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Abstract

We study emergent communication between speaker and lis-
tener recurrent neural-network agents that are tasked to coop-
eratively construct a blocks-world target image sampled from
a generative grammar of blocks configurations. The speaker
receives the target image and learns to emit a sequence of dis-
crete symbols from a fixed vocabulary. The listener learns to
construct a blocks-world image by choosing block placement
actions as a function of the speaker’s full utterance and the
image of the ongoing construction. Our contributions are (a)
the introduction of a task domain for studying emergent com-
munication that is both challenging and affords useful analyses
of the emergent protocols; (b) an empirical comparison of the
interpolation and extrapolation performance of training via
supervised, (contextual) Bandit, and reinforcement learning;
and (c) evidence for the emergence of interesting linguistic
properties in the RL agent protocol that are distinct from the
other two.

Introduction
We are interested in the challenging problem of learning effec-
tive communication protocols for collaborative multi-agent
settings in which limited bandwidth communication channels
can be exploited by agents for task performance, but where
no protocols are provided to the agents in advance. This
topic, sometimes called language emergence, has attracted
interest in multiple fields over several decades (we briefly
review some of this work below), including recent progress
in the application of neural networks (NNs). We empirically
study language emergence in a two-agent, speaker-listener
NN-based architecture, where the speaker observes the task
goal and takes communication actions that sequentially emit
symbols, and the listener (never seeing the goal) receives the
utterance and acts on the task environment. We investigate
the degree to which the agents converge on communication
protocols that have interesting linguistic structure, and that
can successfully lead the listener to (at least partially) achieve
the goal. We compare the speaker-listener architecture to a
baseline architecture where a single-agent both sees the goal
and acts on the environment.

Our work makes three novel contributions to language-
emergence research. First, we introduce a collaborative
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blocks-world construction task involving communication of
discrete symbol sequences that is challenging, systemati-
cally structured, and affords interesting analyses of the emer-
gent communication. Second, we demonstrate that, when
representing speaker and listener policies as recurrent neural
networks, how they are trained affects how well their emer-
gent protocols support generalization to unseen configuration
sizes (defined by the number of blocks in the configurations).
Specifically, we find that using Bandit for training supports
greater flexibility in construction to improve performance
over using supervised learning (SL), and that when using
reinforcement learning (RL) more structured communication
emerges to overcome the harder problem induced by delayed
rewards. Third, we demonstrate the emergence of interesting
linguistic properties that distinguish the RL-trained agent
from the other two. Specifically, we provide evidence for
the emergence of subsequences (N-grams) of symbols with
a power-law frequency distribution similar to that found in
natural human languages, and that are important in carry-
ing meaning in way that is consistent with some degree of
compositionality.

Related work
Research on language emergence spans many fields. Lin-
guistics and cognitive science are particularly interested in
the origins of properties of natural human language such as
hierarchical structure (Nowak, Plotkin, and Jansen 2000;
Nowak, Komarova, and Niyogi 2001; Steels 2003; Kirby,
Griffiths, and Smith 2014). The role of evolutionary pro-
cesses and pressures in shaping human language remains a
controversial topic (Berwick and Chomsky 2015), but a point
of agreement among most cognitive scientists and linguists
is that language to some degree is shaped by the structure of
the human cognitive architecture (Bratman et al. 2010). A
potential beneficial outcome of computational explorations
such as our work is to provide tools for cognitive science to
explore the implications of agent architecture for emergent
linguistic capacities.

Recent work on learning communication among coopera-
tive agents has proposed deep learning techniques for end-to-
end learning of communication protocols. In Sukhbaatar et al.
(2016), a population of homogeneous agents based on NNs
learned effective continuous communication through end-to-
end backpropagation in several simulated multi-agent tasks.



Foerster et al. (2016) proposed a framework with an end-
to-end differentiable communication channel that allowed
agents to communicate with one-bit messages for solving rid-
dle games. In contrast to our paper, both of these papers did
not evaluate the generalization ability of the learned commu-
nication protocols to unseen tasks. More recently, Mordatch
and Abbeel (2017) grounded discrete communication learn-
ing in a multi-agent navigation task with goals given to the
agents as disentangled features, and each agent was trained
with the auxiliary task of predicting the goals of other agents.
Like us, they used the Gumble-softmax technique for end-to-
end communication learning, but unlike us, their agents are
homogeneous in that they all have the same roles and they
share all their parameters. They also emphasize and evalu-
ate different kinds of generalization than in our experiments
(specifically, they generalize to unseen numbers of agents
and the presence of distractors).

In another line of work, the communication is learned
in the context of two-player referential games wherein one
agent has to identify the objects (usually images) referred to
by the other agent through a learned language. For example,
Lazaridou et al. (2016) allowed for communication with a
single discrete symbol, while Havrylov and Titov (2017)
allowed for variable-length discrete communication. Choi et
al. (2018) and Lazaridou et al. (2018) instead took synthetic
images as the referential objects, each containing an item
of a particular color-shape specification. In these studies the
emergent languages were able to generalize to unseen images.
Our work explores generalization in settings that require
the listener to perform a sequential task that places greater
demands on the communication from the speaker to make
rich task-relevant discriminations.

The Blocks-World Construction Task
Grammar for generating target configurations. A tar-
get configuration is generated by the probabilistic grammar
in Table 1 by expanding the rule for a CP (“configuration
phrase”) with (x, y) initialized to (0, 0) (lower left corner of
a 10× 10 grid). There are small, medium, and large blocks
of sizes 1× 1, 2× 2, and 3× 3 squares. The grammar creates
a variable number of stacks, from left to right, bounded by
the width of the environment. Stacks have at most one large
block, and a variable number of medium and small blocks,
bounded by the environment’s height. Larger blocks never go
on smaller ones, and blocks cannot cantilever. Two towers of
small blocks can appear over a large block. Figure 1 shows
sample target configurations to provide a sense of the range
of possible configurations. See Figure 2 for a tree sampled
from the grammar, and its corresponding target image.

Observations. Observations of the target configuration and
of the current work space are as raw (artificially generated)
pixel images of the sort seen in Figure 1.

Utterances and Construction Actions. In the two-agent
setting, the speaker generates a fixed-length utterance by
sequentially generating symbols from the elements of a fixed
vocabulary V of primitive discrete symbols (“a”, “b”,...).
Note that the symbols in V have no predefined meaning; their

The non-terminal expanded based at (x, y) Probability

CP → LP (x, y) 0.4
LP (x, y) CP (x+ 5, y) 0.6

LP → left L(x, y) 0.5
right L(x+ 2, y) 0.5

MP →
left M(x, y) 0.25
right M(x+ 1, y) 0.25
S(x, y) S(x+ 2, y) 0.5

SP → left S(x, y) 0.5
right S(x+ 1, y) 0.5

L→
LargeBlock(x, y) 0.01
LargeBlock(x, y)MP (x, y + 3) 0.495
MP (x, y) 0.495

M →
MedBlock(x, y) 0.1
MedBlock(x, y)M(x, y + 2) 0.45
MedBlock(x, y) SP (x, y + 2) 0.45

S → SmallBlock(x, y) 0.1
SmallBlock(x, y) S(x, y + 1) 0.9

Table 1: The probabilistic context-free grammar for target
configuration generation. LargeBlock, MedBlock and Small-
Block are terminals; the rest are non-terminals.
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Figure 1: Sample target images generated from grammar in
Table 1. Note the varying number of columns and heights.

meaning gets implicitly grounded/defined during learning
based on what actions the learner takes after hearing the
utterances. A sample utterance is shown immediately above
the grid in Figure 2b.

The learner’s action set A contains (30) actions to add
either a small, medium, or large block whose left side is
aligned with a particular column x in the workspace, where
x ∈ [0, 10) is an integer. The y-coordinate of the added block
is determined by simple gravity-like rules: in essence the
block drops vertically until it hits another block below it or
to a y of zero if there is no block below it. The listener also
has a special (31st) action Terminate ∈ A to end the episode.
The episode also ends when the listener adds a block that
is not in the target configuration. A sample action-sequence
that places the blocks labeled 1–4, in that order, is shown at
the top of Figure 2b.



CP

CP

LP

L

MP

M

MedBlock(6,3)

right

LargeBlock(5,0)

left

LP

L

MP

M

M

SP

S

SmallBlock(2,4)

right

MedBlock(1,2)

MedBlock(1,0)

right

left

0 2 4 6 8 10
0

2

4

6

8

10

1

2

3

4

x5:3x3, x6:2x2, x1:2x2, x1:2x2, terminate
f h j i a e c i g d h d f j i 

target 
configuration

Linear

ReLU

Linear

Softmax

action probabilities

CNN

current 
configuration

CNN

Figure 2: (a:top) Configuration tree generated from the gram-
mar. (b:bottom-left) Target configuration rendered from the
tree in (a). (c:bottom-right) The single agent architecture.

Agent Architectures and Learning
Single Agent Baseline Architecture. Shown in Figure 2c,
the single agent gets both the target and current configuration
images as input. The two images are processed by shared
multiple convolutional layers (i.e., the 2 CNNs in the figure
use the same weights). The concatenated learned feature
encodings of the two configurations are fed into a ReLU
layer and then into a softmax layer that produce a distribution
over construction (and terminate) action probabilities. There
are no utterances.
Speaker-Listener Architecture. Shown in Figure 3, the
speaker gets the target image as input and outputs a fixed-
length sequence of symbols, while the listener gets the full
utterance of the speaker as input as well as the current
workspace image, and outputs block placement / terminate
actions. Note that during training the speaker and listener
NNs are trained end to end as if they were a single NN, i.e.,
gradients flow from the listener to the speaker; it is during
evaluation that they act as separate agents. Both the speaker
and the listener use convolutional layers with shared weights
to extract high-level features from the observed configura-
tions presented as images, and separate LSTM networks
for speaking and listening. The speaker’s LSTM recursively
takes the encoding of the target configuration and of the pre-
vious symbol to produce a distribution over symbols to emit
at the next step. A fixed-length sequence of symbols is gen-
erated in this way using a Gumbel-softmax (Jang, Gu, and
Poole 2016) trick (this allows gradients to pass through from
listener to speaker that simply sampling from the softmax
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Figure 3: The speaker-listener architecture. The speaker’s
modules are in blue and the listener’s modules are in red.

over symbols does not allow). The listener receives the entire
discrete symbol sequence produced after Gumbel-softmax,
and processes it through its LSTM to create an encoding of
the speaker’s full sentence. At each time step of acting on
the workspace this sentence representation is concatenated
with the CNN’s encoding of the current configuration and fed
through a ReLU layer into a final softmax layer to produce a
distribution over construction (and terminate) actions.

Supervised, Bandit, and Reinforcement Learning
We evaluated three training algorithms on both the baseline
and the speaker-listener agents. Note that there are exponen-
tially many action sequences because of the partial order
over actions that yield the same target image. When using
supervised learning (SL), a canonical correct sequence of
construction actions is used to do the training, where the ac-
tion sequence builds stacks left to right, and each stack from
the bottom up (corresponding to the blocks’ order in a depth
first traversal of the configuration’s parse tree). When using
(contextual) Bandit, the agents are given a reward of +1 for
every construction action that is consistent with the target
configuration and a −1 for an action that is inconsistent with
the target configuration. When using RL the reward is the
same as for Bandit but is accumulated and only made avail-
able at the end of the episode to the agents. In both Bandit
and RL training an episode ends when the agent chooses an
action that is inconsistent with the target image.

SL uses the following cross-entropy loss:

LSL = Eos∼Os,ol0,a
∗
0 ,o

l
1,a
∗
1 ,...,a

∗
T−1

[
−
∑
t

log πl
t(a
∗
t )

]
(1)

where os is a target configuration uniformly sampled from the
set of possible target images Os, {a∗t }T−1t=0 is the supervised
action sequence for os, olt is the configuration after taking
the first t actions, and πl

t is the distribution of the listener’s
actions conditioned on olt and the speaker’s utterance.

The Bandit loss function LBL = LBandit − λLentropy is



defined via

LBandit = Eos∼Os,ol0,a0,ol1,a1,···

[
−
∑
t

rt log π
l
t(at)

]
(2)

Ll
entropy = Eos∼Os,ol0,a0,ol1,a1,···

[∑
t

H(πl
t)

]
(3)

where H is entropy, λ ≥ 0 is the entropy regularization
coefficient, and rt ∈ {±1} is the reward of the Bandit. Here
olt is the configuration after taking the first t actions, and the
listener’s action at is sampled from πl

t.
For RL training, we delay the reward signals until the very

end of an episode. Formally, the RL loss function is LRL =
LREINFORCE − λLentropy, and LREINFORCE is defined via

LREINFORCE = (4)

Eos∼Os,ol0,a0,ol1,a1,···

[
−
∑
t

log πl
t(at)(Rt − b)

]

where Rt =
∑T−1

t′=t γ
t′−trRL

t′ is the cumulative reward from
time step t with discount factor γ = 0.99, and b is the base-
line of REINFORCE which is set to be the average episodic
reward of the previous epoch. Again olt is the configuration
after taking the first t actions, and the listener’s action at is
sampled from πl

t.

Experiments: Agent Performance
Our experiments have two primary aims. The first aim is to
demonstrate and understand the generalization abilities of
the speaker-listener agents by examining their interpolation
and extrapolation (these terms are defined formally below)
performance. We contrast the performances obtained via Ban-
dit, SL, and RL training, and use the single-agent as a useful
baseline to provide a kind of upper-bound on expected per-
formance of the speaker-listener agents. A second aim is to
understand the emergent communication protocols and how
their linguistic properties relate to agent performance. We
describe the structure of the experiments and report the per-
formance measures in this section, and report on the analyses
of the communication protocols in the following section.

Experiment structure
Data generation. We created data sets for our experiments
by first sampling configurations from the probabilistic gram-
mar and populating bins corresponding to configuration size
(number of blocks) with unique configurations. More specifi-
cally, configurations were repeatedly sampled from the gram-
mar up to a maximum of 10,000 unique configurations per
bin and until the growth in unique configurations became
very slow. Bins corresponding to configuration sizes of 8–21
blocks had the maximum of 10,000 unique configurations;
bins in the 5–31 size range had 1,000 or more. The maximum
configuration size is 40.

Training sets and interpolation-extrapolation testing
sets. For each experiment we choose an interpolation-
extrapolation boundary B ∈ {15, 25}. All configurations

with number of blocks N satisfying N ≤ B, except for con-
figuration sizes of multiples of 5 are used for training (i.e.,
we trained only on configurations N ≤ B,N mod 5 6= 0).
All other configurations are used for testing. Specifically,
configurations with N < B,N mod 5 = 0 are used for
interpolation testing, and N > B for extrapolation.

Construction action and utterance symbol choice during
testing. Unless otherwise noted explicitly, during testing,
the speaker selects the next symbol with the maximum proba-
bility (breaking ties randomly) to utter and the listener selects
the next action with the maximum probability (breaking any
ties randomly) to take. The vocabulary size is set to |V | = 10
symbols, the utterance length is set to L = 15 symbols.

Results
Overall performance of interpolation and extrapolation.
We use two measures to assess interpolation and extrapolation
performance of all the agents. Full completion measures the
empirical probability of completing the target configuration
and terminating once it is constructed. Partial completion
measures the proportion of the total number of blocks in
the target configuration constructed before the first incorrect
action (i.e., this degree is defined as n/N , where n is the
number of blocks correctly added by the agent before the
first, if any, mistake). The second measure is more forgiving,
but it is informative of how much the agents have learned.

Figures 4a, 4b, 4e, and 4f show the full completion on
testing configurations as a function of target image size N
for interpolation-extrapolation boundary B ∈ {15, 25}. Fig-
ures 4c, 4d, 4g, and 4h show the partial completion. The
graphs summarize the results of five independent runs for
each algorithm at each boundary B; the shaded region is the
performance range of the five runs, the top solid line is the
best run, and the dotted line is the mean.

For the baseline agent (Figures 4a-4d), Bandit and RL
training are comparable and both significantly outperform
SL. Indeed, the extrapolation of both the best Bandit and the
best RL trained baseline agent is excellent for the B = 25
setting, which itself is an interesting result (previous success
on extrapolation in blocks world has required use of relational
or other structured representations (Irodova and Sloan 2005)).
For the speaker-listener agents (Figures 4e-4h), the 3 training
algorithms are roughly comparable at full completion, but
Bandit is better at partial completion (especially evident in
Figure 4g). Below we highlight a few empirical conclusions.

Unsurprising advantage of Single Agent. For extrapola-
tion, the single agent performs overall better than the speaker-
listener, and this performance gap is especially large when
the configuration size becomes large. This suggests that in
this task, it is difficult for the agents to learn to generalize
communication about very large numbers of blocks.

Unless explicitly stated otherwise all of the discussion that
follows is for the speaker-listener agents.

Explaining the Bandit extrapolation advantage over SL.
For extrapolation, the Bandit partial completion performance
is better overall than SL. We tried a version of SL with en-
tropy regularization with the same coefficient as in Bandit
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(e) Speaker-listener, full, B = 15
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(f) full, B = 25
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(g) partial, B = 15
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Figure 4: Full and partial completion on test configurations; X-axis is target configuration size. Points left of the vertical
boundary line are interpolation tests; points right are extrapolation. Top graphs: Single agent architecture. Bottom graphs:
Speaker-listener architecture. Left graphs: Full completion (probability). Right graphs: Partial completion (proportion). Shaded
region is performance range of five runs, top solid line is best run, and dotted line is mean. Shared legend in upper right graph.
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Figure 5: Left: Mean of maximum softmax probabilities for
listener’s actions during N = 30, B = 25 episodes. X-axis
is time step within episode. Right: Partial completion from
greedy sampling (solid) and softmax probabilities (dashed).

and RL, and while it improves performance a little bit, it
is still worse than Bandit. All of the discussion about SL
that follows in the rest of the paper is for training without
entropy regularization. In the partial completion graphs (Fig-
ures 4c, 4d, 4g, 4h), we also plot the curve of B/N for
N > B. If partial completion exceeds B/N for a N > B,
the agents have learned to communicate about more blocks
than they saw during training, instead of constructing only
those blocks shared with the training configurations and ig-
noring the rest. The best performing Bandit run dominates
B/N for B ∈ {15, 25}, while SL has runs dominating B/N
only for B = 25. We conjecture that Bandit learning is better
at extrapolation than SL because it can exploit the partial
ordering over construction actions for a given configuration,
while SL cannot. To confirm this conjecture we examined

the softmax probabilities according to which the listener se-
lects actions, and assessed performance when greedy action
selection is replaced with sampling from the softmax. Fig-
ure 5 (left) shows the maximum probability of the listener’s
softmax-action over time in an episode, averaged over target
configurations with N = 30 blocks. (The results correspond
to the learning runs at boundary B = 25 reported in Fig-
ure 4h above.) For the SL listener, the maximum softmax
probability is almost always near one, while for the Bandit
listener, it begins below half and then increases over time
in an episode, indicating that substantial probability mass is
spread over multiple actions. Figure 5 (right) shows partial
completion when the listener selects actions greedily and
when it selects actions by sampling from the softmax. For the
SL listener, there is little difference between the two selection
strategies because the softmax is very sharp. For the Bandit
listener, sampling from the softmax results in only modest
reduction in partial completion, indicating that the Bandit
agents have learned to communicate such that the listener is
able to identify more than one correct action for a given time
point of the episode. Of course, RL agents have the same
flexibility as the Bandit agents in terms of the ability to learn
multiple correct actions and unsurprisingly the RL curves in
Figure 5 are similar to the Bandit curves. However, RL agents
do have a harder problem because of the delayed reward, and
this leads to their lower performance.

Evidence of learning the blocks-world domain structure.
Because we have used a grammar to specify the structural
regularities of the domain, it is possible to ask to what ex-
tent the agents have learned this structure. One way to do
this is to ask whether the incorrect construction actions nev-
ertheless are grammatical in the sense that they result in a
configuration within the generative space of the grammar.



Specifically, we analyzed the first incorrect action and found
that in all runs for all agents, at least 80% of the incorrect
actions were grammatical in this sense; in nearly all runs for
block sizes of < 30, the proportion of ungrammatical errors
was less than 5%. A random action baseline produces only
20% grammatical actions.

Analyses of the Communication Protocols
We now analyze the emergent communication protocols to
gain insight into their linguistic properties and how these
properties relate to performance. The analyses support four
specific claims concerning interesting qualitative differences
in the RL agents’ protocol as compared to the other two.

N-gram distributions for the three protocols. The first
claim is that the RL agents rely on the reuse of frequent
subexpressions to a much greater degree than the other agents.
A simple distributional analysis of N-grams in the utterance
corpora from the three protocols reveals this difference. Fig-
ure 6 plots (log) frequency against (log) rank for all the of
N-grams (up to 5-grams) produced by the RL, Bandit, and SL
speakers. We plot the distributions in this manner to assess a
possible correspondence with a Zipfian distribution, which
is expressed as an approximately log-linear relationship be-
tween frequency and rank, a robust statistical regularity of lin-
guistic forms in human languages (including words and even
larger collocations) (Ellis 2002). The dashed lines show what
is expected from a distribution of random strings. All agents
are reusing subexpressions at much higher frequency than
chance, and the approximate log-linear relationship holds
up to very infrequent forms. But for the RL agents, the top-
ranked N-grams are one to two orders of magnitude more
frequent than the corresponding rank for the SL agents for
both boundary 15 and 25 and for the Bandit agents in the
boundary 25 case. In the boundary 15 case, the top-ranked
N-gram for the RL agents are as frequent as, if not more
than, the corresponding rank for the Bandit agents. Thus, RL
utterances are much more likely to be composed of longer
subexpressions that are reused in other utterances.

Action sequences induced by novel utterances composed
of frequent N-grams. The second claim is that these fre-
quent subexpressions and their compositions are more impor-
tant for conveying meaning for the RL agents. We test this
claim by examining the action sequences induced by giving
the listeners novel utterances composed from a vocabulary of
frequent N-grams. The listeners take utterances as input and
take actions until the first action that results in an ungrammat-
ical configuration; we record the number of grammatical (in
the sense of producing a grammatical blocks configuration)
actions. Note that this is not a partial completion measure
because there is no target configuration, but longer mean
grammatical action sequences for a set of utterances indicate
that the utterances are able to convey a larger portion of the
space of grammatical configurations.

The analysis starts with the K most frequent N-grams, for
n = 2, 3, 4, and 5, to form a vocabulary of 4K “words”;
we explore K = 10, 20, 30, 40, 50. We compare the mean
grammatical action sequence length across three utterance
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Figure 6: (Log) frequency of N-gram subsequences against
(log) frequency rank for N-grams of different sizes (dashed
for B=15, solid for B=25), with the expected distribution of
random strings (dotted).

types: utterances composed of random strings, utterances
composed of a single N-gram followed by a random string
of symbols, and utterances composed entirely of a concate-
nation of frequent N-grams. An increase in the grammatical
action sequence length across these three types would provide
evidence that N-grams and their composition are important
conveyors of meaning.

Table 2 summarizes the results for utterances composed
of the top K = 20 N-grams (K = 20 produced the longest
grammatical sequences for all three agents). There is a clear
increase for the RL agents across the three utterance types,
suggesting that the frequent subexpressions are indeed mean-
ingful at multiple positions in the utterance string and when
they are composed. (This is not evidence that the subex-
pressions have a meaning that is independent of position or
context; showing this would require more detailed analysis
but does not bear on the present claim.) The protocols of the
SL and Bandit agents have this property in the boundary 15
case, but in the boundary 25 case in which more of the larger
configurations are used for training, this property disappears
for the SL, and the Bandit has it to a lesser degree.

The relationship between utterance similarity and config-
uration similarity. Our third claim is that the RL protocol
bears one simple signature of compositionality. The finding
that the compositions of N-grams are more likely to carry
meaning than random strings or single N-grams for RL (and
to a lesser degree, Bandit) agents suggests that the emergent
protocol has some degree of compositional structure: the
meaning of an expression is composed of the meanings of
subparts of the expression. (Compositionality is thought to
be a hallmark of human language, though even in human



Table 2: Mean number of grammatical actions induced by
length 15 utterances composed of top 20 ranked N-grams,
one N-gram with random string suffixes, and random strings.
Cells are in the format of B = 15 / B = 25. All standard
errors are less than 0.01.

SL Bandit RL
N-gram full 8.06 / 6.04 10.11 / 7.24 7.60 / 7.14
One N-gram 7.28 / 6.70 6.26 / 6.58 3.80 / 4.27
Rand. strings 6.29 / 6.34 4.33 / 5.47 3.15 / 2.75
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Figure 7: Left: Mean utterance similarity measured by edit
distance as a function of configurations similarity measured
by edit distance between the canonical action sequences of
sampled pairs. All standard errors are less than 0.02. Right:
Reduction in full and partial completion for the specific case
of RL B=25 one-symbol prefix truncation.

language, forms such as idioms violate compositionality.)
One implication of compositionality is that meaning sim-

ilarity and utterance similarity will covary, and we test for
this relationship as follows. We sample pairs of target config-
urations of 5–15 blocks for boundary 15 and 5–25 blocks for
boundary 25, for which the full completion of the agents is
near one. We then give these configurations as input to the
speaker to generate corresponding pairs of utterances, and
measure the mean edit distance between pairwise utterances
as a function of the edit distance between the canonical action
sequences of the corresponding pairwise configurations.

Figure 7(left) summarizes the results. For all agents, it is
clear that utterance similarity and configuration similarity
covary. From boundary 15 to 25, the agents are trained with
more of the larger configurations, and the RL utterance pairs
become more similar (that is, the edit distance is lower). The
SL and Bandit utterance pairs do not have this property.

Prefix and suffix meanings: Robustness to truncation.
Our final claim is that the RL protocol is more robust to
prefix and suffix truncation, consistent with another signa-
ture of compositionality: parts of expressions are meaningful
in isolation, and convey part of the meaning of the whole.
More specifically, we probe here to what degree prefixes and
suffixes of utterances are meaningful to the listener.

Figure 8(left) shows the reduction in partial completion
relative to no truncation when the utterances are truncated
at l < L = 15 and the listener only takes as input the first l
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(a) Suffix truncation, B = 15

0 10 20 30 40
N = number of blocks

0.0

0.2

0.4

0.6

0.8

1.0

re
du

ct
io
n 
in
 p
ar
tia

l c
om

pl
et
io
n SL

Bandit
RL

(b) Prefix truncation, B = 15
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(c) Suffix truncation, B = 25
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(d) Prefix truncation, B = 25

Figure 8: Effect of truncated utterances. The curves are from
the best SL/Bandit/RL, and show the reduction in partial com-
pletion relative to no-truncation (higher values correspond to
greater reduction and hence worse performance). Left: For
suffix truncation, the utterances are truncated at 14 (solid),
or 10 (dashed) Right: For prefix truncation, we drop the first
one (solid), or two (dashed) symbols.

symbols before taking any action. Similarly Figure 8(right)
shows the reduction that happens when the utterance com-
municated to the listener drops the first symbol or first two
symbols. The performance of all agents is more sensitive
to prefix truncation; dropping just the first two symbols de-
grades performance considerably—but the RL agents are the
most robust to prefix truncation, followed by Bandit. Both RL
and Bandit agents are more robust to suffix truncation than
SL, suggesting that these agents have learned to use prefixes
to encode earlier parts of the correct action sequence.

Interestingly, for the RL agent in the boundary 25 case
(see Figure 8d) partial completion when the first symbol
is truncated is even higher than that with no truncation for
some configuration sizes. However, as Figure 7(right) shows,
there is significant reduction in full completion when the
first symbol is truncated, verifying that information is spread
across the full utterance.

We conclude by arguing why the differences between RL
and other agents that we have claimed are suggestive of com-
positionality are unlikely to be due instead just to differences
in how agents distribute information across the utterance.
It is unclear how even a complex information distribution
could explain how RL is more robust to both prefix and suffix
truncation, where the N-gram composition analysis supports
the plausible explanation that subexpressions carry meaning
more systematically for RL protocols. A distribution that
makes the RL utterance effectively smaller could explain



some results, but is inconsistent with affix truncation analysis
and with the edit distance results for dissimilar configura-
tions. And the pattern in RL, but not SL, where the number of
induced grammatical actions increases with the use of more
frequent N-grams, are consistent with a compositionality ex-
planation but much less so based on information distribution.

Conclusion
This work presented a new collaborative blocks construction
domain for studying emergent communication that is chal-
lenging because it demands the speaking agent to express
a rich set of task-relevant discriminations for the listening
agent to succeed in the complex sequential decision-making
task it faces. We demonstrated that it is possible to train
speaker-agent recurrent neural nets with supervised, bandit,
and reinforcement learning algorithms such that all three
emergent communication protocols allow the agents to suc-
cessfully communicate about blocks configurations of sizes
unseen in the test set, including robust interpolation to sizes
within the range of the test set, and modest extrapolation
to larger sizes. We furthermore provided evidence that the
Bandit training generalizes more robustly than SL training
by exploiting the partial order over correct action sequences
versus the canonical order forced upon SL.

Finally, we took steps to understand the nature of the
emergent communication protocols, and how the differences
among the three protocols might manifest in performance.
Specifically, we provided evidence for the emergence of a
Zipfian distribution of N-grams of symbols in all three proto-
cols, but with a qualitatively greater use of frequent N-grams
in the RL protocols. We furthermore showed that for the
RL protocols the frequent N-grams are more important in
conveying meaning, that similar meanings (configurations)
yield more similar utterances, and that parts of complete ut-
terances (prefixes and suffixes) more robustly carry parts of
the whole meaning. These differences are possible signatures
of a greater degree of compositionality in the RL protocols.

These qualitative protocol differences and improved ro-
bustness to truncation for the RL agents arise despite the
fact that the RL agents performed somewhat worse overall
on the interpolation and extrapolation measures than the SL
and Bandit agents. The overall performance difference is not
surprising given the significantly more challenging nature
of the delayed reward RL training. But we can only con-
jecture that the more robust communication learned by the
speaker trained via RL also results from having to overcome
the same more challenging delayed RL feedback. Evaluating
this conjecture, and applying unsupervised learning and other
induction methods used in human language analysis, remains
future work.
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