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Abstract

We consider a reinforcement learning (RL) setting in which the agent interacts with a
sequence of episodic MDPs. At the start of each episode the agent has access to some
side-information or context that determines the dynamics of the MDP for that episode.
Our setting is motivated by applications in healthcare where baseline measurements of a
patient at the start of a treatment episode form the context that may provide information
about how the patient might respond to treatment decisions.

We propose algorithms for learning in such Contextual Markov Decision Processes
(CMDPs) under an assumption that the unobserved MDP parameters vary smoothly with
the observed context. We give lower and upper PAC bounds under the smoothness as-
sumption. Because our lower bound has an exponential dependence on the dimension, we
also consider a tractable linear setting where the context creates linear combinations of
a finite set of MDPs. For the linear setting, we give a PAC learning algorithm based on
KWIK learning techniques.

Keywords: Reinforcement Learning, PAC bounds, KWIK Learning.

1. Introduction

Consider a basic sequential decision making problem in healthcare, namely that of learning
a treatment policy for patients to optimize some health outcome of interest. One could
model the interaction with every patient as a Markov Decision Process (MDP). In precision
or personalized medicine, we want the treatment to be personalized to every patient. At
the same time, the amount of data available on any given patient may not be enough to
personalize well. This means that modeling each patient via a different MDP will result
in severely suboptimal treatment policies. The other extreme of pooling all patients’ data
results in more data but most of it will perhaps not be relevant to the patient we currently
want to treat. We therefore face a trade-off between having a large amount of shared data
to learn a single policy, and, finding the most relevant policy for each patient. A similar
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trade-off occurs in other applications in which the agent’s environment involves humans,
such as in online tutoring and web advertising.

A key observation is that in many personalized decision making scenarios, some side in-
formation is available about individuals which might help in designing personalized policies
and also help pool the interaction data across the right subsets of individuals. Examples of
such data include laboratory data or medical history of patients in healthcare, user profiles
or history logs in web advertising, and student profiles or historical scores in online tutoring.
Access to such side information should allow learning of better policies even with a limited
amount of interaction with individual users. We refer to this side-information as context and
adopt an augmented model called Contextual Markov Decision Process (CMDP) proposed
by Hallak et al. (2015). We assume that contexts are fully observed and available before
the interaction starts for each new MDP.1

In this paper we study the sample complexity of learning in CMDPs when contexts
can potentially be generated adversarially. We consider two concrete settings of learning
in a CMDP with continuous contexts. In the first setting, the individual MDPs vary in an
arbitrary but smooth manner with the contexts, and we propose our Cover-Rmax algorithm
in Section 3 with PAC (Probably Approximately Correct) bounds. The innate hardness of
learning in this general case is captured by our lower bound construction in Section 3.1. To
show that it is possible to achieve significantly better sample complexity in more structured
CMDPs, we consider another setting where contexts create linear combinations of a finite
set of fixed but unknown MDPs. We use the KWIK (Knows What It Knows) framework to
devise the KWIK LR-Rmax algorithm in Section 4.1 and also provide a PAC upper bound
for the algorithm.

2. Contextual Markov Decision Process

We describe the formal problem first and then the online protocol for the interaction between
the environment as well as the learning algorithm and the criterion we use to judge learning
algorithms in our setting.

2.1. Problem setup and notation

We start with basic definitions and notations for MDPs, and then introduce the contextual
case.

Definition 1 (Markov Decision Processes) A Markov Decision Process (MDP) is de-
fined as a tuple (S,A, p(·|·, ·), r(·, ·), µ) where S is the state space and A is the action space;
p(s′|s, a) defines the transition probability function for a tuple (s, a, s′) where s, s′ ∈ S, a ∈ A;
and µ defines the initial state distribution for the MDP.

We consider episodic MDPs with fixed horizon H. For each episode, an initial state s0 is
observed according to the distribution µ and afterwards, for 0 ≤ h < H, the agent chooses
an action ah = πh(sh) according to a (non-stationary) policy π. There is a reward rh and

1. Hallak et al. (2015) assumes latent contexts, which results in significant differences from our work in
application scenarios, required assumptions, and results. See detailed discussion in Section 5.
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then a next state sh+1 according to the reward and the transition functions. The value for
policy π is defined as follows:

V π
M = Es0∼µ,M,π

[ 1

H

H−1∑
h=0

r(sh, πh(sh))
]
. (1)

An optimal policy π∗ is one that achieves the largest possible value (called optimal value
and denoted V ∗M ). Next, the contextual model is defined similar to the definition given by
Hallak et al. (2015):

Definition 2 (Contextual MDP) A contextual Markov Decision Process (CMDP) is
defined as a tuple (C,S,A,M) where C is the context space (assumed to lie in some Eu-
clidean space), S is the state space, and A is the action space. M is a function which maps
a context c ∈ C to MDP parameters M(c) = {pc(·|·, ·), rc(·, ·), µc(·)}.

The MDP for a context c is denoted by M c. For simplification, the initial state distribution
is assumed to be the same irrespective of the context and rewards are assumed to be bounded
between 0 and 1. We denote |S|, |A| by S,A respectively. We also assume that the context
space is bounded, and for any c ∈ C the `2 norm of c is upper bounded by some constant.

2.2. Protocol and Efficiency Criterion

We consider the online learning scenario with the following protocol: For t = 1, 2, . . .:

1. Observe context ct ∈ C.

2. Choose a policy πt (based on ct and previous episodes).

3. Experience an episode in M ct using πt.

The protocol does not make any distributional assumptions over the context sequence.
Instead, the context sequence can be chosen in an arbitrary and potentially adversarial
manner. A natural criteria for judging the efficiency of the algorithm is to look at the
number of episodes where it performs sub-optimally. The main aim of the PAC analysis is
to bound the number of episodes where V πt

Mct < V ∗Mct − ε, i.e., the value of the algorithm’s
policy is not ε-optimal (Dann and Brunskill, 2015). Although, we do give PAC bounds for
the Cover-Rmax algorithm given below, the reader should make note that, we have not
made explicit attempts to achieve the tightest possible result. We use the Rmax (Brafman
and Tennenholtz, 2002) algorithm as the base of our construction to handle exploration-
exploitation because of its simplicity. Our approach can also be combined with the other
PAC algorithms (Strehl and Littman, 2008; Dann and Brunskill, 2015) for improved depen-
dence on S, A and H.

3. Cover-Rmax

The key motivation for our contextual setting is that sharing information/data among
different contexts might be helpful. A natural way to capture this is to assume that the
MDPs corresponding to similar contexts will themselves be similar. This can be formalized
by the following smoothness assumption:
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Definition 3 (Smoothness) Given a CMDP (C,S,A,M) and a distance metric over the
context space φ(·, ·), if for any two contexts c1, c2 ∈ C, we have the following constraints:

‖pc1(·|s, a)− pc2(·|s, a)‖1 ≤ Lpφ(c1, c2)

|rc1(s, a)− rc2(s, a)| ≤ Lrφ(c1, c2)

then, the CMDP is referred as a smooth CMDP with smoothness parameters Lp and Lr.

Throughout the paper, the distance metric and the constants Lp and Lr are assumed to be
known. This smoothness assumption allows us to use a modified version of Rmax (Brafman
and Tennenholtz, 2002) and provide an analysis for smooth CMDPs similar to existing
literature on PAC bounds in MDPs (Kearns and Singh, 2002; Strehl et al., 2009; Strehl
and Littman, 2008). Given the transition dynamics and the expected reward functions for
each state-action pair in a finite MDP, computing the optimal policy is straightforward.
The idea of Rmax is to distinguish the state-action pairs as known or unknown: a state-
action pair is known if it has been visited enough number of times, so that the empirical
estimates of reward and transition probabilities are near-accurate due to sufficient data. A
state s becomes known when all for all actions a the pairs (s, a) become known. Rmax then
constructs an auxiliary MDP which encourages optimistic behaviour by assigning maximum
reward (hence the name Rmax) to the remaining unknown states. The optimal policy in the
auxiliary MDP ensures that one of the following must happen: 1) it achieves near-optimal
value, or, 2) it visits unknown states and accumulates more information efficiently.

Formally, for a set of known states K, we define an (approximate) induced MDP M̂K

in the following manner. Let n(s, a) and n(s, a, s′) denote the number of observations of
state-action pair (s, a) and transitions (s, a, s′) respectively. Also, let R(s, a) denote the
total reward obtained from state-action pair (s, a). For each s ∈ K, define the values

pM̂K
(s′|s, a) =

n(s, a, s′)

n(s, a)
,

rM̂K
(s, a) = R(s, a)/n(s, a).

(2)

For each s /∈ K, define the values as pM̂K
(s′|s, a) = I{s′ = s} and rM̂K

(s, a) = 1.
Rmax uses the certainty equivalent policy computed for this induced MDP and performs

balanced wandering (Kearns and Singh, 2002) for unknown states. Balanced wandering en-
sures that all actions are tried equally and fairly for unknown states. Assigning maximum
reward to the unknown states pushes the agent to visit these states and provides the nec-
essary exploration impetus. The generic template of Rmax is given in Algorithm 1.

For the contextual case, there would be an infinite number of such MDPs. The idea be-
hind our algorithm is that, close enough contexts can be grouped together and be considered
as a single MDP. Utilizing the boundedness of the context space C, we can create a cover
of C with finitely many balls Br(oi) of radius r centered at oi ∈ Rd. The bias introduced
by ignoring the differences among the MDPs in the same ball can be controlled by tuning
the radius r. Doing so allows us to pool together the data from all MDPs in a ball, so that
we avoid the difficulty of infinite MDPs and instead only deal with finitely many of them.
The size of the cover, i.e. the number of balls, can be measured by the notion of covering
numbers (see Section 5.1 in Wainwright (2017)), defined as

N (C, r) = min{|Y| : C ⊆ ∪y∈Y Br(y)}.
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Algorithm 1: Rmax Template for CMDP

1 Initialize(S,A, C, ε, δ)
2 for each episode t = 1, 2, · · · do
3 Receive context ct ∈ C
4 Set K, MK using Predict(ct, s, a) for all (s, a). π ← π∗MK

5 for h = 0, 1, · · ·H − 1 do
6 if sh ∈ K then
7 Choose ah := πh(sh)
8 else
9 Choose ah : (sh, ah) is unknown

10 Update(ct, sh, ah, (sh+1, rh))

11 end

12 end

13 end

The resulting algorithm, Cover-Rmax, is obtained by using the subroutines in Algorithm 2,
and we state its sample complexity guarantee in Theorem 4.

Algorithm 2: Cover-Rmax

1 Function Initialize(S,A, C, ε, δ)
2 r0 = min( ε

8HLp
, ε

8Lr
)

3 Create an r0-cover of C
4 Initialize counts for all balls B(oi)

5 Function Predict(c, s, a)
6 Find j such that c ∈ B(oj)
7 if nj(s, a) < m then
8 return p̂c(·|s, a) and r̂c(s, a) using (2)
9 else

10 return unknown
11 end

12 Function Update(c, s, a, (s′, r))
13 Find j such that c ∈ B(oj)
14 if nj(s, a) < m then
15 Increment counts and rewards in B(oj)
16 end

Theorem 4 (PAC bound for Cover-Rmax) For any input values 0 < ε, δ ≤ 1 and a
CMDP with smoothness parameters Lp and Lr, with probability at least 1 − δ, the Cover-
Rmax algorithm produces a sequence of policies {πt} which yield at most

O
(NH2SA

ε3
(
S + ln

NSA

δ
ln
N

δ

))
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non-ε-optimal episodes, where N = N (C, r0) and r0 = min( ε
8HLp

, ε
8Lr

).

Proof We first of all carefully adapt the analysis of Rmax by Kakade (2003) to get the
PAC bound for an episodic MDP. Let m be the number of visits to a state-action pair after
which the model’s estimate p̂(·|s, a) for p(·|s, a) has an `1 error of at most ε/4H and reward
estimate r̂(s, a) has an absolute error of at most ε/4. We can show that:

Lemma 5 Let M be an MDP with the fixed horizon H. If π̂ is the optimal policy for M̂K

as computed by Rmax, then for any starting state s0, with probability at least 1 − 2δ, we
have V π̂

M ≥ V ∗M − 2ε for all but O(mSAε ln 1
δ ) episodes.

Now instead of learning the model for each contextual MDP separately, the algorithm com-
bines the data within each ball. To control the bias induced by sharing data, the radius r for
the cover is set to be r ≤ r0 = min

(
ε

8HLp
, ε

8Lr

)
. Further, the value of m, which is the num-

ber of visits after which a state becomes known for a ball, is set as m =
128(S ln 2+ln SA

δ
)H2

ε2
.

This satisfies the assumptions in Lemma 5, whereby, we obtain an upper bound on number
of non-ε episodes in a single ball (generated by Cover-Rmax) as O

(
H2SA
ε3

(
S + ln SA

δ ln 1
δ

))
with probability at least 1− δ.

Setting the individual failure probability to be δ/N(C, r0) and using the union bound,
we get the stated PAC bound.2

The obtained PAC bound has linear dependence on the covering number of the context
space. In case of a d-dimensional Euclidean metric space, the covering number is of the
order O( 1

rd
). However, we show in Section 3.1, that, the dependence on the covering number

is at least linear in the worst case, and hence, indicate the difficulty of optimally learning
in such cases.

3.1. Lower Bound

We prove a lower bound on the number of sub-optimal episodes for any learning algorithm
in a smooth CMDP which shows that a linear dependence on the covering number of the
context space is unavoidable. As far as we know, there is no existing way of constructing
PAC lower bounds for continuous state spaces with smoothness, so we cannot simply aug-
ment the state representation to include context information. Instead, we prove our own
lower bound in Theorem 6 which builds upon the work of Dann and Brunskill (2015) on
lower bounds for episodic finite MDPs and of Slivkins (2014) on lower bounds for contextual
bandits.

Theorem 6 (Lower bound for smooth CMDP) There exists constants δ0, ε0, such
that for every δ ∈ (0, δ0) and ε ∈ (0, ε0), any algorithm that satisfies a PAC guarantee
for (ε, δ) and computes a sequence of deterministic policies for each context, there is a hard
CMDP (C,S,A,M) with smoothness constant Lp = 1, such that

E[B] = Ω
(
N (C,ε1)SA

ε2

)
(3)

where B is the number of sub-optimal episodes and ε1 = 1280Hεe4

(H−2) .
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Figure 1: Hard instances for episodic MDP (Dann and Brunskill, 2015). The initial state
0 moves to a uniform distribution over states 1 to n regardless of the action,
and states +/− are absorbing with 1 and 0 rewards respectively. States 0 to
n have 0 reward for all actions. Each state i ∈ [n] essentially acts as a hard
bandit instance, whose A actions move to + and − randomly. Action a0 satisfies
p(+|i, a0) = 1

2 + ε′

2 and there is at most one other action ai with p(+|i, ai) = 1
2 +ε′.

Any other action aj satisfies p(+|i, aj) = 1
2 .

Proof The overall idea is to embed multiple MDP learning problems in a CMDP, such that
the agent has to learn the optimal policy in each MDP separately and cannot generalize
across them. We show that the maximum number of problems that can be embedded scales
with the covering number, and the result follows by incorporating known PAC lower bound
for episodic MDPs.

We start with the lower bound for learning in episodic MDPs. See Figure 1 and its
caption for details. The construction is due to Dann and Brunskill (2015) and we adapt
their lower bound statement to our setting in Theorem 7.

Theorem 7 (Lower bound for episodic MDPs (Dann and Brunskill, 2015)) There
exists constants δ0, ε0, such that for every δ ∈ (0, δ0) and ε ∈ (0, ε0), any algorithm that sat-
isfies a PAC guarantee for (ε, δ) and computes a sequence of deterministic policies, there

is a hard instance Mhard so that E[B] = Ω
(
SA
ε2

)
, where B is the number of sub-optimal

episodes. The constants can be chosen as δ0 = e−4

80 , ε0 = H−2
640He4

.3

Now we discuss how to populate the context space with these hard MDPs. Note in Figure 1
that, the agent does not know which action is the most rewarding (ai), and the adversary
can choose i to be any element of [A] (which is essentially choosing an instance from a
family of MDPs). In our scenario, we would like to allow the adversary to choose the
MDP independently for each individual packing point to yield a lower bound linear in the
packing number. However, this is not always possible due to the smoothness assumption, as
committing to an MDP at one point may restrict the adversary’s choices in another point.

To deal with this difficulty, we note that any pair of hard MDPs differ from each other
by O(ε′) in transition distributions. Therefore, we construct a packing of C with radius

2. For detailed proofs, we refer the reader to the appendix.
3. The lower bound here differs from that in the original paper by H2, because our value is normalized (see

Eq.(1)), whereas they allow the magnitude of value to grow with H.
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r = 8ε′, defined as a set of points Z such that any two points in Z are at least r away from
each other. The maximum size of such Z is known as the packing number :

D(C, r) = max{|Z| : Z is an r-packing of C},

which is related to the covering number as N(C, r) ≤ D(C, r). The radius r is chosen to be
O(ε′) so that arbitrary choices of hard MDP instances at different packing points always
satisfy the smoothness assumption (recall that Lp = 1). Once we fix the MDPs for all
c ∈ Z, the MDP for c ∈ C \ Z is specified as follows: for state i and action a,

pc(+|i, a) = max
c′∈Z

max(1/2, pc′(+|i, a)− φ(c, c′)/2).

Essentially, as we move away from a packing point, the transition to +/− become more
uniform. We can show that:

Claim 8 The CMDP defined above is satisfies Definition 3 with constant Lp = 1.4

We choose the context sequence given as input to be repetitions of an arbitrary permutation
of Z. By construction, the learning at different points in Z are independent, so the lower
bound is simply the lower bound for learning a single MDP (Theorem 7) multiplied by
the cardinality of Z (the packing number). Using the well known relation that N (C, r) ≤
D(C, r), we have the desired lower bound. The reader is referred to the appendix for proof
of Claim 8 and a more detailed analysis.

4. Contextual Linear Combination of MDPs

From the previous section, it is clear that for a contextual MDP with just smoothness
assumptions, exponential dependence on context dimension is unavoidable. Further, the
computational requirements of our Cover-Rmax algorithm scales with the covering number
of the context space. As such, in this section, we focus on a more structured assumption
about the mapping from context space to MDPs and show that we can achieve substantially
improved sample and computational efficiency.

The specific assumption we make in this section is that the model parameters of an
individual MDP M c is the linear combination of the parameters of d base MDPs, i.e.,

pc(s′|s, a) = c>

p1(s′|s, a)
...

pd(s
′|s, a)

 := c>P (s, a, s′),

rc(s, a) = c>

r1(s, a)
...

rd(s, a)

 := c>R(s, a).

(4)

We use P (s, a, s′) and R(s, a) as shorthand for the d × 1 vectors that concatenate the
parameters from different base MDPs for the same s, a (and s′). The parameters of the

4. The reward function does not vary with context, hence, reward smoothness is satisfied for all Lr ≥ 0.
The proof of the claim is deferred to the appendix.
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base MDPs (pi and ri) are unknown and need to be recovered from data by the learning
agent, and the combination coefficients are directly available which is the context vector c
itself. This assumption can be motivated in an application scenario where the user/patient
responds according to her characteristic distribution over d possible behavioural patterns.

A mathematical difficulty here is that for an arbitrary context vector c ∈ Rd, pc(·|·, ·)
is not always a valid transition function and may violate non-negativity and normalization
constraints. Therefore, we require that c ∈ ∆d−1, that is, c stays in the probability simplex
so that pc(·|·, ·) is always valid.5

4.1. KWIK LR-Rmax

We first explain how to estimate the model parameters in this linear setting, and then
discuss how to perform exploration properly.

Model estimation Recall that in Section 3, the Cover-Rmax algorithm treats the MDPs
whose contexts fall in a small ball as a single MDP, and estimates its parameters using data
from the local context ball. In this section, however, we have a global structure due to our
parametric assumption (d base MDPs that are shared across all contexts). This implies
that data obtained at a context may be useful for learning the MDP parameters at another
context that is far away, and to avoid the exponential dependence on d we need to leverage
this structure and generalize globally across the entire context space.

Due to the linear combination setup, we use linear regression to replace the estimation
procedure in Equation 2: in an episode with context c, when we observe the state-action pair
(s, a), a next-state snext will be drawn from pc(·|s, a).6 Therefore, the indicator of whether
snext is equal to s′ forms an unbiased estimate of pc(s′|s, a), i.e., Esnext∼pc(·|s,a) [I[snext = s′]] =

pc(s′|s, a) = c>P (s, a, s′). Based on this observation, we can construct a feature-label pair

(c, I[snext = s′]) (5)

whenever we observe a transition tuple (s, a, snext) under context c, and their relationship
is governed by a linear prediction rule with P (s, a, s′) being the coefficients. Hence, to
estimate P (s, a, s′) from data, we can simply collect the feature-label pairs that correspond
to this particular (s, a, s′) tuple, and run linear regression to recover the coefficients. The
case for reward function is similar, hence, not discussed.

If the data is abundant (i.e., (s, a) is observed many times) and exploratory (i.e., the
design matrix that consists of the c vectors for (s, a) is well-conditioned), we can expect to
recover P (s, a, s′) accurately. But how to guarantee these conditions? Since the context is
chosen adversarially, the design matrix can indeed be ill-conditioned.

Observe, however, when the matrix is ill-conditioned and new contexts lie in the subspace
spanned by previously observed contexts, we can make accurate predictions despite the
inability to recover the model parameters. An online linear regression (LR) procedure will
take care of this issue, and we choose KWIK LR (Walsh et al., 2009) as such a procedure.

The original KWIK LR deals with scalar labels, which can be used to decide whether
the estimate of pc(s′|s, a) is sufficiently accurate (known). A (s, a) pair then becomes known

5. ∆n is the n-simplex {x ∈ Rn+1 :
∑n+1
i=1 xi = 1, xi ≥ 0}.

6. Here we use snext to denote the random variable, and s′ to denote a possible realization.
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if (s, a, s′) is known for all s′. This approach, however, generally leads to a loose analysis,
because there is no need to predict pc(s′|s, a) for each individual s′ accurately: if the estimate
of pc(·|s, a) is close to the true distribution under L1 error, the (s, a) pair can already be
considered as known. We extend the KWIK LR analysis to handle vector-valued outputs,
and provide tighter error bounds by treating pc(·|s, a) as a whole. Below we introduce our
extended version of KWIK LR, and explain how to incorporate the knownness information
in Rmax skeleton to perform efficient exploration.

Identifying known (s, a) with KWIK LR
The KWIK LR-Rmax algorithm we propose for the linear setting still uses Rmax template
(Algorithm 1) for exploration: in every episode, it builds the induced MDP MK , and acts
greedily according to its optimal policy with balanced wandering. The major difference
from Cover-Rmax lies in how the set of known states K are identified and how MK is
constructed, which we explain below (see pseudocode in Algorithm 3).

At a high level, the algorithm works in the following way: when constructing MK ,
the algorithm queries the KWIK procedure for estimates p̂c(·|s, a) and r̂c(s, a) for every
pair (s, a) using Predict(c, s, a). The KWIK procedure either returns ⊥ (don’t know),
or returns estimates that are guaranteed to be accurate. If ⊥ is returned, then the pair
(s, a) is considered as unknown and s is associated with Rmax reward for exploration. Such
optimistic exploration ensures significant probability of observing (s, a) pairs on which the
method predicts ⊥. If such pairs are observed in an episode, KWIK LR-Rmax calls Update
with feature-label pairs formed via Equation 5 to make progress on estimating parameters
for unknown state-action pairs.

Next we walk through the pseudocode and explain how Predict and Update work in
detail. Then we prove an upper bound on the number of updates that can happen (i.e., the
if condition holds on Line 11), which forms the basis of our analysis of KWIK LR-Rmax.

In Algorithm 3, matrices Q and W are initialized for each (s, a) using Initialize(·)
and are updated over time. Let Ct(s, a) be the design matrix at episode t, where each
row is a context cτ such that (s, a) was observed in episode τ < t. By matrix inverse
rules, we can verify that the update rule on Line 10 essentially yields Qt(s, a) = (I +
C>t Ct)

−1, where Qt(s, a) is the value of Q(s, a) in episode t. This is the inverse of the
(unnormalized and regularized) empirical covariance matrix, which plays a central role in
linear regression analysis. The matrix W accumulates the outer product between the feature
vector (context) c and the one-hot vector label y = ({I[snext = s′]}∀s′∈S)>. It is then obvious
that Qt(s, a)Wt(s, a) is the linear regression estimate of P (s, a) using the data up to episode
t.

When a new input vector ct comes, the algorithm checks whether ‖Q(s, a)ct‖2 is below
a predetermined threshold αS (Line 5). Recall that Q(s, a) is the inverse covariance matrix,
so a small ‖Q(s, a)ct‖2 implies that the estimate Qt(s, a)Wt(s, a) is close to P (s, a) along the
direction of ct, so it predicts pct(·|s, a) = c>t P (s, a) ≈ c>t Q(s, a)W (s, a); otherwise returns ⊥.
The KWIK subroutine for rewards is similar hence omitted. To ensure that the estimated
transition probability is valid, the estimated vector is projected onto ∆S−1, which can be
done efficiently using existing techniques (Duchi et al., 2008).

Below we state the KWIK bound for learning the transition function; the KWIK bound
for learning rewards is much smaller hence omitted here. We use the KWIK bound for
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scalar linear regression from Walsh et al. (2009) and the property of multinomial samples
to get our KWIK bound.

Theorem 9 (KWIK LR bound for learning multinomial vectors) For any ε > 0
and δ > 0, if the KWIK LR algorithm is executed for probability vectors pt(·|s, a), with

αS = min{b1 ε2

d3/2
, b2

ε2√
d log(d2S/δ)

, ε
2
√
d
} with suitable constants b1 and b2, then the number of

⊥’s where updates take place (see Line 11) will be bounded by O(d
2

ε4
max{d2, S2 log2(d/δ′)}),

and, with probability at least 1−δ, ∀ct where a non-“⊥” prediction is returned, ‖p̂ctt (·|s, a)−
pctt (·|s, a)‖1 ≤ ε.

Proof (See full proof in the appendix.) We provide a direct reduction to KWIK bound
for learning scalar values. The key idea is to notice that for any vector v ∈ RS :

‖v‖1 = sup
f∈{−1,1}S

v>f.

So conceptually we can view Algorithm 3 as running 2S scalar linear regression simultane-
ously, each of which projects the vector label to a scalar by a fixed linear transformation
f . We require every scalar regressor to have (ε, δ/2S) KWIK guarantee, and the `1 error
guarantee for the vector label follows from union bound.

Algorithm 3: KWIK learning of pc(·|s, a)

1 Function Initialize(S, d, αS)
2 Q(s, a)← Id for all (s, a)

3 W (s, a)← {0}d×S for all (s, a)

4 Function Predict(c, s, a)
5 if ‖Q(s, a)c‖1 ≤ αS then
6 return p̂c(·|s, a) = c>Q(s, a)W (s, a)
7 else
8 return p̂c(·|s, a) =⊥
9 end

10 Function Update(c, s, a, snext)
11 if ‖Q(s, a)c‖1 > αS (“⊥” prediction) then

12 Q(s, a)← Q(s, a)− (Q(s,a)c)(Q(s,a)c)>

1+c>Q(s,a)c

13 y ← ({I[snext = s′]}∀s′∈S)>

14 W (s, a)←W (s, a) + cy

15 end

With this result, we are ready to prove the formal PAC guarantee for KWIK LR-Rmax.

Theorem 10 (PAC bound for KWIK LR-Rmax) For any input values 0 < ε, δ ≤
1 and a linear CMDP model with d number of base MDPs, with probability 1 − δ, the
KWIK LR-Rmax algorithm, produces a sequence of policies {πt} which yield at most

O
(d2H4SA

ε5
log 1

δ max{d2, S2 log2(dSAδ )}
)

11
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non-ε-optimal episodes.

Proof When the KWIK subroutine (Algorithm 3) makes non-“⊥” predictions p̂c(s, a, s′),
we require that

‖p̂c(·|s, a)− pc(·|s, a)‖1 ≤ ε/8H.

After projection onto ∆S−1, we have:

‖Π∆S−1
(p̂c(s, a))− pc(·|s, a)‖1 ≤ 2‖p̂c(·|s, a)− pc(·|s, a)‖1 ≤ ε/4H.

Further, the update to the matrices Q and W happen only when an unknown state action
pair (s, a) is visited and the KWIK subroutine still predicts ⊥ (Line 10). The KWIK bound
states that after a fixed number of updates to an unknown (s, a) pair, the parameters
will always be known with desired accuracy. The number of updates m can be obtained
by setting the desired accuracy in transitions to ε/8H and failure probability as δ/SA in
Theorem 9:

m = O
(
d2H4

ε4
max{d2, S2 log2(dSAδ )}

)
We now use Lemma 5 where instead of updating counts for number of visits, we look at
the number of updates for unknown (s, a) pairs. On applying a union bound over all state
action pairs and using Lemma 5, it is easy to see that the sub-optimal episodes are bounded

by O
(
mSA
ε ln 1

δ

)
with probability at least 1− δ. The bound in Theorem 10 is obtained by

substituting the value of m.

We see that for this contextual MDP, the linear structure helps us in avoiding the expo-
nential dependence in context dimension d. The combined dependence on S and d is now
O(max{d4S, d2S3}).

Computational complexity The KWIK LR-Rmax algorithm maintains SA-many ma-
trices of size O(d2). At the start of each episode, the algorithm requires a vector-matrix
multiplication for computing the knownness of each state-action pair, which takes a total
of O(d2SA) operations (Line 5). For known state-action pairs, computing p̂c(·|s, a) re-
quires a projection step along with vector-matrix multiplications and takes O(d2SA+S2A)
operations (Line 6)7. At the end of every episode, it performs rank-1 updates to the
matrices Q and W for every unknown state-action pair, each taking O(d2) operations
(Line 12 and Line 14). We, therefore, observe that the KWIK LR-Rmax algorithm takes
O(SAmax{d2, S}) running time per episode.

5. Related work

Transfer in RL with latent contexts The general definition of CMDPs captures the
problem of transfer in RL and multi-task RL. See Taylor and Stone (2009) and Lazaric
(2011) for surveys of empirical results. Recent papers have also advanced the theoretical
understanding of transfer in RL. For instance, Brunskill and Li (2013) and Hallak et al.

7. The projection onto ∆S−1 takes O(S) operations per state-action pair.

12
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(2015) analyzed the sample complexity of CMDPs where each MDP is an element of a finite
and small set of MDPs, and the MDP label is treated as the latent (i.e., unseen) context.
Mahmud et al. (2013) consider the problem of transferring the optimal policies of a large set
of known MDPs to a new MDP. All of these recent papers assume that the MDP label (i.e.,
the context) is not observed. Hence, their methods have to initially explore in every new
MDP to identify its label, which requires the episode length to be substantially longer than
the planning horizon. This can be a problematic assumption in our motivating scenarios,
where we interact with a patient / user / student for a limited period of time and the data
in a single episode (whose length H is the planning horizon) is not enough for identifying
the underlying MDP. In contrast to prior work, we propose to leverage observable context
information to perform more direct transfer from previous MDPs, and our algorithm works
with arbitrary episode length H.

RL with side information Our work leverages the available side-information for each
MDP, which is inspired by the use of contexts in contextual bandits (Langford and Zhang,
2008; Li et al., 2010). The use of such side information can also be found in RL literature:
Ammar et al. (2014) developed a multi-task policy gradient method where the context is
used for transferring knowledge between tasks; Killian et al. (2016) used parametric forms
of MDPs to develop models for personalized medicine policies for HIV treatment.

RL in metric space For smooth CMDPs (Section 3), we pool observations across similar
contexts and reduce the problem to learning policies for finitely many MDPs. An alternative
approach is to consider an infinite MDP whose state representation is augmented by the
context, and apply PAC-MDP methods for metric state spaces (e.g., C-PACE proposed by
Pazis and Parr (2013)). However, doing so might increase the sample and computational
complexity unnecessarily, because we no longer leverage the structure that a particular
component of the (augmented) state, namely the context, remains the same in an episode.
Concretely, the augmenting approach needs to perform planning in the augmented MDP
over states and contexts, which makes its computational/storage requirement worse than
our solution: we only perform planning in MDPs defined on S, whose computational char-
acteristics have no dependence on the context space. In addition, we allow the context
sequence to be chosen in an adversarial manner. This corresponds to adversarially chosen
initial states in MDPs, which is usually not handled by PAC-MDP methods.

KWIK learning of linear hypothesis classes Our linear combination setting (Sec-
tion 4) provides an instance where parametric assumptions can lead to substantially im-
proved PAC bounds. We build upon the KWIK-Rmax learning framework developed in
previous work (Li et al., 2008; Szita and Szepesvári, 2011) and use KWIK linear regres-
sion as a sub-routine. For the resulting KWIK LR-Rmax algorithm, its sample complexity
bound inherently depends on the KWIK bound for linear regression. It is well known that
even for linear hypothesis classes, the KWIK bound is exponential in input dimension in the
agnostic case (Szita and Szepesvári, 2011). Therefore, the success of the algorithm relies on
the validity of the modelling assumption.

Abbasi-Yadkori and Neu (2014) studied a problem similar to our linear combination
setting, and proposed a no-regret algorithm by combining UCRL2 (Jaksch et al., 2010)
with confidence set techniques from stochastic linear optimization literature (Dani et al.,
2008; Filippi et al., 2010). Our work takes an independent and very different approach, and

13
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we provide a PAC guarantee which is not directly comparable to regret bound. Still, we
observe that our dependence on A is optimal for PAC whereas theirs is not (

√
A is optimal

for bandit regret analysis and they have A); on the other hand, their dependence on T (the
number of rounds) is optimal, and our dependence on 1/ε, its counterpart in PAC analysis,
is suboptimal. It is an interesting future direction to combine the algorithmic ideas from
both papers to improve the guarantees.

6. Conclusion

We presented a general setting involving the use of side information, or context, for learn-
ing near-optimal policies in a large and potentially infinite number of MDPs. Our Cover-
Rmax algorithm is a model-based PAC-exploration algorithm for the case where MDPs vary
smoothly with respect to the observed side information. Our lower bound construction indi-
cates the necessary exponential dependence of any PAC algorithm on the context dimension
in a smooth CMDP. We also consider another instance with a parametric assumption, and
using a KWIK linear regression procedure, present the KWIK LR-Rmax algorithm for ef-
ficient exploration in linear combination of MDPs. Our PAC analysis shows a significant
improvement with this structural assumption.

The use of context based modelling of multiple tasks has rich application possibilities
in personalized recommendations, healthcare treatment policies, and tutoring systems. We
believe that our setting can possibly be extended to cover the large space of multi-task RL
quite well with finite/infinite number of MDPs, observed/latent contexts, and determinis-
tic/noisy mapping between context and environment.
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Appendix A. Proofs from Section 3

A.1. Proof of Lemma 5

We adapt the analysis in Kakade (2003) for the episodic case which results in the removal
of a factor of H, since complete episodes are counted as mistakes and we do not count every
sub-optimal action in an episode. The detailed analysis is reproduced here for completeness.
For completing the proof of Lemma 5, firstly, we will look at a version of simulation lemma
from Kearns and Singh (2002). Also, for the complete analysis we will assume that the
rewards lie between 0 and 1.

Definition 11 (Induced MDP) Let M be an MDP with K ⊆ S being a subset of states.
Given, such a set K, we define an induced MDP MK in the following manner. For each

16
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s ∈ K, define the values

pMK
(s′|s, a) = pM (s′|s, a)

rMK
(s, a) = rM (s, a)

For all s /∈ K, define pMK
(s′|s, a) = I{s′ = s} and rMK

(s, a) = 1.

Lemma 12 (Simulation lemma for episodic MDPs) Let M and M ′ be two MDPs
with the same state-action space. If the transition dynamics and the reward functions of the
two MDPs are such that

‖pM (·|s, a)− pM ′(·|s, a)‖1 ≤ ε1 ∀s ∈ S, a ∈ A

|rM (s, a)− rM ′(s, a)| ≤ ε2 ∀s ∈ S, a ∈ A

then, for every (non-stationary) policy π the two MDPs satisfy this property:

|V π
M − V π

M ′ | ≤ ε2 +Hε1

Proof Consider Th to be the set of all trajectories of length h and let P πM (τ) denote the
probability of observing trajectory τ in M with the behaviour policy π. Further, let UM (τ)
the expected average reward obtained for trajectory τ in MDP M .

|V π
M − V π

M ′ | = |
∑
τ∈TH

[P πM (τ)UM (τ)− P πM ′(τ)UM ′(τ)] |

≤ |
∑
τ∈TH

[P πM (τ)UM (τ)− P πM (τ)UM ′(τ) + P πM (τ)UM ′(τ)− P πM ′(τ)UM ′(τ)] |

≤ |
∑
τ∈TH

[P πM (τ)(UM (τ)− UM ′(τ))] |+ |
∑
τ∈TH

[UM ′(τ)(P πM (τ)− P πM ′(τ))] |

≤ |
∑
τ∈TH

P πM (τ)|ε2 + |
∑
τ∈TH

[P πM (τ)− P πM ′(τ)] |

≤ ε2 + |
∑
τ∈TH

[P πM (τ)− P πM ′(τ)] |

The bound for the second term follows from the proof of Lemma 8.5.4 in Kakade (2003).
Combining the two expressions, we get the desired result.

Lemma 13 (Induced inequalities) Let M be an MDP with K being the set of known
states. Let MK be the induced MDP as defined in 11 with respect to K and M . We will
show that for any (non-stationary) policy π, all states s ∈ S,

V π
MK

(s) ≥ V π
M (s)

and

V π
M (s) ≥ V π

MK
(s)− PπM [Escape to an unknown state|s0 = s]

where V π
M (s) denotes the value of policy π in MDP M when starting from state s.

17



Markov Decision Processes with Continuous Side Information

Proof See Lemma 8.4.4 from Kakade (2003).

Corollary 14 (Implicit Explore and Exploit) Let M be an MDP with K as the set
of known states and MK be the induced MDP. If π∗MK

and π∗M be the optimal policies for
MK and M respectively, we have for all states s:

V
π∗MK
M (s) ≥ V ∗M (s)− PπM [Escape to an unknown state|s0 = s]

Proof Follows from Lemma 8.4.5 from Kakade (2003).

Proof of Lemma 5 Let π∗M be the optimal policy for M . Also, using the assumption

about m, we have an ε/2-approximation of MK as the MDP M̂K . Rmax computes the
optimal policy for M̂K which is denoted by π̂. Then, by Lemma 12,

V π̂
MK

(s) ≥ V π̂
M̂K

(s)− ε/2

≥ V
π∗M
M̂K

(s)− ε/2

≥ V
π∗M
MK

(s)− ε

Combining this with Lemma 13, we get

V π̂
M (s) ≥ V π̂

MK
(s)− PπM [Escape to an unknown state|s0 = s]

≥ V
π∗M
MK

(s)− ε− PπM [Escape to an unknown state|s0 = s]

≥ V ∗M (s)− ε− PπM [Escape to an unknown state|s0 = s]

If this escape probability is less than ε, then the desired relation is true. Therefore, we need
to bound the number of episodes where this expected number is greater than ε. Note that,
due to balanced wandering, there can be at most mSA visits to unknown states for the
Rmax algorithm. In the execution, the agent may encounter an extra H − 1 visits as the
estimates are updated only after the termination of an episode.

Whenever this quantity is more than ε, the expected number of exploration steps in
mSA/ε such episodes is at least mSA. By the Hoeffding’s inequality, for N episodes, with
probability, at least 1− δ, the number of successful exploration steps is greater than

Nε−
√
N

2
ln

1

δ

Therefore, if N = O(mSAε ln 1
δ ), with probability at least 1− δ, the total number of visits to

an unknown state is more than mSA. Using the upper bound on such visits, we conclude
that these many episodes suffice.
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A.2. Proof of Theorem 4

We now need to compute the required resolution of the cover and the number of transitions
m which will guarantee the approximation for the value functions as required in the previous
lemma. The following is a key result:

Lemma 15 (Cover approximation) For a given CMDP and a finite cover, i.e., C =

∪N(C,r)
i=1 Bi such that ∀i, ∀c1, c2 ∈ Bi :

‖pc1(·|s, a)− pc2(·|s, a)‖1 ≤ ε/8H

and

|rc1(s, a)− rc2(s, a)| ≤ ε/8

if the agent visit every state-action pair m =
128(S ln 2+ln SA

δ
)H2

ε2
times in a ball Bi summing

observations over all c ∈ Bi, then, for any policy π and with probability at least 1− 2δ, the
approximate MDP M̂i corresponding to Bi computed using empirical averages will satisfy

|V π
Mc
− V π

M̂i
| ≤ ε/2

for all c ∈ Bi.

Proof
With each visit to a state action pair (s, a), a transition to some s′ ∈ S is observed for

context ct ∈ Bi in tth visit with probability pct(s, a). Let us encode this by an S-dimensional
vector It with 0 at all indices except s′. After observing m such transitions, the next state
distribution for any c ∈ Bi is esitmated as pM̂i

(·|s, a) = 1
m

∑m
t=1 It. Now for all c ∈ Bi,

‖pM̂i
(·|s, a)− pc(·|s, a)‖1 ≤ ‖pM̂i

(·|s, a)− 1

m

m∑
t=1

pct(·|s, a)‖1 + ε/8H

For bounding the first term, we use the Hoeffding’s bound:

P
[
‖pM̂i

(·|s, a)− 1

m

m∑
t=1

pct(·|s, a)‖1 ≥ ε
]

= P
[

max
s′∈A⊆S

(pM̂i
(s′ ∈ A|s, a)− 1

m

m∑
t=1

pct(s′ ∈ A|s, a)) ≥ ε/2
]

≤
∑

s′∈A⊆S

P
[
(pM̂i

(s′ ∈ A|s, a)− 1

m

m∑
t=1

pct(s′ ∈ A|s, a)) ≥ ε/2
]

≤ (2S − 2) exp(−mε2/2)

Therefore, with probability at least 1− δ/2, for all s ∈ S, a ∈ A, we have:

‖pM̂i
(·|s, a)− pc(·|s, a)‖1 ≤

√
2(S ln 2 + ln 2SA/δ)

m
+ ε/8H

If m =
128(S ln 2+ln SA

δ
)H2

ε2
, the error becomes ε/4H. One can easily verify using similar

arguments that, the error in rewards for any context c ∈ Bi is less than ε/4.
By using the simulation lemma 12, we get the desired result.
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Appendix B. Lower bound analysis

B.1. Proof of Claim 8

Once the instances at the packing points are assigned, the parameters for any other context
c ∈ C, state i and action a are given by:

pc(+|i, a) = max
c′∈Z

max(1/2, pc′(+|i, a)− φ(c, c′)/2)

We now prove that, with this definition, the smoothness requirements are satisfied. More
precisely, we will show that the contextual MDP defined above is a valid instance of a
contextual MDP with smoothness constants Lp = 1. (The reward function does not vary
with context hence reward smoothness is satisfied for all Lr ≥ 0.).
Proof We need to prove that the defined contextual MDP, satisfies the constraints in
Definition 3. Let us assume that the smoothness assumption is violated for a context pair
(c1, c2). The smoothness constraints for rewards are satisfied trivially for any value of Lr
as they are constant. This implies that there exists state i ∈ [n] and action a such that

‖pc1(·|i, a)− pc2(·|i, a)‖1 > φ(c1, c2)

⇒ 2|pc1(+|i, a)− pc2(+|i, a)| > φ(c1, c2)

We know that, pc(+|i, a) ∈ [1/2, 1/2 + ε′], which shows that φ(c1, c2) < 2ε′. Without loss of
generality, assume pc1(+|i, a) > pc2(+|i, a) which also leads to

pc1(+|i, a) > 1/2

⇒ ∃c0 ∈ Z such that φ(c1, c0) < 2ε′

By triangle inequality, we have

φ(c2, c0) < 4ε′

Now, ∀c′0 ∈ Z, such that φ(c′0, c0) ≥ 8ε′, by triangle inequality, we have

φ(c′0, c1) > 6ε′

φ(c′0, c2) > 4ε′

This simplifies the definition of pc(+|i, a) for c = c1, c2 to

pc(+|i, a) = max(1/2, pc0(+|i, a)− φ(c0, c)/2)

Now,

|pc1(+|i, a)− pc2(+|i, a)| = pc1(+|i, a)− pc2(+|i, a)

= pc0(+|i, a)− φ(c0, c1)/2−max(1/2, pc0(+|i, a)− φ(c0, c2)/2)

≤ pc0(+|i, a)− φ(c0, c1)/2− (pc0(+|i, a)− φ(c0, c2)/2)

= 1
2(φ(c0, c2)− φ(c0, c1)) ≤ φ(c1, c2)/2

which leads to a contradiction.
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B.2. Lower bound for smooth CMDP

In the lower bound construction, we argued that the set of constructed CMDPs, require any
agent to approximate the model of a large number of MDPs separately for generalization.
Our construction populates a set of packing points in the context space with hard MDPs and
we claim that these instances are independent of each other from the algorithm’s perspective.
To formalize this statement, let Z be the 8ε′-packing as before. The adversary makes the
choices of the instances at each context c ∈ Z, as follows: Select an MDP from the family of
hard instances described in Figure 1 where the optimal action from each state in {1, . . . , n} is
chosen randomly and independently from the other assignments. The parameter ε′ deciding
the difference in optimality of actions in Figure 1 is taken as 160Hεe4

(H−2) . The expression is
obtained by using the construction of Theorem 7.

We denote these instances by the set I and an individual instance by Iz. Let z =
{z1, z2, . . . , z|Z|} be the random vector denoting the optimal actions chosen for the MDPs
corresponding to the packing points. By construction, we have a uniform distribution
Γ ≡ Γ1×Γ2× . . .Γ|Z| over these possible set of instances Iz. From Claim 8, any assignment
of optimal actions to these packing points would define a valid smooth contextual MDP.
Further, the independent choice of the optimal actions makes MDPs at each packing point
at least as difficult as learning a single MDP. Formally, let the sequence of transitions and
rewards observed by the learning agent for all packing points be T ≡ {τ1, τ2, . . . , τ|Z|}. Due
to the independence between individual instances, we can see that:

PΓ[ τ1|τ2, τ3, . . . , τ|Z| ] ≡ PΓ1 [ τ1 ]

where PΓ[τi] denotes the distribution of trajectories τi. Thus, we cannot deduce anything
about the optimal actions for one point by observing trajectories from MDP instances at
other packing points. With respect to this distribution, learning in the contextual MDP is
equivalent to or worse than simulating a PAC algorithm for a single MDP at each of these
packing points. For any given contextual MDP algorithm Alg, we have:

EΓ[Bi] = EΓ−i [EΓi,Alg[Bi|T−i]] ≥ EΓ−i [EΓ1,Alg*[Bi]]

where Alg* is an optimal single MDP learning algorithm. The expectation is with respect
to the distribution over the instances Iz and the algorithm’s randomness. From Theorem 7,

we can lower bound the expectation on the right hand side of the inequality by Ω
(
SA
ε2

)
.

The total number of mistakes is lower bounded as:

EΓ[

|Z|∑
i=1

Bi] =

|Z|∑
i=1

EΓ[Bi] ≥ Ω
(
|Z|SA
ε2

)
Setting |Z| = D(C, ε1) ≤ N (C, ε1) gives the stated lower bound with ε1 = 8ε′.

Appendix C. Proof of the Theorem 9

In this section, we present the proof of our KWIK bound for learning transition probabilities.
Our proof uses a reduction technique that reduces the vector-valued label setting to the
scalar setting, and combines the KWIK bound for scalar labels given by Walsh et al. (2009).
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Proof Fix a state action pair (s, a). Consider a sequence of contexts c1, c2, ... for which
the transitions were observed for pair (s, a). Given a new context c, we want to estimate:

pc(·|s, a) = c>P (s, a)

In our KWIK LR algorithm, this is estimated as:

p̂c(·|s, a) = c>Q(s, a)W (s, a)

where Q(s, a) and W (s, a) are as described in Section 4.1.
We wish to bound the `1 error between p̂c(·|s, a) and pc(·|s, a) for all c for which a

prediction is made. We know that

‖pc(·|s, a)− p̂c(·|s, a)‖1 = sup
f∈{−1,1}S

(pc(·|s, a)− p̂c(·|s, a))f. (6)

We use this representation of `1-norm to prove a tighter KWIK bound for learning transition
probabilities. For every fixed f ∈ {−1, 1}S , we formulate a new linear regression problem
with feature-label pair:

(c, yf).

Recall that y = ({I[snext = s′]}∀s′∈S)> is the vector label of real interest, and f projects y
to a scalar value. Algorithm 3 can be viewed as implicitly running this regression thanks
to linearity: since Q only depends on input contexts and W is linear in y, p̂c(·|s, a)f is
simply equal to the linear regression prediction for the problem (c, yf). As a result, the
KWIK bound for the problem (c, yf) (which we establish below) automatically applies as
a property of p̂c(·|s, a)f . Taking union bound over all f ∈ {−1, 1}S yields the desired `1
error guarantee for p̂c(·|s, a) thanks to Equation 6.

Now we establish the KWIK guarantee for the new regression problem. The groundtruth
(expected) label is

pc(·|s, a)f = c>(P (s, a)f) := c>θf . (7)

The noise in the label is then

ηf := (y − pc(·|s, a))f. (8)

This noise has zero-mean and constant magnitude: |ηf | ≤ ‖y − pc(·|s, a)‖1‖f‖∞ ≤ 2.
With the above conditions, we can invoke the KWIK bound for scalar linear regression

from Walsh et al. (2009):

Theorem 16 (KWIK bound for linear regression (Walsh et al., 2009)) Suppose the
observation noise in a noisy linear regression problem has zero-mean and its absolute value
is bounded by β. Let M be an upper bound on the `2 norm of the true linear coeffi-
cients. For any δ′ > 0 and ε > 0, if the KWIK linear regression algorithm is executed
with α0 = min{b1 ε2

dM , b2
ε2

M log(d/δ′) ,
ε

2M }, with suitable constants b1 and b2, then the number

of ⊥’s will be O(M2 max{d3
ε4
, d log2(d/δ′)

ε4
}), and with probability at least 1−δ′, for each sample

xt for which a prediction is made, the prediction is ε-accurate.
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For our purpose, β = 2 as |ηf | ≤ 2 and M =
√
d as ‖θf‖2 = ‖P (s, a)f‖2 ≤

√
d.

Now set δ′ = δ
2S

in Theorem 16. In the KWIK linear regression algorithm, the known
status for a context c is checked in the same manner as done in Line 5 in Algorithm 3.
Therefore

Pr
[
‖pc(·|s, a)− p̂c(·|s, a)‖1 ≥ ε

]
= Pr

[
sup

f∈{−1,1}S
(pc(·|s, a)− p̂c(·|s, a))f ≥ ε

]
(Equation 6)

≤
∑

f∈{−1,1}S
Pr
[
(pc(·|s, a)− p̂c(·|s, a))f ≥ ε

]
(union bound)

=
∑

f∈{−1,1}S
Pr
[
c>θf − c>Q(s, a)(W (s, a)f) ≥ ε

]
(regression w.r.t. f implicitly run)

≤
∑

f∈{−1,1}S
δ/2S = δ.

Substituting the values of M and δ′ in Theorem 16, we get:

αS = min{b1 ε2

d3/2
, b2

ε2√
d log(d/2Sδ′)

, ε
2
√
d
}

and number of ⊥’s is bounded as

O(max{d4
ε4
, d

2S2 log2(d/δ′)
ε4

}).
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