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Abstract

Reinforcement learning (RL) has become a central
paradigm for solving learning-control problems in
robotics and artificial intelligence. RIL researchers
have focussed almost exclusively on problems where
the controller has to maximize the discounted sum of
payoffs. However, as emphasized by Schwartz (1993),
in many problems, e.g., those for which the optimal
behavior is a limit cycle, it is more natural and com-
putationally advantageous to formulate tasks so that
the controller’s objective is to maximize the average
payoff received per time step. In this paper I derive
new average-payoff RIL algorithms as stochastic ap-
proximation methods for solving the system of equa-
tions associated with the policy evaluation and op-
timal control questions in average-payoff RL tasks.
These algorithms are analogous to the popular TD
and Q-learning algorithms already developed for the
discounted-payoff case. One of the algorithms derived
here is a significant variation of Schwartz’s R-learning
algorithm. Preliminary empirical results are presented
to validate these new algorithms.

Introduction

Reinforcement learning has become a central paradigm
for solving problems involving agents controlling ex-
ternal environments by executing actions. Previous
work on reinforcement learning (e.g., Barto, Bradtke,
& Singh to appear) (RL) has focused almost exclu-
sively on developing algorithms for maximizing the dis-
counted sum of payoffs received by the agent. Dis-
counting future payoffs makes perfect sense in some
applications, e.g., those dealing with economics, where
the distant future is indeed less important than the
near future, which in turn is less important than the
immediate present. As recently noted by Schwartz
(1993), in many other applications, however, all time
periods are equally important, e.g., foraging, queuing
theory problems, and problems where the optimal tra-
jectory is a limit cycle. A natural measure of perfor-
mance in such undiscounted applications is the average
payoff per time step received by the agent (e.g., Bert-
sekas 1987). For problems where either the discounted-
payoff or the average-payoff formulations can be used,

often there are strong computational reasons to prefer
the average-payoff formulation (see Schwartz 1993, for
a recent discussion).

Recently, Jaakkola, Jordan, & Singh (to ap-
pear) have developed a fairly complete mathemat-
ical understanding of discounted-payoff RIL algo-
rithms as stochastic approximation methods for solv-
ing the system of Bellman (1957) equations associ-
ated with discounted-payoff Markovian decision pro-
cesses (MDPs) (also see Tsitsiklis 1993). In this pa-
per, I develop average-payoff RL algorithms by deriv-
ing stochastic approximation methods for solving the
analogous Bellman equations for MDPs in which the
measure to be optimized is the average payoff per time
step. These algorithms for the average-payoff case are
analogous to the popular temporal differences (Barto,
Sutton, & Anderson 1983; Sutton 1988) (TD) and Q-
learning (Watkins 1989; Watkins & Dayan 1992) algo-
rithms for the discounted-payoff case. One of the four
algorithms derived here using the formal stochastic ap-
proximation perspective is a significant variation of the
R-learning algorithm developed recently by Schwartz
(1993), who initiated the interest in average-payoff RL,
but whose derivation was more heuristic. I also present
preliminary empirical results on a test set of artificial
MDPs.

Average-Payoff Reinforcement Learning

A large variety of sequential embedded-agent tasks of
interest to Al researchers can be formulated as MDPs
which are a class of discrete-time optimal control tasks.
At each time step the agent senses the state of the en-
vironment, executes an action, and receives a payoff in
return. The action executed by the agent along with
some unmodeled disturbances, or noise, stochastically
determine the state of the environment at the next
time step. The actions the agent executes constitute
its control policy. The task for the learning agent is to
determine a control policy that maximizes some pre-
defined cumulative measure of the payoffs received by
the agent over a given time horizon.

Notation: Let S be the set of states, let Py, (a) denote
the probability of transition from state x to state y



on executing action a, and let R(z,a) be the payoff
received on executing action a in state z. Further, let
A(x) be the set of actions available in state z, and let
zy, ay, and R; represent the state, the action taken,
and the payoff at time step t. A stationary closed-
loop control policy 7 : S — A assigns an action to
each state. For MDPs there always exists an optimal
stationary deterministic policy and therefore one only
needs to consider such policies.

In discounted-payoff MDPs the return for, or
value of a fixed policy # when the starting state
of the environment is # is as follows: V7™(z) =
E™{3" 2 7" Relwg = '}, where 0 < v < 1 is a discount
factor, and E™ is the expectation symbol under the as-
sumption that policy 7 is executed forever. In average-
payoff MDPs the average payoff per time step for a
fixed policy @ when the starting state of the environ-
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ment is  is as follows: p™(z) = limy_,, E7{&tz2""},

Bertsekas (1987) shows that p™(x) = p™(y) J%for all
z,y € S under the assumption that the Markov chain
for policy 7 is ergodic.

Assumption: For the rest of this paper, I am going
to assume, just as in the classical average-payoff (AP)
dynamic programming (DP) literature, that the MDP
is ergodic for all stationary policies. Under that as-
sumption the average payoff is always independent of
the start state. The average payoff for policy = will
be denoted p™, and the optimal average payoff will be
denoted p*.

The quantity E™{> ;2 (R; — p™)|zo = } is called
the relative value of state z and is denoted V7™ (x) be-
cause it plays a role analogous to the role the value
function plays in discounted-payoff MDPs. It is called
a relative value because

V(@)= V™(y) = E™{D_ Rileo=2}

—E"{Y " Rifao =y},
t=0

may be seen as the long-term difference in the total
payoff (not average payoff per time step) due to start-
ing at state x rather than state y.

Reinforcement Learning as stochastic
approximation

RL algorithms are iterative, asynchronous. stochastic
approximation algorithms that use the state transition
and payoff that occur at each time step to update the
estimated relative value function and the estimated
average-payoff. Both RL and asynchronous (on-line)
DP take the following general form:

Vigi(ze) = (1= ay(ze))Vi(ae)
a2 )(B(Vi)(ze) — pe) (1)

where t is the time index, a4 () is a learning rate con-
stant, and p; 1s the estimated average payoff, and V; is

the estimated relative value function. The only differ-
ence between Equation 1 and the corresponding equa-
tion for the discounted-payoff case is that the average
payoff, p;, is subtracted out on the RHS to form the
new estimate. In DP the operator B(V)(z) is deter-
ministic and involves computing the expected relative
value of all one-step neighbors of state «. I will obtain
RL algorithms by replacing the deterministic backup
operator B in classical DP algorithms (see Equation 1)
by a random operator B that merely samples a sin-
gle next state. This is necessary in RL algorithms
because the real-environment only makes a stochas-
tic transition to a single next state, and RL algorithms
do not assume an environment model that can be used
to lookup all the other possible next states. The rela-
tionship to stochastic approximation is in the following
fact: E{B} = B (see Singh 1993 for an explanation).

Policy Evaluation

Policy evaluation involves determining the average
payoff and the relative values for a fixed policy =.
Strictly speaking, policy evaluation is a prediction
problem and not a RL problem. However, because
many RL architectures are based on policy evaluation
(e.g., Barto, Sutton, & Anderson 1983), T will first de-
velop average-case policy evaluation algorithms. Us-
ing the Markov assumption it can be shown that p™
and V™ are solutions to the following systems of linear
equations:

Policy evaluation equations for the average-
payoff case (e.g., Bertsekas 1987)

p+V(z) = R(z,m(2))+ Y Poy(n(2))V(y), (2)

yeS

where to get a unique solution, we set V(r) = 0, for
some arbitrarily chosen reference state r € S. This is
needed because there are |S| 4+ 1 unknowns and only
|S] equations. Note, that from Equation 2, V& € S|

pﬂ' = R(l‘,ﬂ'(l‘))+pry(ﬂ-(x))vﬂ—(y)
V7™ (x) (3)

Define a deterministic operator:
Br(V)(x) = R(z, 7(2)) + 3y e5 Poy(1(2))V(y).
Asynchronous version of Classical DP (AP) al-
gorithm:

Vig1(4) (Va)(
pit1 = (Va)(

where Yy # 4, Viy1 (4) = Vi(y).
Reinforcement Learning Algorithms for (AP)
Policy Evaluation:

Define the random operator
B (Vi) (x:) = R(xy, m(x¢)) + Va(weq1), where the next
state, x¢41, 1s chosen from the probability distribution

Ppioy (m(21)). Note that E{B.(V)} = B (V).

B l‘t) — Pt
B l‘t) - Vt(l‘t)



Algorithm 1:

Virr() = (1= on(@))Vi(an)

tai(ze)(Br (Vi)(ze) — pr)

(1 — ay(@:))Vi(ze)

tay(ze) (R, m(20)) + Vi@ig1) — pr)

where py = 0, and

pre1 = (1= B)pe + Be[Br(Vi)(ze) — Vi(ze)].
Algorithm 2:
Virr() = (1= on(@))Vi(an)

tay(@)(Br (Vi)(ze) — pr)
(1 — () Vi)
tay(@ ) (R(@e, m(2e)) + Vi(@eg1) — pe)
(t* pi) + Rz, m(xe))
t+1

where for both Algorithms 1 and 2; Yy # 4, Vig1(y) =
Vi(y), and ¥¢,Vi(r) = 0. Note that the difference be-
tween Algorithms 1 and 2 is in the estimation of the
average payoff: Algorithm 1 estimates it using Equa-
tion 3 while Algorithm 2 estimates it as the sample av-
erage of the payoffs. Algorithm 1 corresponds closely
to Sutton’s TD(0) algorithm for policy evaluation in
discounted-payoff MDPs.

P41 =

Optimal Control

In this section I present algorithms to find optimal
policies, 7%, for average-payoff MDPs. As in the
discounted-payoff case, we have to use the Q-notation
of Watkins (1989) to develop RL algorithms for the
average-payoff case optimal control question. Again,
as in classical DP, we will assume that the average
payoff is independent of the starting state-action pair
for all stationary policies. The average payoff for the
optimal policy is denoted p* and the relative Q-values
are denoted @*, and they are solutions to the following
system of nonlinear equations:

Bellman equations in the Q-notation:

R(z,a)+ Y Peyla) [max Qy,d

P+ Qxa) =
ves a’€A(y)

where the optimal action in state x# can be derived as
follows:

T (l‘) = argmaXaEA(x)Q*(xa Cl).
In Q-notation: Vi € 5, a € A,
* = R(i,a)+ Pi'a[max , ]
p (i, a) ]EZS i(a) aeA(])Q(J a’)

_Q* (Za Cl) (4)
Define the deterministic operator B(Q)(
R(l‘t, at) + ZyES xty(at) maXeg: €A(y) Q(ya !

taat) =

)-

Classical Asynchronous Dynamic Programming
Algorithm (AP):

Qiy1(zt, ar)

P41 =

B(Qq) (2, ar) — ps
B(Qt)(l’t, at) - Qt(xta at)’ (5)

where pg = 0.0. The above equation is an asyn-
chronous version of the synchronous algorithm devel-
oped in Bertsekas (1987). Jalali and Ferguson (1990)
have developed asynchronous DP algorithms that esti-
mate the transition probabilities on-line, but are oth-
erwise similar to the algorithm presented in the above
equation.

Reinforcement Learning for (AP) Optimal Con-
trol:

Define the random operator B(Q)(x:,a:) =
R(®¢, ;) + maxge (e, y,) @(Tiq1,a"), where the next
state, x;11, is chosen with probability Pr,q,,,(a:).
Note that E{B(Q)} = B(Q).

Algorithm 3. (A significant variation to Schwartz’s
R-learning)

Qt+1(l‘t,at) = (1 — Ty, Ay )Qt(l‘t,at)
(B(Q+)(@s, ar) — pr)

+ max )Qt(l‘t+1aa/) — pi)

pir1 = (1= 0)pe + Be(B(Q¢) (w1, ar)
—Qi(z¢,a:))  (6)

The difference between Algorithm 3 and R-learning is
that in R-learning the estimated average payoff is up-
dated only when the greedy action is executed, while
in Algorithm 3 the average payoff is updated with ev-
ery action. This suggests that Algorithm 3 could be
more efficient than R-learning since R-learning seems
to waste information whenever a non-greedy action is
taken, which is quite often, especially in the beginning
when the agent is exploring heavily. Updating p with
every action makes sense because the optimal average
payoff, p*, satisfies Equation 4 for every state-action
pair, and not just for the optimal action in each state.
This change from R-learning is a direct result of the
systematic derivation of RL from classical DP under-
taken in this paper.

A further difference resulting from the approach
taken here is that, just as in classical DP (e.g., Bert-
sekas 1987), T am proposing that the value of an arbi-
trarily chosen reference state-action pair be grounded
to a constant value of zero — Schwartz’s R-learning
does not do that. A possible disadvantage of not
grounding one state-action pair’s Q-value to zero is
that the relative Q-values could become very large.
Algorithm 4.

Qitr(ze,ar) = (1 — oy, ar))Qe(ae, ar)
+a(ze, a)(B(Q:) (w1, at) — pr)



= (1 —a(xs,a0))Q+ (e, a1)
Fa(zy, ag)[R(e, ar)

/
max x a’) — pel.
a/eA(le)Qt( t+1,@") = pi]
Let t, be the number of times the greedy action has
been chosen in ¢ time steps.

If(t+1), —t, #0

by = (pi *1g) + R(x4, ar)
' (t+1),

else, p+41 = p:. Note that the only difference between
Algorithms 3 and 4 is in the way the average payoff is
estimated; Algorithm 3 estimates it using Equation 4
while Algorithm 4 estimates it as the sample average
of the payoffs received for greedy actions. As in Q-
learning it is required that the Q-value of every state-
action pair is updated infinitely often.

Preliminary Empirical Results

We tested Algorithms 1 through 4 on MDPs with ran-
domly constructed transition matrices and payoff ma-
trix. Figures 1 and 2 show the learning curves for a
20 state and 5 action problem, and Figures 3 and 4
show the learning curves for a 100 state and 10 action
problem. The z-axis of all the graphs shows the num-
ber of states visited, while the y-axis shows the total
error in the relative value function relative to the cor-
rect value function (V7 in the case of policy evaluation,
and @Q* for optimal control). Fach graph is obtained
by averaging the results of 10 different runs with dif-
ferent random number seeds. The simulation results
presented here are preliminary and are just intended
to show that on the particular problems tried by the
author all the four algorithms learned good approxi-
mations to the desired relative (Q-) value functions.
See Figure captions for further details about the sim-
ulations.

Conclusion

The main contribution of this work is in the use of the
stochastic approximation framework to develop new
average-payoff RL algorithms to solve the policy evalu-
ation and the optimal control questions for Markovian
decision tasks. This is of substantial interest because
for many embedded-agent problems, especially those in
which the optimal behavior is a limit cycle, formulat-
ing them as average-payoff MDPs has many practical
advantages over formulating them as discounted-payoff
MDPs. Further, this paper also relates the important
work begun by Schwartz on average-payoff RL to what
is already known in the discounted-payoff literature by
deriving R-learning and other new algorithms in the
same manner as TD and Q-learning would be derived
today; and it also better relates R-learning to what is
already known in the classical control literature about
average-payoff DP.

It is also hoped that explicit derivation as stochastic
approximation methods will allow convergence results
for these algorithms, just as for TD and Q-learning.!
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Figure 1: Simulation results for Markov chains with 20
states. The upper graph presents for Algorithm 1 the ab-
solute error in the relative value function, summed over all
the 20 states, as a function of the number of state-updates.
The results presented are averages over ten Markov chains
generated with different random number seeds. The tran-
sition probabilities and payoff function were chosen ran-
domly. For each Markov chain the start state and the initial
value function were chosen randomly. The bottom graph
presents results averaged over the same ten Markov chains
for Algorithm 2.
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Figure 2: Simulation results for MDPs with 20 states,
and 5 actions. The upper graph presents for Algorithm 3
the absolute error in the relative Q-value function, summed
over all the 20 states, as a function of the number of state-
updates. The results presented are averages over ten MDPs
generated with different random number seeds. The tran-
sition probabilities and payoff function for the MDPs were
chosen randomly. For each MDP the start state and the ini-
tial Q-value function were chosen randomly. The Boltzman
distribution was used to determine the exploration strat-
L Qi (xqs,a

eT t:%tqz(”)b), where Prob(a|t)
bEA(wq)
is the probability of taking action @ at time ¢. The temper-
ature T' was decreased slowly. The bottom graph presents
results averaged over the same ten MDPs for Algorithm 4.

egy, i.e., Prob(a|t) =
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Figure 3: Simulation results for Markov chains with
100 states. The upper graph presents for Algorithm 1
the absolute error in the relative value function, summed
over all the 100 states, as a function of the number of
state-updates. The results presented are averages over ten
Markov chains generated with different random number
seeds. The transition probabilities and payoff function were
chosen randomly. For each Markov chain the start state
and the initial value function were chosen randomly. The
bottom graph presents results averaged over the same ten
Markov chains for Algorithm 2.
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Figure 4: Simulation results for MDPs with 100 states,
and 10 actions. The upper graph presents for Algorithm 3
the absolute error in the relative Q-value function, summed
over all the 100 states, as a function of the number of state-
updates. The results presented are averages over ten MDPs
generated with different random number seeds. The tran-
sition probabilities and payoff function for the MDPs were
chosen randomly. For each MDP the start state and the ini-
tial Q-value function were chosen randomly. The Boltzman
distribution was used to determine the exploration strat-
L Qi (xqs,a

eT t:%tqz(”)b), where Prob(a|t)
bEA(wq)
is the probability of taking action @ at time ¢. The temper-
ature T' was decreased slowly. The bottom graph presents
results averaged over the same ten MDPs for Algorithm 4.
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