. 
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of-freedom simulated limb. Our objective was to examine the 
APG array theory in a simple computational framework with a 
plausible relationship to anatomy and physiology. Results of 
simulation experiments show that the APG array model is ca- 
pable of learning how to control movement of the simulated 
limb by adjusting distributed motor programs. Although the 
model is based on many simplifying assumptions, and the 
simulated motor control task is much simpler than an actual 
reaching task, these results suggest that the APG array model 
may provide a useful step toward a more comprehensive un- 
derstanding of how neural mechanisms may generate motor 
programs. 

In an attempt to relate motor program concepts to 
neural mechanisms, we have recently begun to explore 
the properties of sensorimotor networks with architec- 
tures inspired by the anatomy and physiology of the 
cerebellum and its interconnections with the red nucleus 
and the motor cortex (Houk, 1989; Houk, Singh, Fisher, 
& Barto, 1990). It is widely accepted that these brain 
regions are important in the control of limb movements 
(Kuypers, 1981; Ito, 1984), although relatively little atten- 
tion has been devoted to probing how the different 
regions might function together in a cooperative manner 
(reviewed in the Discussion). Starting from a foundation 
of known anatomical circuitry and the results of micro- 
electrode recordings from neurons in these circuits, we 
proposed the concept of rubrocerebellar and cortico- 
cerebellar information processing modules that function 
as adjustable pattern generators (APGs) capable of the 
storage, recall, and execution of motor programs. 

According to this theory, motor programs are stored 
in the cerebellar cortex in the weights of parallel fiber 
synapses onto Purkinje cells, this being consonant with 
recent evidence regarding synaptic plasticity in the cere- 
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bellum (Ito, 1989; Houk & Barto, 1992). Training signals 
based on sensory information are transmitted by climb- 
ing fibers to guide the adaptive adjustment of parallel 
fiber synapses. After training is complete, programs can 
be recalled from these memory sites by a selection pro- 
cess ascribed to inhibitory interneurons called basket 
cells. In analogy with psychological ideas about motor 
programs, some of the parameters of the recalled pro- 
grams are determined by sensory feedback while others 
are determined centrally. After a program has been se- 
lected, APG modules wait idle until the arrival of a trigger 
signal that starts program execution, analogous to a cue 
in a reaction-time task. The trigger is envisioned as a 
transient sensory (or central) input that initiates positive 
feedback in recurrent loops that exist between the cere- 
bellar nucleus, the red nucleus, and the motor cortex. 
Positive feedback is thought to provide the driving force 
for the generation of the program, while its accuracy in 
direction and amplitude is considered to be regulated 
by inhibition from cerebellar Purkinje cells. Because Pur- 
lunje cells are modeled as bistable devices, motor pro- 
grams are initially executed in a feedforward manner. 
Purhnje cells are postulated to detect when the endpoint 
of the movement is nearly achieved, whereupon they 
switch to activated states that inhibit positive feedback 
and thus terminate program execution. Many features of 
this model relate quite naturally to the ideas about motor 
programs proposed by experimental psychologists. 

In our previous work we simulated only a single APG 
module controlling unidirectional motion (Houk et al., 
1990; Sinkjaer, 1990), or  a nonadaptive model of planar 
motion (Eisenman, Keifer, & Houk, 1991). In the present 
report we deal more directly with the problem of mul- 
tidimensional motion and the distributed nature of the 
neural signals that control such movements. We are thus 
able to relate our theory to the body of work on di- 
rectional tuning in populations of motor cortical and 
cerebellar neurons by Georgopoulos and colleagues 
(Georgopoulos, Kalaska, & Massey, 1982; Georgopoulos, 
1988; Fortier, Kalaska, & Smith, 1989). 

We designed the APG array model described here to 
investigate how multiple APGs might operate together to 
control multiple degree-of-freedom arm movements. 
The model's purpose is to help us investigate strengths 
and weaknesses of the APG theory of motor control and 
learning in a framework that is as simple as possible 
while containing enough detail to permit computer sim- 
ulation. Consequently, the model is purposefully abstract 
and necessarily speculative; it is an early tool aiding the 
formation of a theory requiring much additional devel- 
opment and modification. 

Although our research is informed by control metho- 
dologies used in robotics and in other models of motor 
control, we have explicitly avoided letting conventional 
control principles dictate the form of the model. These 
principles rely so heavily on mathematical convenience 
that they can be misleading as guides to thinlung about 

biological control. Animal limb movement is accom- 
plished by distributed nonlinear control mechanisms that 
may have very little in common with centralized con- 
trollers based on linear feedback principles that play a 
dominant role in control theory. Although one of the 
long-term objectives of our research is to produce a 
competent controller of a complex dynamic limb, we are 
trying to see what progress can be made by following 
principles suggested by anatomy and physiology instead 
of control theory. We used this philosophy in developing 
the APG array model described here. The theoretical 
analysis we present arose from our attempt to understand 
the behavior of the resulting model. It is significant, 
therefore, that this analysis revealed relationships be- 
tween our model and the error backpropagation learning 
algorithm for artificial neural networks (Le Cun, 1985; 
Parker, 1985; Rumelhart, Hinton, & Williams, 1986; Wer- 
bos, 1974) and the adaptive control method known as 
feedback error learning (Kawato, Furukawa, & Suzuki, 
1987; Gomi & Kawato, 1990). These relationships- 
which emerged in our analysis of the completed 
model-suggest how the theoretical principles underly- 
ing these methods might be reconciled with anatomy 
and physiology. 

THE APG ARRAY MODEL 
Model Overview 

Figure 1 shows the pattern generator network and the 
muscle-arm system that it controls. The model has three 
parts: a neural network that generates control signals, a 
muscle model that controls joint angle, and a planar, 
hnematic arm. The control network is an array of APGs 
as shown in the box on the left of the figure. The APGs 
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Figure 1. AF'G control of joint angles. A collection of APGs is con- 
nected to a simulated two degree-of-freedom, kinematic, planar arm 
with antagonistic muscles at each joint. The task is to move the arm 
in the plane from a central starting location to one of eight symmet- 
rically placed targets. Activation of an AF'G causes a movement of 
the arm that is specific to that AF'G, and the magnitude of an APG's 
activity determines the velocity of that movement. The simultaneous 
activation of selected APGs determines the arm trajectory as a super- 
position of these movements. 
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generate signals that are fed to the limb musculature 
(center) to move the arm (right). Because here we are 
interested in the basic issue of how a collection of APGs 
might cooperatively control multiple degree-of-freedom 
movements, we use a very simplified model of the limb 
that ignores dynamics. The muscles convert APG activity 
to changes in muscle length, which determine the 
changes in the joint angles. Activation of an APG causes 
movement of the arm in a direction that is specific to 
that APG, and the magnitude of an APG’s activity deter- 
mines the velocity of that movement. The simultaneous 
activation of selected APGs determines the arm trajectory 
as the superposition of these movements. Learning pro- 
cesses adjust the subsets of APGs that are selected as well 
as characteristics of their activity in order to achieve 
desired movements. 

Each APG (Fig. 2) consists of a positive feedback loop 
and a set of Purkinje cells (PCs). The positive feedback 
loop is a highly simplified model of a component of a 
complex cerebrocerebellar recurrent network. In this 
simplified model each APG has its own feedback loop, 
and the loops associated with different AF’Gs do not 
interact. When triggered by sufficiently strong activation, 
the neurons in these loops fire repetitively in a self- 
sustaining manner. An APG’s motor command is gener- 
ated through the action of its PCs, which inhibit and 
modulate the buildup of activity in the feedback loop. 
PCs receive information via parallel fibers that specifies 
and constrains the desired movements. We hypothesize 
that the response of PCs to particular parallel fiber inputs 
is adaptively adjusted through the influence of climbing 

Parallel Climbing 
Fibers Fiber 

APG 

Figure 2. Functional diagram of a single APG. An APG receives in- 
formation about targets and about limb position via parallel fibers. 
Climbing fibers convey training information that is hypothesized to 
alter the responsivity of PCs to parallel fibers. PCs inhibit the activity 
of neurons that participate in positive feedback loops to specify the 
output o f  the APG. 

fiber activity signaling the occurrence of peripheral 
events. Climbing fibers provide “teaching” signals pro- 
viding information allowing incremental improvement 
of the motor command (Houk & Barto, 1992). More 
detailed descriptions of AF’Gs and relevant anatomy and 
physiology can be found in Houk (1989) and Houk et al. 
(1990). 

To investigate the behavior of the APG array model 
we simulated a movement task suggested by the task 
studied by Georgopoulos et al. (1982). This task has the 
advantage that neural and behavioral data are available 
to guide the development of the model. In the tasks 
planar version, monkeys are trained to move from a 
central starting location to one of eight radially symmet- 
ric targets located on a board placed 15 degrees to the 
horizontal. Trials start with the monkey’s hand in the 
central starting location when a LED at one of the target 
locations is illuminated. The monkey is then required to 
move to the target within a time criterion. As training 
proceeds over a period of months, the size of the targets 
is successively reduced. The ultimate criterion requires 
placement of the hand within 15 min of the target. 

Transformation of the M o t o r  Command to 
Arm M o v e m e n t s  

The cortico- and rubrospinal fibers that convey the motor 
command from the brain to the spinal cord cause arm 
movements primarily by their action on spinal interneu- 
rons. These interneurons influence several pools of mo- 
toneurons that innervate different muscles (Shinoda, 
Yokota, & Futami, 1981). As Georgopoulos (1988) sug- 
gested, each of the descending fibers might be thought 
of as activating a particular weighted combination of 
muscles causing a movement of the arm in a particular 
direction. The combined activity of multiple descending 
fibers produces the observed movement as the super- 
imposed effects of the corresponding weighted muscle 
groups. Although this view of a movement as a combi- 
nation of weighted muscle groups does not reflect the 
full complexity of the spinal system’s underlying control 
of arm movement, it captures a basic feature of the 
descending connections to the motoneurons. In this re- 
spect, the APG array model is similar to synergy-based 
robot control schemes such as that proposed by Lane, 
Handelman, and Gelfand (1988). 

The muscle-arm model used in the present paper is 
based on the preceding ideas but is very simplified be- 
cause we wanted to investigate issues arising with the 
use of multiple APGs in as simple an example as possible. 
The model of the arm has two degrees of freedom and 
operates in a plane. We ignored the inertia and viscosity 
of the arm as well as changes in moment arms of the 
muscles with limb posture. APGs act via weighted, non- 
adaptive connections to incrementally change the rest 
length of linear springs representing the muscles (Fig. 
1). According to this view, which is conceptually equiv- 
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alent to the approach of Massone and Bizzi (1989), a 
movement trajectory is a sequence of static postures that 
are determined by a sequence of spring rest lengths. 
APG-muscle connections are set so that if an APG were 
to act alone, it would move the arm in a direction that 
is different for each APG. Activation of each APG thus 
generates a specific movement of the arm, which here 
is a curved trajectory in the arm’s workspace; the acti- 
vation of multiple APGs determines the arm trajectory as 
the result of the simultaneous execution of movements 
generated by the individual APGs. The magnitude of an 
APG’s activity determines the degree that its movement 
contributes to the trajectory. 

The manner in which APG activity generates changes 
in arm position can be specified using the approach of 
Mussa-Ivaldi (1988). Suppose u(t) is the activity of the 
APG array at time t. If there are M APGs, then u(t) is a 
(column) vector of length M whose components are the 
activities of the M APGs. Let 8(t) denote the vector of 
joint angles at time t, and let AO(t) denote the change in 
joint angles from time t to t + 1.’ Making the simplifying 
assumption that APG activity has an instantaneous and 
linear effect on  changes in joint angles, we can write 

A e(t) = u u ( t )  (1) 

where A is the 2 row X M column matrix of weights that 
summarizes the influence of the M APGs on the two 
joints and k is a positive scaling factor. A weight can be 
either positive or  negative depending on whether the 
APG flexes or extends the joint in question. (As explained 
in Appendix A, we defined joint angles using a conven- 
tion from robotics in which a joint angle is zero when 
the adjacent arm links are aligned and increases as the 
joint moves counterclockwise; as a consequence the el- 
bow joint angle increases with elbow flexion and de- 
creases with extension.) The rnth column of A, which we 
denote A,, is the vector of weights giving how APG rn 
influences the arm’s joints. We loosely refer to these 
weights as connection weights to the joints, although they 
represent the descending network by which the APGs 
influence motor units. If the ith component of A, is 
positive, we think of it as a connection weight to a flexor 
motor unit whose contraction increases the angle of joint 
i. On the other hand, if the ith component of A, is 
negative, we think of the magnitude of this component 
as a positive connection weight to an extensor motor 
unit whose contraction decreases the angle of joint i. 
This means that the activity of an APG does not cause 
cocontraction of the flexors and extensors at any joint, a 
simplifying assumption in the current model. 

That A does not vary with 8 means that we have ig- 
nored the changes in moment arms of the muscles with 
limb posture. This simplification implies that each APG 
moves the arm in a particular direction in joint-angle 
space, called the direction of action of the APG. We 
prespecified the vectors A, so that each had unit length 
and so that the directions of action of the APGs were 

equally spaced around the 360” of possible directions. 
Whereas the direction of action of an APG in joint-angle 
space is independent of the arm’s current joint angles, 
the direction of action of an APG in the arm’s workspace 
depends on these joint angles. Let j ( 0 )  be the 2 X 2 
Jacobian matrix of the transformation from joint-angle to 
Cartesian space when the arm is positioned with joint 
angles 8. Then the direction of action of APG rn in Carte- 
sian space is the direction of the vectorJ(B)A,. 

Adjustable Pattern Generators 

Our model of an APG is based on the finding that cere- 
bellar cortex is anatomically and functionally organized 
into parasaggital zones (Voogd & Bigark, 1980; Oscars- 
son, 1980). Each APG is composed of a longitudinally 
oriented set of PCs that we assume receive the same 
parallel and climbing fiber input, as well as the same 
basket cell input. PCs inhibit cerebellar deep nuclear 
cells that form a link in a regeneratively active cerebro- 
cerebellar lcop (Allen & Tsukahara, 1974). This loop is 
treated as a positive feedback loop that remains active 
when triggered to provide a tonic level of activity that 
can be modulated by PC inhibition to form the motor 
command. The activity of loop cells is conveyed to spinal 
motor areas by corticospinal fibers. In this model we 
adopt a much simplified view of the loop in which we 
assume that the neurons within each nucleus or cortical 
area forming a link in the loop do not directly interact 
with each other. Consequently, the overall loop activity 
consists of the parallel activity of many separate loops, 
each of which is modulated by the PCs of a different 
APG. Further, we model each of these separate loops in 
highly aggregated form by representing only the overall 
activity level of each loop; the neurons making up the 
loop are not explicitly present in the model. Although a 
more refined model including loop cross-coupling and 
more complex loop dynamics will be essential for further 
development of the model, we did not want the present 
model to be so complex. Therefore, in the present 
model, by an APG we mean a set of PCs together with 
the positive feedback loop (an independent component 
of the overall loop) that the PCs modulate. The PCs of 
an APG share the same input signals. 

The effect of synaptic inputs on the membrane poten- 
tial of PCs cannot be modelled as a simple weighted sum. 
Small changes in input can lead to large changes in 
membrane potential because of high-threshold, slowly- 
inactivating calcium conductances (Llinas & Sugimori, 
1980). In the intact cerebellum, PCs might have several 
possible stable levels that are the result of calcium con- 
ductances in d&erent parts of the dendritic tree (Gut- 
man, 1991). As an initial step in simulating these 
complexities, we model PCs as being in either “on-” or 
“off-states.’’ We also assume that PCs show hysteresis, i.e., 
that PCs have dlfferent on- and off-thresholds. Figure 3A 
shows the state transition characteristics of a PC in the 
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Figure 3. Operating characteristics assumed for PCs and for the cere- 
brocerebellar loops. (A) PC state, y, as a function of its total input, s. 
PCs are assumed to be bistable so that they are relatively insensitive 
to changes in their input except near the on-threshold, $, where 
transitions from the off- to the on-state occur, and the off-threshold, 
where transitions from the on- to the off-state occur. (B) The cere- 
brocerebellar loops are also assumed to have off- and on-states, but 
with more complex features. When a loop is in its off-state, it has an 
output of zero independently of its PC input. Transitions to the on- 
state are caused by trigger signals, and after a transition, output (dis- 
charge rate) is proportional to the fraction of PCs in the APG that are 
in the off-state. 

model. If the PC is in the off-state, the net input, s, must 
exceed the on-threshold, 4, in order to drive it to the 
on-state. If the PC is in the on-state, the net input must 
drop below the off-threshold to force the cell to the off- 
state. We assume that noise influences the transition to 
the off-state so that the lower the total input, the higher 
the probability of a transition to the off-state. A PC in the 
on-state is assumed to fire at a markedly higher rate than 
when it is in the off-state. For simplicity, here we assume 
that when a PC is in the off-state, it never fires, and when 
it is in the on-state, it fires at each time step. 

The cerebrocerebellar loops are also assumed to have 
off- and on-states, but with more complex features (Fig. 
3B). When a loop associated with an APG is in its off- 
state, it has an output of zero independently of its PC 
input. Transitions to the on-state are caused by trigger 
signals, and after a transition, output (discharge rate) 
depends on the fraction of PCs in the APG that are in 
the off-state. 

The generation of motor commands occurs in three 
phases. In the first phase, we assume that all positive 
feedback loops are in the off-state, and teleceptive and 
proprioceptive parallel fibers and basket cells determine 
the states of the PCs. We call this first phase selection. In 
the second phase, loop activity is triggered by cortical 
activity. Once triggered, loop activity is self-sustaining 
because the loop cells have reciprocal positive connec- 
tions. The triggering of loop activity causes the motor 
command to be “read out.” The states of the PCs in the 
selection phase determine the speed and direction of 
the arm movement. As the movement is being per- 
formed, proprioceptive feedback from the arm gradually 
depolarizes the PCs and forces them to the on-state. 

When a large proportion of the PCs are in the on-state, 
PC inhibition reaches a critical value and terminates loop 
activity. This is the execution phase. In the third phase, 
the correction phase, corrective movements trigger 
climbing fiber activity that alters parallel fiber-PC con- 
nection weights. 

APG Array Input-Output Behavior 

Figure 4 shows the structure of a single APG in more 
detail. The output of an APG depends on its internal state 
as well as its input, where the state of an APG is deter- 
mined by the states of all of its PCs as well as the state 
of its feedback loop. Suppose each APG consists of N 
PCs. For each APG m, m = 1, . . . , M ,  each PCj, j = 1, 
. . . , N, in APG m, and each time t, sy(t) and ym(t), 
respectively, denote the PC’s total input and state at time 
t, where the latter is a binary variable indicating whether 
the PC is in the on-state [yy( t )  = 11 or  the off-state [yi” 
(t)  = 01. The PCs in the same APG receive the same input 
signals via multiple excitatory parallel fibers, a single 
inhibitory basket cell input, and a single climbing fiber. 

As the simplest starting point for the current studies, 
there are only nine parallel fiber inputs to each PC. We 
view these parallel fiber inputs as highly abstract repre- 
sentations of the much richer parallel fiber input that an 
APG would receive in a more detailed model. Eight of 
the parallel fibers are target 3 6 ~ s  that represent the 
target for each trial, and these fibers synapse upon all 

7 7  . . . . . . . . . . 

.-++++t+e++i . . . . .  . . . . . . . . . .  . . . . . i 

PCS 

,Elemental 

Command 
Trigger Motor 

Figure 4. Structure of APG m. Each MG rn consists of N PCs with 
states y;”(t), . . . , y,?(t) at time t and a positive feedback loop. Target 
related signals are  XI(^), x ~ ( t ) .  . . . , xs(t), proprioceptive feedback is 
pm(i), basket cell input is b,(t), and climbing fiber input is cm(t). 
Only the connection weights shown as filled circles are modified by 
climbing fiber input. The output of the APG is determined by the 
state of the feedback loop and the total amount of PC inhibition of 
the loop. 
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PCs of the model, irrespective of the APG in which they 
are located. We used the simplest possible represention 
of the targets. The presence of one of the eight targets 
is signaled by setting one of eight target fibers to one 
and the other seven to zero. That is, for i = 1, . . . , 8, 
let xi(t) denote the activity of the ith target fiber at time 
t. If target k is present at time t, then xk(t) = 1 and 
xz{t) = 0 for i = 1, . . . , 8,  i # k.  In this case, we call 

+, i.e., whenever $T(t) 2 +. Transitions from the on-state 
to the off-state, on the other hand, depend probabilisti- 
cally on the current state and total input. In the current 
model, the probability that PCj  of APG rn turns off when 
it is on is 

pr{yT(t + 1) = olum(t) = 1) = { -v(t) if sy(t) < 
0.05 otherwise 

parallel fiber k the active target$bw. This simple coding ( 3 )  
means that there is neither interference nor generaliza- 
tion in the learning process by which the target signals 
come to be associated with movements. Substituting 
more sophisticated coding schemes, such as those used 
in the models of cerebellar cortex by Marr (1969) and 
Albus (1971), or by Zipser and Andersen (1988) in their 
study of parietal cortex, is relatively straightforward and 
is reserved for future elaborations of the model. The 
ninth parallel fiber to an APG transmits proprioceptive 
information about limb position, and this information is 
different for different APGs. Letp,(t) be the positive real 
number representing the activity of the parallel fiber 
conveying proprioceptive information to APG m at time 
t. It represents the aggregate influence of all propriocep- 
tive parallel fibers to the APG. We describe howpm(t) is 
computed for each APG m in the next section. 

The other inputs to each PC of APG rn are basket cell 
and climbing fiber inputs, whose activities at time t we 
denote by bm(t) and cm(t). These inputs are binary, with 
1 and 0 respectively indicating activity and inactivity. All 
the PCs of a single APG receive the same basket cell and 
climbing fiber input. In the current model, basket cell 
input inhibits PCs in the selection phase as described in 
the section on The Selection Phase. Climbing fiber input 
is the critical component of the correction phase de- 
scribed in the section on The Correction Phase. 

At time t, the total input to PC, of APG rn is 
8 

s;”(t> = 2 tu;(t)x,(t) + wpp,(t) + W&rn(t) ( 2 )  

where wy(t)  is the connection weight at time t of the ith 
target fiber to P C j ,  wp scales the aggregate propriocep- 
tive feedback, and wb < 0 is the weight of the inhibitory 
connection from the APG’s basket cell. These latter two 
parameters are the same for all APGs and also remain 
constant over time. In the simulations presented in this 
article, their values were chosen so that sy(t) 2 -0.5 for 
all t (see Appendix A for details). Because in the current 
model the weights associated with the target inputs 
change during learning, these weights require the time 
argument. 

The state of P C j  of APG rn at time t depends on its 
current state as well as its total input q ( t ) .  Figure 3A 
shows the hysteresis curve that characterizes this behav- 
ior. The state of a PC remains the same unless the fol- 
lowing conditions for a state transition are met. A 
transition from the off-state to the on-state occurs when- 
ever the total input equals or exceeds the on-threshold 

r = 1  

This implies that whenever a PC in the on-state is maxi- 
mally hyperpolarized [sy(t) = -0.51, it turns off with 
probability one. The probability of turning off decreases 
as the degree of hyperpolarization decreases. The prob- 
ability of a PC in the on-state turning off when depolar- 
ized is 0.05 to allow a PC to occasionally turn off under 
these conditions. 

The output of APG m at time t ,  which we denote u,(t), 
depends on the state of the positive feedback loop and 
the states of the N PCs in the APG. When the loop is in 
the off-state, the APG’s output is zero independently of 
the activity of the PCs. When the loop is in an on-state, 
i.e., after it has been triggered, the APG’s output is equal 
to the number of PCs that are in the off-state. This rep- 
resents the influence of the total PC inhibition on the 
positive feedback loop: more PCs in the off-state implies 
less inhibition, which permits greater loop activity. Figure 
3B shows two examples. In the case marked 1, relatively 
few PCs are off and hence, when triggered, the APG 
permits loop activity to reach only a modest level. In 
case 2 ,  on the other hand, a large number of PCs are off 
so that the APG permits the loop to reach a high level 
of activity when triggered. The model as presented here 
represents only this basic relationship between loop ac- 
tivity and APG activity and does not include any details 
of the loop dynamics. Future work will involve disaggre- 
gating this very crude loop model following the prelim- 
inary work of Eisenman et al. (1991). We use u(t) to 
denote the output at time t of the entire array of APGs; 
it is a vector of length M whose mth component is um(t). 

We now describe how the model generates proprio- 
ceptive signals; in the section on Climbing Fiber Re- 
sponses we describe how it determines climbing fiber 
activity. 

Proprioceptive Input 

The cerebellum receives a substantial proprioceptive in- 
put that contributes to both the parallel fiber and the 
climbing fiber innervation of PCs (Bloedel 81 Courville, 
1981). This section deals with the parallel fiber input, 
whereas proprioceptive signals in climbing fibers are 
discussed in the section on Climbing Fiber Responses. 
The proprioceptive parallel fiber input is both highly 
divergent and highly convergent. This ensures that PCs 
in all of the APG modules can potentially receive pro- 
prioceptive information from the entire limb. In our 
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present model, we assume that an APG’s PCs are specif- 
ically wired up to respond to length changes o f  the 
muscles attached to the joints the APG influences. Even- 
tually we hope to show that this is a natural consequence 
of developmental plasticity in the mossy fiber-parallel 
fiber pathway as shaped by training inputs from climbing 
fibers, but in the present model we assume that this 
process has already taken place. As a further simplifica- 
tion, we use a single parallel fiber to  represent the com- 
bined, or aggregate, influence of all of the proprioceptive 
parallel fibers that would be present in a more detailed 
model. We defined this aggregate proprioceptive input 
so that it tends to depolarize the PCs in an APG as the 
arm moves in the direction o f  action of that APG. For 
example, an APG that has a positive connection to the 
two joints receives increasing aggregate proprioceptive 
input when O l  and O2 increase. An APG that has a negative 
connection t o  a joint receives increasing aggregate pro- 
prioceptive input when the joint angle decreases. To 
accomplish this, we defined each APG’s aggregate pro- 
prioceptive input to be a particular weighted sum o f  
signals giving information about the positions of the 
multiple joints influenced by the APG, where the weights 
are related to the weights by which the APG influences 
the joints. Athough these weights are probably the result 
of a learning process, we selected them by hand and 
held them fixed throughout the simulations. 

To see how an aggregate proprioceptive input meeting 
these requirements could arise from muscle afferents 
and to explain how we selected these weights in the 
model, recall that the vector A,, represents how the ac- 
tivity of APG m influences the movements of the joints. 
Each component of A,,  can be positive or negative, re- 
spectively indicating influence on flexors or extensors of 
a joint. If component i of A,, is positive, then the activity 
o f  APG rn influences a flexor that increases the angle of 
joint i. A signal generated by an afferent sensing the 
length of an antagonist extensor would therefore in- 
crease in magnitude if APG rn were to act alone. On the 
other hand, if component i of A,, is negative, then the 
activity of APG rn influences an extensor that decreases 
the angle of  joint i. The magnitude of a signal generated 
by an afferent sensing the length of an antagonist flexor 
would therefore increase if APG rn were to act alone. 
This is consistent with the results of Capaday and Cooke 
(1981), who showed the importance of sensation from 
the antagonists in sensing joint angle. If we form a 
weighted sum of these afferent signals, where the weights 
are the magnitudes of the corresponding components of 
A,, the result turns out to be an aggregate signal that 
would increase in magnitude if APG m were to operate 
alone to generate a movement. 

Specifically, in our model we define the aggregate 
proprioceptive input at time t to the PCs of APG rn, which 
we denote p,(t), as follows. Because extensor activity 
reduces a joint’s angle from its maximum flexor of IT 

radians (see Appendix A), afferent signals that increase 

with increasing extensor activity covary with the angles 
IT - O,(t), i = 1,2. Consequently, define 8(t)  to be the 
vector whose ith component is IT - O,(t) if the ith com- 
ponent of A, is negative (i.e., APG rn activates an extensor 
of joint i )  and is O,(t) otherwise. Then 

( 4 )  
where bml is the vector of the absolute values of Am’s 
components, and the superscript T indicates the trans- 
pose of this vector. This means thatp,(t) is a weighted 
sum, where the weights are all positive, of the joint angles 
comprising the vector 8(t). 

We can rewrite Eq. ( 4 )  as follows: 

(5) 

where II, is the vector whose ith component is IT if the 
ith component of A ,  is negative and is zero otherwise. 
When written in this form, one can see thatp,(t) would 
increase if APG m were to operate alone in generating a 
movement because A,  gives the direction of action of 
APG rn. One can also see that the total proprioceptive 
input to the APG array is described by the matrix AT, 
whose mth row is A, minus a vector that is constant over 
time. We can think of this as the connection matrix of a 
network transmitting proprioceptive information to the 
APG array. The matrix gives the synaptic weights by which 
parallel fibers responsive to proprioceptive signals influ- 
ence PCs. The network with connection matrix AT has 
the same structure as the network by which the APG 
array influences joint movements (with connection ma- 
trix A), but transmits information from the arm to the 
APG array instead of from the APG array to the arm. 

This definition of the aggregate proprioceptive input 
to an APG does not take into account the time delay that 
would be present in transmitting information about the 
arm’s movement to PCs: pm(t) depends on O ( t )  instead 
of O(t - T ) ,  for some time delay T .  Although we did not 
employ a time delay in the simulations to be described, 
the behavior of the APG array model is not critically 
sensitive to this delay. This is a basic feature of the model 
that is explained below. 

The Selection Phase 

The selection phase begins with all positive feedback 
loops in the off-state, all PCs in the on-state, and parallel 
fiber input specifying information about the current tar- 
get and providing proprioceptive signals generated by 
the current position of the arm. Selection then occurs 
when the basket cells fire, which provide the only inhi- 
bitory input to the PCs. Here we assume that all the 
basket cells fire at the same time, an assumption we will 
modify in future versions of the model. As a result, some 
of the PCs in each APG are turned off. Which PCs turn 
off depends on their total input [Eq. (2)1 according to 
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the probabilistic state-transition rule given by Eq. (3). We 
say that a PC that has been set to the off-state by basket 
cell inhibition has been selected. After some PCs have 
been selected, basket cell activity ceases until the next 
selection phase. After selection of a subset of PCs, the 
positive feedback loops for all the APGs are triggered, 
which we did by simply changing the state of each pos- 
itive feedback loop from the off-state to a state given by 
the total number of PCs selected in the corresponding 
APG. Triggering signals the start of the execution phase 
during which the motor command is generated. As de- 
scribed next, the subset of selected PCs determines the 
end-point and trajectory of the movement generated dur- 
ing the execution phase. 

The Execution Phase 

During the execution phase, all of the inputs to the PCs 
remain constant except for the input conveying the ag- 
gregate proprioceptive information. The aggregate pro- 
prioceptive input is determined by the arm position as 
previously explained. The aggregate proprioceptive in- 
put increases for most of the APGs involved in generating 
a movement. This is true because (1) the aggregate pro- 
prioceptive input t o  an APG increases when the arm 
moves under control of that APG acting alone [Eq. ( 5 ) ] ,  
and (2) most of the APGs involved in a particular move- 
nient generate movement in similar directions. Move- 
ment stops when the aggregate proprioceptive input is 
sufficient to force a large proportion of the selected PCs 
to the on-state. As the selected PCs turn on, the level of 
inhibition to the positive feedback loop increases until 
the loop reverts t o  the off-state. This process is insensitive 
to delayed proprioceptive feedback because this feed- 
bdck does not act continuously to control the motor 
command, as it would in a conventional feedback control 

tern. Instead, proprioceptive feedback merely signals 
the conditions for terminating loop activity. This process 
requires only that the first time during a movement that 
the activation of a selected PC exceeds its on-threshold 
is the time when the motor command should terminate. 
Due t o  the learning process described below, this re- 
quires that the aggregate proprioceptive input to a se- 
lected PC is increasing when the command should 
terminate, but it does not require this input to have a 
specific magnitude or to follow a specific time course. 

We can analyze the conditions required for a move- 
ment to stop when the target position is reached. During 
a movement when the kth target is presented, the total 
input to P C j  of APG m is 

(7) 
where w$(t) is the connection weight from the kth target 
fiber to P C j .  This is true because in Eq. ( 2 ) ,  xk(t) = 1, 
x2(t) = 0 for i # k, and the basket cell input is zero 
during movements. If P C j  has been selected, it makes 
the transition to the on-state when the total input, sY(t), 

s;”(t) = W g t )  + wpp,n(t) 

exceeds the on-threshold, 4 Because the arm is sup- 
posed to stop when it reaches the target, the proprio- 
ceptive feedback when the arm is in a target posture 
should force each selected PC to the on-state. If the target 
is reached at time tl, this means that wG(tl) must equal 
4 - wgg,(t1). Let us call this weight w&.l 

But we have assumed that P C j  of APG m has been 
selected. If the connection weight WL? has the value wt 
required to appropriately terminate a movement, how 
likely is it that P C j  will be selected during the selection 
phase? Let to denote the time at which selection occurs, 
i.e., at time to, xk(to) = 1, xl(to) = 0 for i # k,  and the 
basket cell input, b,(to), is equal to one. Then from Eq. 
( 2 )  we see that the total input to PC j of APG m at 
selection is 

q(b) = w& + wpprn(t0) + wb 

= [+ - wpPrn(tl)l + w&x(tO) + wh 

= Wp[pm(tO) - p m ( t l ) ]  + 4 + wh 

Using Eq. ( 5 )  to express proprioceptive feedback in 
terms of joint angles, we 

q ( t o )  = wp[A’,(e(to) - 

+ 4 + Wh 

= wpA%Wo) - 

Because the selection 
tional to -sy(to) if sy(to) 
implies that at selection when P C j  is inhibited, its prob- 
ability of being selected is proportional to the inner 
product of A,, and O ( t o )  - e(tl) .  This latter vector points 
in joint-angle space from the point representing the tar- 
get location to the point representing the initial joint 
angles. This has the following implications: 

1. When the directions of action of the APGs are uni- 
formly distributed in joint-angle space, as they are in the 
model, the expected trajectory of a movement is a 
straight line in joint-angle space from the starting posi- 
tion to the target. This is true because one can show that 
the expected movement in joint-angle space is propor- 
tional to AATIB(to) - O ( t , ) ] ,  and AAT turns out to be 
proportional to the identity matrix due to the fact that A 
is defined so that the directions of action of the APGs 
are uniformly distributed in joint-angle space. This is a 
special case of the result proved by Mussa-Ivaldi (1988), 
which holds for a wide range of such distributions. 

2 .  The population of vectors of APG activity is cosine- 
shaped in joint-angle space, i t . ,  the length of the vector 
representing the activity of APG m is proportional to the 
cosine of the angle between the direction of action of 
APG m and the direction of the target in joint-angle space. 
This is true because the inner product by which selection 
occurs is proportional to the cosine of the angle between 
the APG’s direction of action and the direction to the 
target in joint-angle space. 
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3. Presentation of targets that are farther from the 
starting posture in angle space lead to more rapid move- 
ments than closer targets. This is beCdLlse A, remains 
constant while the magnitude of €)(to) - 0(t ,)  increases 
with increasing target distance, resulting in a larger inner 
product in Eq. (8). This causes more PCs to be selected 
and hence the APGs command higher velocity move- 
ments. 

Correction Phase 

A third phase in the operation of this model is the cor- 
rection phase. “Correction” refers to both corrective 
movements and to a resultant correction of connection 
weights. The corrective movements are assumed to be 
crude movements in the general direction of the target 
produced by extracerebellar circuits whenever the initial 
movement generated by the APG array fails to aquire the 
target. We also assume that climbing fibers sensitive to 
proprioceptive input are selectively responsive to these 
corrective arm movements, thus providing training in- 
formation about the direction of an error. Connection 
weights of parallel fibers are incrementally adjusted as a 
result of this climbing fiber activity. These various as- 
sumptions are based on the physiological properties of 
climbing fibers and of their effects on PCs. 

Generation of Correctiw Movements 

Reaching movements to switched targets have corrective 
components that operate at very short latencies, sug- 
gesting short pathways through the nervous system (Al- 
stermark, Eide, Gorska, Lundberg, & Pettersson, 1984; 
Gielen 8: van Gisbergen, 1990; Pelisson, Prablanc, Good- 
ale, & Jeannerod, 1986). Fast switching is abolished when 
the tectospinal pathway is interrupted, suggesting that 
this corrective system bypasses the corticospinal and 
rubrospinal pathways that initiate the first phase of the 
movement (Alstermark, Gorska, Lundberg, Pettersson, & 
Walkowska, 1987). Behavioral and computational studies 
by Flash and Henis (1991) also suggest that the corrective 
movement is generated by a system distinct from the 
corticospinal and rubrospinal systems, as the corrective 
component is simply added to the initial movement com- 
mand. In the simulations described here, corrective 
movements were generated using a probabilistic scheme 
that resulted in a movement whose expected direction 
was in the target direction. The direction of each correc- 
tive movement was generated randomly according to a 
Gaussian distribution around the target direction. We set 
the variance of the Gaussian so that with probability 0.5 
the direction of the corrective movement was within 45” 
of the correct direction. In the current simulations cor- 
rective movements were only generated when the move- 
ment was farther than 1.5 cm from the target, the radius 
of the target used in behavioral studies (e.g., Georgo- 
poulos et al., 1982). 

Climbing Fiber Resp0xse.s to Corrective 
Movements 

Our assumption that climbing fibers are selectively re- 
sponsive to corrective movements is based on several 
lines of physiological evidence. Many climbing fibers are 
responsive to proprioceptive input (Gellman, Gibson, & 
Houk, 1985), and this responsiveness is selectively inhib- 
ited during self-initiated movements (Andersson & Arm- 
strong 1987; Gellman et al., 1985). In contrast, climbing 
fibers responsive to tactile input appear to be inhibited 
at the end of a self-initiated movement (Gellman et al., 
1985; Weiss, Houk, & Gibson, 1990). In the studies of 
Gilbert and Thach (1977), which supported a role for 
climbing fibers in motor learning, discharge of  these 
fibers was especially evident when the primate subjects 
were making corrective limb movements. On the basis 
of these findings, we speculate that climbing fibers sen- 
sitive to proprioceptive input are selectively inhibited 
during the initial movement generated by the APG array, 
but regain their responsiveness during crude corrective 
movements generated by extracerebellar circuitry. Pro- 
prioceptive climbing fibers have preferred directions for 
stimulation but respond when the limb is manipulated 
in a variety of directions (Gellman et al., 1985). In the 
present simulations we use a cardioid-shaped receptive 
field for the climbing fibers following the use of car- 
dioids to fit to retinal slip climbing fibers (Rosenberg & 
Ariel, 1990) and proprioceptively driven muscle re- 
sponses (Flanders & Soechting, 1990). We further assume 
that the preferred directions of the climbing fibers are 
aligned with the directions of action of the APG modules 
they innervate, thus taking advantage of the precise anat- 
omy of the climbing fiber input to the cerebellum 
(Oscarsson, 1980; Voogd & Bigare, 1980). 

Because the proprioceptive receptors underlying 
climbing fiber responsiveness lie in muscle or in joints, 
we specified their receptive fields in joint-angle space. 
Letting 0 denote the vector of current joint angles, as- 
sume a corrective movement is generated according to 
the probabilistic scheme described above. Then the ini- 
tial direction of the corrective movement in joint-angle 
space is 

A0 =]-‘(€))AX 

where A0 is the change in joint angles, ]-‘(0) is the 
inverse of the Jacobian of the arm’s kinematic transfor- 
mation for the current joint angles, and AX is a small 
magnitude vector in the direction of the corrective move- 
ment in Cartesian space. 

The probability of firing of the climbing fiber of APG 
m depends on the relationship between the direction of 
the corrective movement in joint-angle space and the 
direction of the movement caused by activity of APG m. 
Recall that the influence of APG m on joint movements 
is determined by the mth column, A,, of the connection 
matrix A (see section on Transformation of the Motor 
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Command). Letting o denote the angle between A0 and 
A,,, at a time t when a corrective movement occurs, we 
let the firing probability of the climbing fiber of APG rn 
be 

1 + cos(0) 
2 

Pr{c,,,(t) = 1) = ( 9 )  

At all times t when there is no corrective movement, 
c,,,(t) = 0. This implies that when the initial direction of 
a corrective movement is exactly in the direction that the 
AI’G moves the arm (o = 0), the climbing fiber always 
fires, and when the initial direction of a corrective move- 
ment is directly opposite from the direction the APG 
moves the arm, it never fires (o = T). Climbing fiber 
firing probability varies smoothly between these ex- 
tremes for other corrective movements. Figure 5 illus- 
trates the procedure by which the probability of a 
climbing fiber firing is determined; Eq. ( 9 )  is plotted as 
21 cardioid in polar coordinates. 

The rule specifying climbing fiber responsiveness 
given by Eq. (9) can be implemented by a network 
similar to that previously described for generating the 
aggregate proprioceptive input t o  APGs used in the 
model. Although we did not explicitly implement this 
network in the simulations, its matrix of connection 
weights is AT, suitably normalized to produce climbing 
fiber firing probabilities. This network has the same 
structure as the network described by the connection 
matrix A by which the APG array influences joint move- 
ment [Eq. (l)], but it transmits information in the op- 
posite direction: from proprioceptors to the APG array. 
Consequently, the model uses a learning mechanism 
somewhat related to the well-known error backpropa- 
gation learning algorithm that is widely used to train 
layered artificial neural networks (Rumelhart et al., 1986). 
We discuss this in  more detail in the Discussion section 
o n  Climbing Fiber Signals. 

Figure 5. Determination o f  climbing fiber firing probability. (A) A 
unit vector, AX, that points in the direction o f  the corrective niove- 
ment in Cartesian space./-’(O) transforms AX from Cartesian to 
joint-angle space. (B) The resulting vector, AO, as well as the vector, 
A,,, describing the influence of APG rn o n  the joints. Plotting the 
climbing fiber’s firing probability as a function of the angle, w, be- 
tween A0 and A ,  produces the cardioid shown as a dotted line. 

Adjusment of PC Weights 

The rule used to adjust the connection weights of the 
target fibers to PCs is based on the cellular properties 
that regulate plasticity of parallel fiber synapses on PCs 
(Crepe1 & Krupa, 1988; Ekerot, 1984; Ito, 1989; Linden, 
nickinson, Smeyne, & Conner, 1991). These data indicate 
that plasticity in PCs is different than plasticity at most 
other sites in the nervous system. Whereas long-term 
potentiation (LTP) in hippocampal and other neurons is 
considered to depend on the concurrence of presynaptic 
input and postsynaptic activity (Collingridge & Singer, 
1990), long-term depression (LTD) in PCs appears to 
depend on these two plus a third factor (Ekerot, 1984; 
Linden et al., 1991), all of which are incorporated in the 
learning rule used here (see Houk et al., 1990 and Houk 
& Barto, 1992 for more complete discussions). The three 
factors influencing long-term depression in the PCs of 
an APG m are (1) the presyiiaptic input, xi, (2) the post- 
synaptic response, JT of PCj, and (3) the climbing fiber 
input, cm, to that Purkinje cell. The weights of the target 
fiber inputs to APG m are adjusted according to the 
following equation: 

AwT(t) = a[ 1 - ~ n ( t ) ] [  1 - $(t)bi(t) 

- pcm(t)y,”(trx,(t) (10) 

where AwY(t) is the change at time t of the strength of 
the synapse by which target parallel fiber i influences PC 
j of APG m, and a and p are constants determining the 
rates of facilitation and depression, respectively. The 
other connection weights from the proprioceptive par- 
allel fibers to the PCs are held constant. 

This learning rule is closely related to the rule de- 
scribed by Albus (1971) and the perceptron learning rule 
(Rosenblatt, 1962) if one assumes that the climbing fiber 
provides a signal that is the opposite of the signal that 
the PC should produce (Bartha, Thompson, & Gluck, 
1991). If a PC’s climbing fiber fires when the PC is in the 
on-state, all the weights with active inputs are decreased, 
making it less likely that the PC will fire to similar inputs. 
On the other hand, if the climbing fiber does not fire 
and a PC is off, then the weights are increased for active 
inputs, increasing the probability that the PC will fire. 

SIMULATION EXPERIMENTS 

We simulated the APG array model in an analog of the 
planar movement studied by Georgopoulos et al. (1982). 
This task requires a rhesus monkey to move from a 
starting point in the center of the workspace to one of 
eight radially symmetric targets. A trial starts with the 
monkey’s hand over a central starting position when a 
LED at the location of one the targets is turned on. A 
correct response is defined as a movement made within 
a time criterion that ends within 1.5 cm of the target. 
Targets are presented serially. In our simulations we used 
the workspace dimensions of Georgopoulos et al. (1982), 
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and we set the link lengths of the simulated arm to those 
of a typical rhesus monkey (see Appendix A). 

Our simulations employed 48 APGs, each consisting 
of 36 PCs. The on-threshold, c$, of all the PCs was set to 
1. The basket cell weight, wb, of each PC was set to 
- 1, and the scale factor for the aggregate propriocep- 
tive input, wp, to each PC was set to 0.2. The learning 
rate parameters (Y and p were set to 0.0001 and 0.0011, 
respectively. All the target fiber connection weights were 
initially set to 1. Appendix A provides a detailed dis- 
cussion of how the parameters of the current simulations 
were selected. 

Each simulated trial started with the end-point of the 
arm in the center of the workspace. The selection phase 
was then simulated. With all the positive feedback loops 
set to the off-state and all of the PCs set to the on-state, 
one of the eight target parallel fiber inputs was set to 
one and the other seven were set to zero. The proprio- 
ceptive input to each APG was set according to the cur- 
rent position of the arm. The basket cells then fired to 
inhibit all the PCs, thus setting some of them to the off- 
state, i.e., selecting a subset of the PCs. The execution 
phase began with the triggering of the positive feedback 
loops, which we did simply by changing the state of each 
positive feedback loop from the off-state to a state deter- 
mined by the total number of PCs selected in the cor- 
responding APG. Arm movement then commenced, 
causing proprioceptive input to each selected APG to 
change over time. Depending on the adjustable connec- 
tion weights, selected PCs reverted to the on-state when 
sufficiently excited by proprioceptive input. When 95% 
of all the PCs were in the on-state, PC inhibition of each 
loop was considered sufficient to stop arm movement, 
and a corrective movement was then generated. Climb- 
ing fibers then fired according to the scheme described 
above, weights were adjusted, and the trial was termi- 
nated. Targets were presented serially. 

Figure 6 shows a typical learning curve for movements 

Trials 

Figure 6. The distance in centimeters between the movement end- 
point and the target plotted as a function of training trials for a rep- 
resentative training session. The distance from the starting point to 
the target was 8 cm. 

to a single target. It shows the distance from the move- 
ment endpoint to the target for 750 training trials. Ini- 
tially, arm movements were very small and in random 
directions because of the large initial connection weights 
(1.0) of the target fibers. The large initial weights made 
it unlikely that many PCs would be selected because the 
total input to each was sufficiently positive to produce a 
low probability of making a transition to the off-state [Eq. 
( 3 ) ] .  Repeated climbing fiber firing lowered these 
weights, eventually causing the arm to move in the di- 
rection of the target. This took about 300 trials. Once 
this point was reached the error distance decreased until 
the endpoint of the movement was within about one 
cm of the target. Performance then stabilized with arm 
movements consistently ending close to the target. 

Figure 7A shows three representative trajectories to 
each of the eight targets after training. The starting point 
for each movement is the center of the workspace, and 
the target location is the center of the open square. The 
position of the arm at each time step is shown as a dot. 
Movement trajectories tended to be curved lines in Carte- 
sian space and straight lines in joint-angle space from 
the starting position to the target. Curvature of movement 
trajectories varied between targets, a result that was ex- 
pected because of the positional dependence of the 
transformation from joint-angle space to Cartesian space. 
Movements to some targets were learned with greater 
accuracy than to others. Further, because selection of PCs 
was stochastic, trajectories to a target varied from trial to 
trial. For example, the movements to the top-most target 
in Figure 7A showed significant variability. 

In these simulations it was possible for a single APG 
acting alone to move the arm to each of the targets. 
However, after training, subsets of APGs were used for 
each target. For any given target about half of the APGs 

~ 

Figure 7. (A) Movement trajectories after training. The starting 
point for each movement is the center of the workspace, and the 
target location is the center of the open square. The position of the 
arm at each time step is shown as a dot. Three movements are 
shown to each target. (B) APG selection. APG selection for move- 
ments to a given target is illustrated by a vector plot at the position 
of the target. An individual APG is represented by a vector, the direc- 
tion of which is equal to the direction of movement caused by that 
AF'G in Cartesian space. The vector length is proportional to the 
number of PCs that are selected during the selection phase. The ar- 
row points in the direction of the vector sum. 
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were used. Figure 7B shows vector displays of APG se- 
lection following the method used by Georgopoulos 
(1988). Each cluster of lines refers to movements to the 
target in the corresponding position. The direction of  a 
line in a cluster is the direction that one APG would 
cause the arm to move if it were to act alone. The length 
of a line is proportional to the average number of the 
APG's PCs that were selected for movements to that tar- 
get. The line with the arrowhead shows the direction of 
the vector sum of  the APGs' activities. Figure 7B shows 
that the motor command generated by the network was 
represented as a pattern of activity distributed over a set 
of APGs. Activity was distributed relatively broadly across 
the APGs, but the vector sum accurately pointed in the 
direction of the initial movement. 

According to Eq. ( 8 ) ,  the shape of the vector plots 
should be cardioids in joint-angle space. In Cartesian 
space, as in Figure 7B, the shapes of the vector clusters 
vary with the location of the target because of the non- 
linear transformation from joint-angle to Cartesian space. 

Because the cerebellum has been implicated in cor- 
recting movement length and in adapting to changes in 
the sensorimotor environment, we investigated the effect 
of shifts of target position after network training to sim- 
ulate the effect of putting reversing prisms on the subject. 
In this series of simulations, a target to which the system 
had already learned to reach was shifted by reflecting its 
position about the ordinate. Figure 8 shows the results 
of this experiment. Figure 8A shows three superimposed 
movement trajectories to the target 45" to the right of 
the top-most target after initial training. The arm moves 
to the target in an approximately straight line. The target 
was then shifted to 45" to the left of the top-most target 
without changing the pattern of parallel fiber activity 
representing the target. Figure 8A also shows two rep- 
resentative movements that occurred while the model 
was learning to reach to the shifted target. One move- 
ment occurred on the 175th trial and the other on the 
300th trial after the shift. Figure 8B shows three move- 
ment trajectories 500 trials after the shift. 

t 

B 

Figure 8. Simulated trajectories for shifting an already learned tar- 
get. (A) Three representative trajectories after the initial target had 
been learned (target on right). Single representative trajectories are 
also shown for simulated reaches 175 and 300 trials after the target 
was shifted to the left. The starting point is the filled circle. (B) 
Three representative trajectories for movements 500 trials after the 
shift. 

ANALYSIS OF NETWORK OPERATION 
Trajectory and End-Point Generation 

How the APG array model determines a movement tra- 
jectory can be understood through the examples shown 
in Figure 9. For this analysis, we assume that the values 
of the weights are constant within a trial and that all PCs 
in the same APG have the same weights. Because we 
have coded target information in such a simple way, the 
only critical connection weight in a trial is that of the 
active target fiber. Following a standard method of anal- 
ysis for linear threshold units (e.g., Nilsson, 1965), one 
can understand the influence of this weight in terms of 
a decision surface in the space of possible input signals 
to an APG. During the execution phase, this space can 
be identified with the space of joint angles because the 
only time-varying input is the proprioceptive input gen- 
erated by the moving arm. If we consider an arbitrary 
P C j  in APG m, the value of the target fiber weight, wg, 
determines a decision surface dividing the space of pos- 
sible joint angles into two disjoint regions: In one region, 
s? is above the on-threshold; in the other region, s? is 
below the on-threshold. It can be shown that this deci- 
sion surface is a line perpendicular to the direction of 
action of the APG (see Appendix B). We call this dividing 
line the decision line for the APG. Changing the value of 
w$ moves the decision line along the direction of action 
of the APG. 

Because we want to ensure th'dt the selected APGs turn 
off when the target is reached, the decision lines of the 
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Figure  9. Arm trajectories in joint-angle space for movements gen- 
erated by three APGs The three vectors at the lower left show the 
directions of movement for the three APGs (numbered 1,  2 ,  and 3) 
in joint-angle space. The dotted lines in A and B show the decision 
lines for the three APGs. The decision lines are perpendicular to the 
direction of movement in joint-angle space with the position deter- 
mined by the value of the target fiber weight. The decision lines 
shown are at the correct location for a target reached when the joint 
angles are at the intersection of the lines. In A, a trajectory is shown 
from the starting to target positions where the PCs of the APGs were 
selected in equal proportion. The trajectory is a straight line that 
ends at the target. B shows a trajectory where twice as many PCs 
were selected for APG 2 as for APGs 1 and 3. The PCs of the APG 
turn on when the decision line is crossed, and a piecewise linear 
trajectory is seen that does not end at the target. 
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selected APGs should intersect at the point in joint-angle 
space at which the arm reaches the target po~i t ion .~  How- 
ever, because selection is stochastic and because the 
APGs interact in producing the movement, the target 
fiber weights of the selected APGs do not determine the 
trajectory and the endpoint of the movement in a simple 
way. This can be seen by examining Figure 9A and B, 
which illustrate two different movements from a single 
starting location to a target with the target fiber weights 
held constant. 

Figure 9 shows movements that are controlled by three 
APGs, numbered 1, 2 ,  and 3, whose directions of action 
are shown at the lower left. In Figure 9A equal numbers 
of PCs were selected in the three APGs. In this example, 
the arm moves in a straight line in joint-angle space to 
the target and stops. This straight-line trajectory is similar 
to the previously discussed expected trajectory that re- 
sults when our probabilistic selection rule is used. In 
contrast, Figure 9B shows a movement in which twice as 
many PCs were selected for APG 2 as for APGs 1 and 3. 
Because selection is probabilistic, selection of PCs in 
these proportions is possible and was seen in simula- 
tions. In this case, the trajectory is piecewise linear, with 
changes in direction when the arm crosses the decision 
lines and PCs turn on. The endpoint of the movement is 
not close to the target due to the asynchronous termi- 
nation of the activities of the contributing APGs, a general 
problem discussed by Bullock and Grossberg (1988). 

These examples show that both the trajectory and ac- 
curacy of the movement depend on the selection rule as 
well as the target fiber weights. Although the eqected 
movement is a straight line to the target, the movement 
on any given trial can be inaccurate. Because of the Law 
of Large Numbers, the more PCs in each APG, the more 
closely the movement will resemble the expected move- 
ment. 

Learning 

We can also analyze how the learning rule interacts with 
the movements in terms of the decision lines of the 
participating APGs. Figure 10 shows movements gener- 
ated by three APGs having the same directions of action 
as those in Figure 9. Figure 1OA shows a movement to a 
target whose position is indicated by the +. In this case 
the trajectory, shown by the thick arrow, stops at the 
intersection of the three decision lines. The expected 
direction of the corrective movement in this case is back 
along the arrow to the target. The weight update rule 
will cause the decision lines to move in the directions 
given by the small arrows. One can show that updating 
the weights in this example based on the expected cor- 
rective movement results in three new decision lines 
that intersect at a point on the line connecting the target 
location with the old point of intersection. This situation 
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Figure 10. The effect of trajectory generation on changes in connec- 
tion weights. This figure uses movements generated by three APGs 
having the same directions of action as those of Figure 9. (A) The 
PCs of the three pattern generators were selected in equal propor- 
tions, and the connection weights of the APGs specified three deci- 
sion lines as shown. The position of the target is shown by the +. In 
this case the trajectory follows the thick arrow, and the arm stops at 
the intersection of the three decision lines. Because the movement 
has overshot the target, the expected direction of the corrective 
movement is back along the thick arrow. This corrective movement 
causes weight changes that move the decision lines in the directions 
st\own by the s m d  axows. (B) A movement in which the PCs are 
selected in equal proportion and the synaptic weights specify the 
illustrated decision lines. The trajectory is piecewise linear and fol- 
lows the thick arrows. The expected corrective movement (dashed 
arrow) causes the decision lines to move in the directions given by 
the small arrows, which for the case of APC 2 is in the wrong direc- 
tion. 

has the same logic as the one degree-of-freedom case 
published earlier (Houk et al., 1990). 

However, other examples show that the learning rule 
does not always result in weight changes that are appro- 
priate. Figure 9B illustrates that movements are some- 
times dissociated from the values of target fiber weights. 
The weights used to generate the movements shown in 
Figure 9B are correct in that the expected movement is 
correct, but they would be altered by the learning rule 
in the case shown because this particular movement was 
not correct. One would hope that other inaccurate move- 
ments on subsequent trials would balance these inap- 
propriate weight changes so that the target fiber weights 
remain near their correct values. For this balancing to 
occur, we found that the learning rate constants a and p 
must be small. 

Figure 10B shows an example of a movement during 
which the performance and learning rules of the network 
interact to degrade performance. It shows a case where 
the decision lines do not have a common point of inter- 
section. In this example, the trajectory of the arm is 
shown by the thick arrows. The expected direction of 
the corrective movement is shown by the dashed arrow. 
Weight updates based on this corrective movement cause 
the changes in the decision lines given by the small 
arrows. These directions are appropriate for APGs 1 and 
3 but inappropriate for AF'G 2:  movement accuracy will 
tend to decrease with training. In the current simulations 
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we avoided this problem by selecting parameter values 
that do not allow the weight values to become wildly 
inaccurate. For example, random initialization of the tar- 
get fiber weights resulted in decision lines that caused 
trajectories similar to that shown in Figure 10. Often 
these trajectories led to cases from which the learning 
rule could not recover. When the target fiber weights 
were uniformly initialized to 1, the decision lines for 
the APGs intersected near the starting location in joint- 
angle space. Consequently, during the initial training 
trials, APGs turned off soon after the positive feedback 
loops were triggered. This largely avoided the problem 
illustrated in Figure 10, and the correct target fiber 
weights were consistently learned. 

An aspect of network operation that is not illustrated 
in either Figure 9 or 10 is that the learning rule is suited 
for movements of particular numbers of time steps. This 
is because the increases in weights from the increment 
part of the learning rule [Eq. (lo)] depend on the number 
of time steps that the PC is in the off-state. We view this 
dependency on movement duration as an undesirable 
property o f  the learning rule. However, this property is 
ameliorated by an aspect of  the selection rule by which 
the number of PCs selected is proportional to the dis- 
tance of the target. This implies that the network moves 
the arm Faster to more distant targets, thereby tending to 
keep constant the number of time steps in a movement 
[see Eq. (S)]. 

DISCUSSION 

We designed the APG array model to investigate how 
multiple corticocerebellar modules might operate to- 
gether to control multiple degree-of-freedom arm move- 
ments. Our philosophy was to avoid letting control- 
theoretic issues dominate the model’s formulation in 
favor of constraints from anatomy and physiology. Never- 
theless, parallels between the model and behavioral con- 
cepts about motor programs and theoretically motivated 
computational methods emerged when we tried to un- 
derstand why the model behaved as it did. Here we 
discuss desirable and undesirable features of the APG 
array model, emphasizing parallels with existing behav- 
ioral concepts and computational schemes. 

Distributed Representation of Motor 
Programs 

In the APG array model, APGs control arm movement in 
parallel so that the activity of all the modules taken 
together forms a distributed representation. The APG 
array is said to execute a distributed motor program 
when it produces a spatiotemporal pattern of activity in 
the cerebrocerebellar recurrent network, and the pat- 
terned outputs that are transmitted from the recurrent 

network to the spinal cord in descending fibers comprise 
a distributed motor command. In our current model, 
each element of the distributed motor command is con- 
trolled by an independent APG module. The output of 
that module calls for a component movement at a par- 
ticular velocity and in a particular direction. The overall 
movement of the limb is the vector sum of these com- 
ponents. This section begins with a discussion of the 
interface between a distributed motor command and the 
limb, and then proceeds to look backward into the APG 
array to explore the nature of the distributed motor 
program that the model produces. 

Interj5ace with the Limb 

At each instant in time, the command from each of the 
active APGs increments or decrements the joint angles 
of the arm. Although this is clearly an oversimplification 
in that it ignores the dynamics of the muscles and arm, 
it approximates a situation in which the instantaneous 
firing rates of the positive feedback loops of the APGs 
control the velocity of muscle shortening. Because the 
matrix, A, of weights determining how the MGs influ- 
ence joint angles is constant, each APG moves the arm 
in a particular direction in joint-angle space, and the 
direction of movement in the Cartesian workspace 
changes with arm position. In a more realistic model, A 
would vary during movement in a way reflecting the 
variation of muscle length and moment arms. 

The idea that the descending motor system operates 
in terms of joint or muscle space, instead of Cartesian 
space, is supported by the work of Caminiti, Johnson, 
and Urbano (1990) and Hollerbach and Atkeson (1987). 
Caminiti et al. (1990) found that preferred directions of 
individual motor cortical neurons in a three-dimensional 
Georgopoulos task changed with the area of the work- 
space in which the task was performed. The neurons 
were not coding a constant direction in the workspace 
but a direction that changed with the posture of the arm. 
Such a result is expected from a system that operates in 
terms of joint-angle or  muscle space. Hollerbach and 
Atkeson (1987) showed that trajectories are not always 
straight lines in Cartesian space but are sometimes 
straight lines in joint-angle space. They suggest that plan- 
ning is done in terms of a staggered joint interpolation 
strategy that they suggest can account for most experi- 
mentally observed trajectories. 

In the present simulation, individual APGs show di- 
rectional specificity similar to the cosine tuning rule 
found by Georgopoulos et al. (1982). This characteristic 
tuning arises because, when the correct weights are 
learned, selection of individual PCs is proportional to 
the inner product in joint-angle space between a vector 
pointing to the target from the starting location and a 
vector pointing in the direction of action of the particular 
MG. This results in cosine tuning in joint-angle space at 
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the time of selection because the inner product of two 
vectors is proportional to the cosine of the angle between 
them. 

A point o f  difference with Georgopoulos’ (1988) re- 
sults is that the population vector in the present study 
can be described by cosines in joint-angle space, whereas 
those in Georgopoulos (1988) are described by cosines 
in Cartesian space. As Figure 7B shows, in some regions 
of the workspace the distribution of vectors representing 
APG activity remains roughly cosine shaped after the 
transformation to the workspace, and in other regions 
the distribution is significantly distorted. This discrep- 
ancy with the results of Georgopoulos (1988) could also 
arise from the fact that we used a two-joint, planar arm 
that moved its endpoint in a plane, whereas Georgo- 
poulos’ results came from monkeys that moved their 
hand position in a plane, but they actually moved their 
arms in three dimensions. Because the transformation 
from joint-angle to Cartesian space is different in these 
two arms, a real monkey’s arm might allow for cosine 
population vectors in both Cartesian and joint-angle 
space in the regions that were investigated. 

In a mathematical analysis of how spatial tuning might 
-1valdi (1988) showed that experimentally 

observed cosine tuning would result whenever the cells 
in question code muscle-related variables. Furthermore, 
he showed that the alignment of the direction of move- 
ment and the direction of the population vector is a result 
of the cosine tuning and the distribution of the neurons’ 
preferred directions. The present implementation falls 
under the purview of Mussa-Ivaldi’s analysis because the 
APGs are cosine tuned with a uniform directional distri- 
bution (i.e., the vectors A,n point in equally spaced di- 
rections). This mathematical analysis is confirmed by the 
simulations of the present paper, which show that the 
vector sums at the time of selection point in the direction 
of the initial movement in Cartesian space. Georgopoulos 
(1991) has pointed out that only about a third of the 
motor cortical population has the muscle-related prop- 
erties required for Mussa-Ivaldi’s analysis, and this re- 
striction applies also to the APG array model as currently 
conceived. 

To summarize, the APG array forms a distributed mo- 
tor representation that works in joint-angle or muscle 
space. While it seems most natural for the descending 
motor system to use a muscle-based representation, oth- 
ers have suggested that the descending system uses 
Cartesian coordinates. A system that worked in terms of 
Cartesian space has the drawback that it requires an 
inverse kinematic stage where a Cartesian space trajec- 
tory is transformed to joint-angle or muscle space. Such 
a stage would be computationally expensive and no such 
inverse kinematic step is contained in the current imple- 
mentation. The recent results of Caminiti et a1.(1990) and 
Hollerbach and Atkeson (1987) hold out the possibility 
that a joint-angle or muscle-based representation is ac- 
tually used. 

The Cerebrocerebellar Recurrent Network 

The APG array model we have presented uses a highly 
simplified representation of the complex recurrent net- 
work that actually interconnects the cerebellum, motor 
cortex, and red nucleus (Allen & Tsukahara, 1974; Houk 
1989). The cerebellar nuclei project by way of thalamus 
to the motor cortex and also directly to the red nucleus, 
and these projections show intricate patterns of topo- 
graphic specificity as well as divergent features (Futami, 
Kano, Sento, 8r Shinoda, 1986; Shinoda, Futami, Mitoma, 
& Yokota, 1988) that would promote interactions be- 
tween cerebrocerebellar modules. The motor cortex and 
red nucleus transmit motor commands to spinal motor 
neurons, segmental interneurons, and propriospinal 
neurons via corticospinal and rubrospinal pathways 
(Kuypers, 1981). As these descending tracts pass through 
the brainstem, they send prominent collaterals to pontine 
and medullary neurons that relay back into the cerebel- 
lum, thus forming multiple recurrent loops (Allen & 
Tsukahara, 1974). Positive feedback through these recur- 
rent loops has been shown to support reverberatory 
activity (Tsukahara, Bando, Murakami, & Oda, 1983) and 
is considered to provide a fundamental driving force for 
the generation of motor commands (Houk, 1989; Keifer 
& Houk, 1991; Eisenman et al., 1991). 

In a brief note, Blomfield and Marr (1970) responded 
to the initial discovery of one of these recurrent pathways 
(Tsukahara, Korn, & Stone, 1968) with an amendment to 
Marr’s (1969) theory of cerebellar function. They sug- 
gested that positive feedback in corticocerebellar loops 
might give temporal persistence to motor cortical dis- 
charge, as is assumed in the APG array model. They 
further suggested that intrinsic cortical mechanisms 
would tend to activate excess numbers of cortical neu- 
rons, and the role of cerebellar inhibition was seen as 
making corrections by turning off cortical neurons that 
had inappropriate contextual relations. Their implicit as- 
sumption is that different motor cortical neurons would 
be used to make a given type of movement, depending 
on the context of the situation. The recent studies of 
population activity in the motor cortex reviewed in the 
previous section instead suggest that virtually the whole 
population of cortical neurons is used in a graded, vec- 
torial manner to control all voluntary limb movements, 
independently of their context (Georgopoulos, 1988). 
This is the tacit assumption followed in the APG array 
model. 

In the simplified model of the recurrent network uti- 
lized here, each APG has its own positive feedback loop, 
and the loops associated with different APGs do not 
interact. Moreover, we did not explicitly model each 
positive feedback loop as a recurrent circuit; instead, we 
represented each loop by a single number giving its 
activity level. This abstraction of recurrent networks plays 
an important role in the model nevertheless because it 
mediates the transformation of inhibitory PC activity into 
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motor commands. However, more detailed representa- 
tions of these recurrent networks will be needed in 
future models because their more complex behavior is 
essential to our view of both motor command generation 
and cerebrocerebellar interaction. For example, when 
the feedback loops of different MGs interact, the prop- 
erties of the motor command will depend on relation- 
ships between the spatial patterns of APG activation and 
the triggering signals. In a preliminary simulation study, 
Eisenman et al. (1991) showed how these interactions 
could give rise to the rotation of  the population vector 
that was observed by Georgopoulos, Lurito, Petrides, 
Schwartz, and Massey, (1989). These interactions also 
present a need to inhibit portions of the feedback loops 
hy turning on PCs to prevent loop activity from spreading 
inappropriately. Thus, one would expect there to be a 
population of PCs whose activity increases during a 
movement, as observed in single unit studies (Armstrong, 
1988; Fourtier et al., 1989), as well as the population 
included in the present model whose activity decreases. 

Semorimotor Tramformations in the Cerebellur 
Cortex 

The parallel fiber weights in the APG array model can 
be considered as distributed storage sites for motor pro- 
grams that implement sensorimotor transformations. The 
parasagittally organized neuronal circuitry in the cere- 
bellar cortex in essence utilizes these synaptic weights 
as a recipe for converting the initial position of the limb, 
sensed by proprioceptive feedback, and a static target, 
sensed by visual input, into a temporally extended motor 
command that moves the limb to the target. Once initi- 
ated, the motor command is then executed in a quasi- 
feedforward manner in that proprioceptive feedback is 
only used t o  terminate the motor command. The require- 
ments this places on the form of the proprioceptive 
feedback are relatively weak: during a movement the 
aggregate proprioceptive input to a selected PC has to 
increase through a critical level for the first time when 
the command should terminate. An attractive feature of 
this quasi-feedforward mode of  control is its capacity for 
using delayed proprioceptive feedback without sacrific- 
ing either accuracy or stability. As discussed elsewhere 
(Houk et al., 1990), a more conventional feedback con- 
troller would make errors and would display instability 
in the presence of the characteristic conduction and me- 
chanicai delays in this control system. 

The assumption that motor programs are terminated 
by sensory feedback may seem inconsistent with deaf- 
ferentation experiments showing that movements can be 
made in the absence of  feedback from the limb (Taub & 
Rerman, 1968). Actually, there is no conflict since, as 
explained elsewhere (Houk et al., 1990), we believe that 
Purkinje cells can also utilize efference copy signals as a 
substitute for sensory feedback. In a more complete ver- 
sion of our theory, movements would be terminated by 

an additive combination of sensory and efference copy 
information about the progress of a movement. Due to 
the nature of these signals, control o f  slow movements 
would be dominated by sensory feedback whereas fast 
movements would be controlled predominately by ef- 
ference copy, in agreement with common opinion. The 
proposed additive combination of sensory and efference 
copy signals contrasts with most previous theories that 
generally follow von Holds (1954) suggestion that sen- 
sory and efference copy signals are compared by sub- 
traction in order to detect discordances. 

Some aspects of the APG model are formally equiva- 
lent to the Bullock and Grossberg (1988) model of 
planned arm movements. In both their model and ours, 
the initial movement is the result of comparing a vector 
representing the target with a vector representing cur- 
rent arm position. This information is represented in 
muscle or joint-angle space. But the two models differ 
in how they use the target and position information 
during a movement. Bullock and Grossberg (1988) as- 
sume that a difference vector between the target vector 
and current posture vector is computed at each time 
during the movement. This difference vector is used to 
generate the motor output at each time. This is essentially 
a feedback control configuration and requires undelayed 
efference copy signals to operate effectively. In contrast, 
in the APG model the inner product of the target vector 
and the current posture vector determines the set of 
APGs selected to generate a motor program that, once 
triggered, is largely feedforward, with proprioception 
from the arm terminating the motor command. Further, 
while Bullock and Grossberg (1988) achieve a motor 
command with a bell-shaped velocity profile by means 
of a multiplicative “go” signal, our model produces mo- 
tor commands that more closely resemble the neural 
activity that can be recorded from central neurons (Houk 
& Gibson, 1987; Houk et al., 1990). It is our view that 
spinal and peripheral mechanisms are responsible for 
creating the bell-shaped velocity profile. It should also 
be pointed out that theirs is a formal mathematical 
model, whereas ours is a distributed neural net that 
actually implements the computations. 

Representations in Parallel Fibers 

An important issue not addressed by the model as pre- 
sented here is how the parallel fiber input to the cere- 
bellum represents targets. We used a representation that 
is much too simple to represent the diverse, and possibly 
highly preprocessed, sensory information available about 
the target and the current state of the organism. This is 
an area where we expect h ture  research to concentrate 
in an attempt to develop more realistic representations. 
Relevant to this development are the theories of cere- 
bellar cortex developed by Marr (1969) and Albus (1971), 
which are notable for the representation schemes they 
propose for parallel fiber input to the cerebellum. These 
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theories postulate that mossy fiber signals are coded in 
terms of overlapping subsets of active parallel fibers. This 
allows a very large number of relevant patterns to be 
represented while enhancing their separability. Using 
more recent terminology, this is a coarse coding scheme 
yielding a specific kind of distributed representation 
(Hinton, 1984). Extending our model by using a form of 
coarse coding of target locations is relatively straightfor- 
ward and would permit the model to generalize across 
niovenients directed to different targets. 

Our current representation of proprioceptive parallel 
fiber input is also highly simplifed. A more realistic 
model would use a large set of delayed inputs deriving 
from a population of stretch receptors having different 
position and velocity sensitivities and taking origin from 
many different limb muscles, together with a set of un- 
delayed inputs from various brainstem neurons convey- 
ing efference copy signals. Signals with these properties 
have been recorded from mossy fiber terminals (van Kan, 
Gibson, & Houk, 1993). In a more realistic model, the 
Purkinje cells would switch on when the constellation of 
inputs matches a “perceptual trace” as embodied in the 
learned synaptic strengths (see the next section). In the 
current model, instead of representating proprioceptive 
information with this complexity, we hand-crafted a 
single, undelayed aggregate position input to fulfill the 
requirements of each individual APG module. This sim- 
plification prevents the PCs in the model from exhibiting 
the more complex pattern recognition that would be 
possible with diverse proprioceptive and efference copy 
information, but it suffices in providing the basic require- 
ment of coding the progress of a movement in a graded 
fashion. With respect to this requirement, we note that 
the models of Marr (1969) and Albus (1971) suggest 
representational schemes that are not suited for all as- 
pects of parallel fiber input to the cerebellar cortex. 
These schemes are more appropriate for coding target 
information, where different subsets of active parallel 
fibers might differentiate between different targets, than 
for coding proprioceptive information, which may re- 
quire graded signals on individual parallel fibers. 

Parameterized Motor Programs 

Motor programs could be stored in a lookup table as 
detailed lists of highly specific instructions. However, 
most investigators have favored the idea that memory is 
used more frugally to store generalized motor programs 
that are then parameterized in order to control specific 
actions. Certain features of the APG array model relate 
well to the ideas about parameterized motor programs 
discussed by Keele (1973) and the closely related schema 
ideas promoted by Schmidt (1988), whereas other fea- 
tures relate better to the closed-loop feedback theory 
advocated by Adams (1971, 1977). The selection phase 
of the APG array model provides a feasible neuronal 

mechanism for preparing a parameterized motor pro- 
gram in advance of movement on the basis of a motor 
schema stored in memory (in parallel fiber synapses). 
The execution phase is also consistent with the open- 
loop ideas associated with motor programming concepts, 
except that we explain the termination of the execution 
phase as being a consequence of proprioceptive feed- 
back. In this respect, our model follows Adams’ (1977) 
theory, although we believe that muscle spindle recep- 
tors are a more likely source of the sensory feedback 
than are the joint receptors promoted by Adams. 

In the APG array model, the counterpart of a gener- 
alized motor program is a set of parallel fiber weights 
for proprioceptive and target inputs, which we can think 
of as being analogous to Adams’ (1971) “perceptual 
trace.” Given these weights, a particular constellation of 
parallel fiber inputs signifies that the desired endpoint 
of a movement is about to be reached, causing Purkinje 
cells to switch to their on-states. Once a “perceptual 
trace” corresponding to a desired endpoint is learned, 
the neuronal architecture and neurodynamics of the 
cerebellar network function in a manner that paranieter- 
izes the motor program. 

Movement velocity is parameterized in the selection 
phase of the model’s operation. As previously demon- 
strated, the velocity that is selected by turning off Purkinje 
cells is automatically scaled so as to depend on the 
distance between the initial position of the limb and the 
desired endpoint of the movement. In other words, ve- 
locity automatically increases as the amplitude of the 
movement increases. While this type of scaling is often 
observed in motor performance studies (Freund & Bud- 
ingen, 1978; Ojakangas & Ebner, 1991), velocity can also 
be varied in an independent manner. Furthermore, 
Schmidt (1988) reviews data supporting a mechanism 
whereby velocity scaling can be applied simultaneously 
to all elenients of a motor program to slow down or  
speed up the entire movement, in a manner analogous 
to changing the speed of a phonograph record. Although 
we have not simulated this effect in the present report, 
it is not difficult to see how the intensity of the entire 
array of APG modules could be varied by a neuromo- 
dulatory substance that altered the “-2” coefficient in 
Eq. (3), thus scaling up or down the velocity of all ele- 
ments of the motor program. 

Movement duration is parameterized in the execution 
phase of model operation. To review the steps, the ex- 
ecution phase begins open-loop and continues until Pur- 
kinje cells recognize that the endpoint is about to be 
achieved. They then use feedback to switch to their on- 
states, thus inhibiting positive feedback in the cerebro- 
cerebellar recurrent network. This terminates the exec- 
ution phase of the motor program. In this manner, 
movement duration is a dependent variable that evolves 
from the course of the movement as opposed to being 
determined by some internal clock. 

Movement amplitude is parameterized by the target 
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inputs in the model. Each APG module commands ele- 
mental motion in a particular direction, and targets cor- 
responding to shorter distances along this direction 
come to have larger synaptic weights. As a consequence, 
the Purkinje cells turn on sooner, and the movement is 
terminated after a smaller amplitude of movement. 

Motor Learning 

The APG array faces two problems in generating motor 
commands. The first is to select a set of PCs that will 
cause the arm to move in the direction of the target; the 
second is to stop the movement at the target by setting 
the selected PCs to the on-state. Both of these problems 
are solved when the target fiber weight is correct as 
shown in the section on The Execution Phase [Eq. (8)]. 

Corrective Movements 

We assume that the training information conveyed to the 
APGs is the result of crude corrective movements stim- 
ulating proprioceptive receptors. This sensory informa- 
tion is conveyed to the cerebellum by climbing fibers. 
Learning in the APG array model therefore requires the 
existence of a low-level system capable of generating 
movements to spatial targets with at least a ballpark level 
of accuracy. The lesion studies of Yu, Liu, and Chambers 
(1980) indicate that such a system exists in cats, and that 
it can acquire crude capabilities fur limb control in re- 
sponse to instrumental conditioning. The observations 
of rudimentary visuomotor reaching in human infants by 
Hofsten (1982) also support the existence of a low-level 
system, since the cerebellum and corticospinal system 
are poorly developed in the human neonate. Other evi- 
dence indicates that when limb movements are not pro- 
ceeding accurately toward their intended targets, 
corrective components of the movements are generated 
by an unconscious, automatic control system (Goodale, 
Pelisson, & Prablanc, 1986). This corrective system has 
been studied in human subjects (Gielen & van Gisber- 
gen, 1990; Pelisson et al., 1986; Flash & Henis, 1991), 
monkeys (Georgopoulos, JSalaska, & Massey, 1981), and 
cats (Alstermark et al., 1984) by visually switching the 
targets of the reaching movements. Lesion studies in cats 
suggest that rapid, corrective movements are mediated 
by tectal and reticular inputs to a spinal processing stage, 
called the C3-C4 propriospinal system (Alstermark et al., 
1987). 

The same spinal system receives additional inputs from 
the motor cortex and red nucleus that operate with a 
longer reaction time. It is the latter pathways, cortico- 
spinal and rubrospinal, that are held responsible for 
generating the initial reaching movement. On the basis 
of feedforward information about the position of a visual 
target and feedback information about the initial position 
of the limb, the cerebellum, motor cortex, and red nu- 
cleus generate a motor command that is sent to the limb 

musculature via a neural processing stage in the spinal 
cord. We assume that collaterals from these commands 
function to gate off sensory transmission through the 
proprioceptive climbing fiber pathway, thus preventing 
sensory responses to the initial limb movement. As the 
initial movement proceeds, the spinal system receives 
proprioceptive feedback from the limb and feedforward 
information about target location from the gaze control 
system. The latter information is updated as a conse- 
quence of corrective eye movements that typically occur 
after an initial gaze shift toward a visual target (Becker 
& Fuchs, 1969). Updated gaze information causes the 
low-level processor to generate a corrective component 
that is superimposed on the original motor command 
(Gielen & van Gisbergen, 1990; Pelisson et al., 1986). 
Since climbing fiber pathways would not be gated off by 
this low-level corrective process, climbing fibers should 
fire to indicate the direction of the corrective movement. 

Climbing Fiber Signals 

We assume that the network by which climbing fiber 
activity is generated is specifically wired to provide ap- 
propriate training information to the APGs (Houk & 
Barto, 1992). The training signal provided by a climbing 
fiber is specialized for the recipient APG in that it pro- 
vides directional information in joint-angle space that is 
relative to the direction in which that APG moves the 
arm. The fact that training information is provided in 
terms of joint-angle space greatly simplifies the problem 
of providing errors in the correct system of reference. 
For example, if the network used visual error informa- 
tion, the error information would have to be transformed 
to joint errors. 

To implement this specificity between APGs and their 
climbing fiber input, the model uses a process sharing 
some features with the error backpropagation learning 
algorithm widely used to train layered artificial neural 
networks (Le Cun, 1985; Parker, 1985; Rumelhart et al., 
1986; Werbos, 1974). Climbing fiber activity is generated 
by proprioceptive signals transmitted to APGs via a net- 
work with connection matrix AT, where A is the matrix 
of connection weights by which the APGs influence the 
joint angles. This network has the same structure-but 
works in the opposite direction-as the network by 
which the APG array influences joint movement. Climb- 
ing fiber activity in the model is, therefore, the result of 
a simple kind of “backpropagation” process: the descend- 
ing network (given by A )  corresponds to the forward 
pass through the network, and the ascending network 
(given by A’) corresponds to the process by which error 
information is sent backward through the forward net- 
work to provide correct errors to the neurons that gen- 
erate the descending signal. 

Because the APG array model does not involve mul- 
tiple layers implementing nonlinear transformations, it 
is simpler than the general error backpropagation algo- 
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rithm and is most closely related to the use of error 
backpropagation for “learning with a distal teacher” as 
suggested by Jordan and Rumelhart (1991). This method 
addresses learning problems in which training informa- 
tion is available in a “distal” coordinate frame that is 
different from the “proximal” one in which the learning 
system generates output signals. Given a network model 
of the process by which proximal signals influence distal 
signals, called a forward model, propagating distal errors 
backward through this network translates distal errors 
into the proximal errors needed for learning. The back- 
propagation process computes the transpose of the Ja- 
cobian of the forward model, which in general depends 
on the current input to the forward model. Applying the 
transpose of the Jacobian to the distal error produces 
the incremental change in the input to the proximal-to- 
distal process that would decrease this error. 

In the case of the APG array model, the distal coordi- 
nate frame is joint-angle space in which proprioceptive 
signals respond to corrective movements, whereas the 
proximal frame is that of APG array activity. The forward 
model is the descending motor network itself with con- 
nection matrix A. Because this is linear, the transpose of 
its Jacobian is just AT. Consequently, the significance of a 
climbing fiber’s response to a corrective movement for 
the recipient APG is as follows: it tells the APG that the 
movement has not proceeded far enough along that 
APG’s direction of action. The APG should undergo an 
incremental adjustment to make it generate a motor com- 
mand of longer duration. A complication in the present 
model is that there is no analogous signal-active only 
in response to a corrective movement-signifying that 
the duration of the motor command generated by an 
APG should be shortened. This has implications for the 
APG adjustment process discussed below. 

Note that unlike the error backpropagation algorithm, 
whether used to train a layered network or for learning 
with a distal teacher, the APG array model uses separate 
ascending and descending networks instead of the phys- 
iologically implausible process of propagating activity 
backward through a network. Parker’s (1985) version of 
the error backpropagation algorithm used a separate 
network in this way to provide training information to 
the hidden units of a layered network. He described an 
algorithm in which the weights of the ascending network 
are adjusted by an adaptive process so that they match 
the corresponding weights of the descending network. 
Similarly, some adaptive process must be postulated to 
account for the alignment between the descending motor 
network and the ascending network generating climbing 
fiber activity assumed in our model. 

Houk and Barto (1992) suggested that this alignment 
might come about through trophic mechanisms stimu- 
lated by use-dependent alterations in synaptic efficacy. 
The influence of each APG on movement is adjusted so 
that if the APG were suitably adjusted through the faster 
cortical learning process, its activity would tend to di- 

minish the firing probability of its climbing fiber. In the 
context of the present model, this hypothesis implies 
that the ascending network to the inferior olive, de- 
scribed by the matrix AT, is established first, and that the 
descending network by which APGs influence motoneu- 
rons changes so that it is described by the matrix A. This 
is contrary to the scheme Parker (1985) proposed for 
error backpropagation in which the ascending network 
is adjusted through experience to align with the descend- 
ing netfvork. We have not yet simulated this mechanism 
to see if it could actually generate the kind of alignment 
we assume in the present model. 

Adjusting APGs 

With the training information available in the model, the 
learning rule used in the present simulations to adjust 
APGs was capable of finding the correct weights for each 
of the eight movements involved in the task. However, 
this required careful choice of parameters and initial 
conditions. The model’s learning process is not robust 
enough to learn an arbitrary collection of movements in 
different parts of the workspace. Some of these difficul- 
ties were also present in the single APG simulations 
described by Houk et al. (1990), whereas others are 
unique to the multiple APG case studied here. In the first 
category is the sensitivity of the learning process to the 
relative magnitudes of the learning rate parameters a 
and p and to the magnitudes of the initial weights. Not 
all movements can be learned successfully with the same 
values for these parameters and initial weights. These 
problems are discussed by Houk et al. (1990). In the 
second category are the problems illustrated in Figure 
10. Movements are made by a group of APGs that once 
selected act independently to move the arm. In the cur- 
rent model the training signal depends only on the end- 
point of the movement, which is itself largely determined 
by the last few APGs to turn on. This can lead to situations 
where weights are changed in the incorrect direction, 
making the learning process unstable. We were able to 
control this situation in the present simulations by care- 
hlly selecting parameters and initial weights, but this 
strategy will not be effective for more general tasks. 

Another shortcoming of the learning process is that it 
is not capable of adjusting the weights by which the 
proprioceptive parallel fibers influence PCs. We repre- 
sented the aggregate proprioceptive input to each APG 
m by the quantity p,(t), a specific weighted sum of 
proprioceptive signals responsive to changes in the joint 
angles. These weights are the connection weights by 
which multiple parallel fibers influence the PCs of APG 
m, and we set them to appropriate values before the 
start of learning as previously described. Ideally, how- 
ever, we would like the learning process that adjusts the 
target fiber connection weights to simultaneously adjust 
the proprioceptive weights to yield these weight values, 
or other values having the desired property that each PC 

74 Jouml  of Cognitive Neuroscience Volume 5, Number I 



tends to depolarize as the arm moves in the direction of 
action of that PC’s APG. Simulations show that the learn- 
ing process used in the current model does not accom- 
plish this when it simultaneously adjusts as few as one 
target fiber weight and one proprioceptive fiber weight. 
Further, the selection procedure described in the present 
paper depends on the fact that there is a unique set of 
correct weights. When both proprioceptive and target 
fiber weights are adjusted, the solution vector is no 
longer unique, and neither cosine tuning of population 
vectors nor reasonably correct trajectories necessarily 
result. 

Although we believe that some features of the learning 
process used in this paper will survive future develop- 
ment, additional research is needed to describe a learn- 
ing process that is capable of solving these problems 
while remaining consistent with anatomical and physio- 
logical constraints. This will probably require revising 
both the learning rule [ Eq. (lo)] and the process defining 
the training information. To understand the issues in- 
~olved, it is useful to contrast the learning process used 
in the APG array model with one that we know, on 
theoretical grounds, will operate effectively. Consider a 
scheme similar to the one we have described except that 
the synaptic weights of the target fibers are adjusted only 
when a corrective movement occurs. Further, suppose 
that in response to each corrective movement the climb- 
ing fiber to each APG indicates that the movement was 
too short or too long along the direction of action of 
that APG. Finally, suppose the APG adjusts incrementally 
in response to climbing fiber input to either increase or 
decrease the duration of the motor command it gener- 
ates. This error-correction procedure is a straightforward 
example of learning with a distal teacher and has known 
theoretical properties (Jordan & Kumelhart, 1991). How- 
ever, this scheme leaves the APG a black box and places 
demands on the signaling capabilities of cltmbing fibers 
that they may not be able to achieve. Future research 
will require reconciling computational properties such 
as these with anatomical and physiological constraints. 

Feedback-Ewor-Learning 

I t  is also relevant to relate our model with that of Kawato 
(1990) based on feedback-emor-learning. He postulated 
that the lateral cerebellum acts as a feedforward con- 
troller whose output combines with the output of an 
extracerebellar feedback controller. As a result of learn- 
ing, the cerebellum becomes an inverse model of the 
system being controlled, in this case, the limb. As learn- 
ing proceeds, the error-correction action of the feedback 
controller is replaced by feedforward preemption of er- 
rors by the commands generated by the inverse model. 
In Kawato’s model, the training signals that climbing 
fibers transmit to PCs are equal to the output of the 
feedback controller. Learning occurs as synaptic connec- 
tions in the cerebellar cortex are adjusted so as to reduce 

the output of the feedback controller to zero. This feed- 
back-error-learning method has been applied to robot 
control systems (Kawato et al., 1987; Lane et al., 1988) 
and has been shown to have desirable convergence 
properties (Gomi & Kawato, 1990). 

The APG array model has some of the features of 
feedback-error-learning. The extracerebellar mechanism 
generating corrective movements in the APG array model 
plays a role similar to that played by the feedback 
controller in: feedback-error-learning. It both corrects 
movements and provides training information to the 
cerebellar cortex. The objective of learning in both cases 
is the same: to reduce the contribution of the corrective 
component. However, whereas this occurs continuously 
in feedback-error-learning, in the APG army model it 
occurs intermittently: the gating of climbing fiber activity 
by APGs provides error information only when corrective 
movements are made, thus making the APG array model 
consistent with the observed low firing rates of climbing 
fibers. Another difference between feedback-error-learn- 
ing and the APG array model is the manner in which 
they implement an inverse model of the limb. In feed- 
back-error-learning a layered neural network is trained 
to form the inverse model in the form of a function from 
a target specification to an appropriate motor command. 
In the APG array model, on the other hand, computing 
a motor command involves a dynamic process that uses 
proprioceptive feedback. Despite these differences, we 
believe that among the more control-theoretic models 
of the cerebellum, the feedback-error-learning model 
comes the closest to representing the kind of learning 
control implemented by the APG array model. 

CONCLUSION 

This paper describes the current state of our exploration 
of how motor program concepts may be related to neural 
mechanisms. We have proposed a model of sensorimotor 
networks with architectures inspired by the anatomy and 
physiology of the cerebellum and its interconnections 
with the red nucleus and the motor cortex. We proposed 
the concept of rubrocerebellar and corticocerebellar in- 
formation processing modules that function as APGs ca- 
pable of the storage, recall, and execution of motor 
programs. The APG array model described in this paper 
extends the single APG model of Houk et al. (1990) to 
an array of APGs whose collective activity controls move- 
ment of a simple two degree-of-freedom simulated limb. 
Our objective was to examine the APG array theory in a 
simple computational framework with a plausible rela- 
tionship to anatomy and physiology. Results of simulation 
experiments show that the APG array model is capable 
of learning how to control movement of the simulated 
limb by adjusting distributed motor programs. Although 
the model is based on many simplifying assumptions, 
and the simulated motor control task is much simpler 
than an actual reaching task, these results suggest that 
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the APG array model may provide a useful step toward 
a more comprehensive understanding of how neural 
mechanisms may generate motor programs. 

APPENDIX A 

Parameter Selection 

We used a planar kinematic arm with two joints in the 
present simulations. The link lengths were obtained from 
measurements of the upper limb of a rhesus monkey. 
The shoulder-to-elbow and elbow-to-wrist lengths were 
found to be 12.2 and 10.8 cm, respectively. Figure 11 
shows a sketch of the arm. We used the convention from 
robotics of measuring joint angles as increasing for coun- 
terclockwise rotations. 8, was constrained to remain be- 
tween -n/4 and ri radians, and 02 was constrained to 
remain between 0 and ri radians. 

To obtain straight-line trajectories in joint-angle space 
and population vectors that were cosine shaped, c$ must 
equal -u?h [see Eq. ( S ) ] .  To meet this requirement we 
set 4 equal t o  1, and wh equal to -1. 

For the arm to  stop at target k, ug, the weight of the 
kth target fiber to P C j  o f  APG m, must be positive and 
equal to w,T, = 4 - w,)p,,(t,) as previously discussed. It 
is necessary to set w,, the proprioceptive scale factor, to 
enable the learning rule to meet this requirement. To 
determine a suitable value for w,, we computed the 
maximum value of p,(t) at the locations of the eight 
targets for all of the APGs. We found thatp,(t) was always 
between 0 and 4. Because 4 = 1, setting w, equal to 0.2 
ensures that w:, is always larger than 0.2. 

The value of k in Eq. (1) determines how fast the arm 
moves at each time step in the simulation. In the current 

/ /  / / / 

Figure 11. Sketch of the simulated arm. The arm was a two-joint, 
planar, kinematic arm. 
terclockwise rotations of the joints increasing joint angle. 

and Or were measured as shown with coun- 

simulations, each component of u(t), the vector of APG 
activities, ranged from 0 to 36 (the number of PCs in 
each APG). We set k to 0.0006 so that according to Eq. 
(1) AO(t) ranged from 0 to 0.0216. 

The value of sy depends on the weights of the network 
and the proprioceptive feedback at different locations in 
the workspace. Empirical studies showed that the value 
of 57 was never less than -0.2 with the parameters used 
in the current simulations. This was because the weight 
of each target parallel fiber was initialized to 1 and the 
training procedure slowly decreased each of these 
weights to their correct values. 

APPENDIX B 
Decision Lines 

To see that the decision line is perpendicular to the 
direction of action of APG m, note that PCJ of APG m 
turns on when the proprioceptive feedback, pm(t), satis- 
fies wpp,(t) + wg(t) = 4. Using Eq. (6) to expressp,(t) 
in terms of 0(t) ,  we obtain 

(4 - w;) /w~ + A T , L  = A,iOi(t) + A,2oz(t) 

where Aml and Am2 are the weights by which APG m 
influences the first and second joints of the arm. The left- 
hand side of this equation is a scalar constant, so this is 
an equation of a line in joint-angle space with slope 
-AmI/Am2, which is the slope of a line perpendicular to 
the direction of action of APG m. 
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Notes 
1. The model is a discrete-time model with time steps t = 1,2, 
. . .. To relate the model's behavior to physiological and be- 
havioral data, the discrete time steps have to be associated with 
time intervals of specific durations. 
2. If the aggregate proprioceptive input were delayed by T 
time units, as it would be in a more realistic model, then wl*, 
would equal I$ - w&,(tl - 7). Equation (8) becomes s - ( tO)  = 
wpALIO(to) - O(tl - 7)] + I$ f wb. The three implications still 
hold because O(to) - O(tl - 7) is in the same direction, but 
smaller in magnitude than O(t0)  - O(t1). 
3. In general, of course, there may be many points in joint- 
angle space for which the arm reaches the target position. Here 
we purposefully avoided the issue of excess degrees-of-free- 
dom by using a simple arm in a limited workspace. However, 
future elaborations of the APG array model must address this 
issue. 
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