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Abstract

Most work on Predictive Representations of State
(PSRs) focuses on learning a complete model of the sys-
tem that can be used to answer any question about the
future. However, we may be interested only in answer-
ing certain kinds of abstract questions. For instance, we
may only care about the presence of objects in an im-
age rather than pixel level details. In such cases, we
may be able to learn substantially smaller models that
answer only such abstract questions. We present the
framework of PSR homomorphisms for model abstrac-
tion in PSRs. A homomorphism transforms a given PSR
into a smaller PSR that provides exact answers to ab-
stract questions in the original PSR. As we shall show,
this transformation captures structural and temporal ab-
stractions in the original PSR.

Introduction

Predictive representations of state replace the traditional no-
tion of latent state with a state composed of a set of pre-
dictions of the future. These predictions answer questions
of the form, “What is the probability of seeing an observa-
tion sequence o1o2 · · · on if actions a1a2 · · · an are executed
from the current history?”. Littman, Sutton, & Singh (2001)
showed that there can exist a finite set of questions whose
predictions perfectly capture state and can be used to make
any prediction about the system.

Learning a model to answer every possible question about
the future of a system can be an arduous if not impossible
task. We, as humans, certainly do not have such a detailed
and complete model of the real world. Rather, we usually
seek to abstract out details and answer a limited set of ab-
stract questions about the world. For instance, we rarely try
to answer questions about every pixel in a future image, of-
ten being satisfied with answers to abstract questions such as
the presence or absence of objects of interest (say a door or
a staircase) in the image. In many cases, our questions even
generalize over time; we may want to know if we would
encounter a coffee shop in the next half hour with the pre-
cise time of the encounter being unimportant. Given that
we are interested in answering such structurally and tempo-
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rally abstract questions, is there an appropriately reduced,
and thereby simpler to learn, PSR model of the world?

There is more than one way to arrive at such a reduced
model. One approach is to build an approximate model
that provides approximate answers to every possible detailed
question about the world. Another approach is to build a
model that provides exact answers to a limited number of
abstract questions of interest. This work is motivated by the
latter approach. Note that determining the abstract questions
of interest is itself an important research question that we
ignore in this paper. We focus instead on defining models
whose complexity scales with the complexity of the given
abstract questions that the agent needs to answer.

As a simple motivating example, consider the determin-
istic world in Figure 1a in which an agent can move north,
south, east, and west, and observes the color of the square
it is on. The start state of the agent is randomly picked. To
answer every question about this world, one would have to
learn the model depicted in Figure 1a. However, assume
that the questions of interest are of the form, “What is the
probability of seeing a shaded square (as opposed to white)
if I move in some direction?”. In such a case, the reduced
model of Figure 1b answers such questions exactly. In this
domain the agent can move left, right, or stay in place. The
states in Figure 1b denoted ‘C’ lead to the agent observing a
shaded square. Intuitively, Figure 1b collapses the columns
of Figure 1a into a single state. Figure 1c is a further reduc-
tion that exploits action symmetries. The model in Figure 1d
can be used to answer the question, “What is the probability
that I will see black within the next two time steps if I be-
have randomly?”. This question is semi-oblivious to time; it
doesn’t care whether black is observed in 1 time-step, or in
2 time-steps.

This paper develops the mathematical formalism based on
the notion of homomorphisms needed to transform detailed
PSR models into reduced abstract PSR models that can an-
swer certain kinds of abstract questions in the original model
exactly (as in the above example). We do this in two steps,
first addressing structural abstractions and then temporal ab-
stractions.
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(a) Original Domain  [structural abstraction] 
"What is the probability of seeing a color if I go right?"

"What is the probability of seeing black in 2 time steps if I behave randomly?"

(b) [abstracting observations] 

(d)

[temporal abstraction] 

C C C

(c) [exploiting action symmetry] 

Figure 1: Illustration of abstraction.

Related Work: Model Minimization in

Dynamical Systems

Building reduced models in PSRs is related to model min-
imization methods studied in the context of dynamical sys-
tems. Dean & Givan (1997) have explored model mini-
mization in the context of MDPs and base their definition of
state equivalence on the concept of homogeneous partition
of the state space. Ravindran & Barto (2002) also ex-
plore model minimization in their work on MDP homomor-
phisms, which are based on the notion of homomorphisms
of finite state machines. Ravindran & Barto (2003) extend
MDP homomorphisms to SMDPs. Van der Schaft (2004)
explores model minimization in continuous linear dynami-
cal systems by extending bisimulations for concurrent pro-
cesses. Our framework of PSR homomorphisms extends the
above ideas to model minimization in PSRs.

Predictive State Representations

Discrete controlled dynamical systems are characterized by
a finite set of actions, A, and observations, O. At every time
step i, the agent takes an action ai ∈ A and receives some
observation oi ∈ O. A history is a sequence of actions and
observations a1o1 · · · anon through time-step n. Similarly, a
test is a possible sequence of future actions and observations
a1o1 · · · anon (note the use of subscripts and superscripts).
A test is said to succeed if the observations of the test are
received given that the actions are taken. A prediction of
any n-length test t from history h is the probability that the
test will succeed from that history h and is denoted P (t|h) =
Pr(o1 · · · on|ha1 · · · an).

A state ψ in a PSR is represented as a vector of pre-
dictions of a set of tests {q1 · · · qk} called core tests and
is thus expressed completely in terms of grounded terms,
i.e. actions and observations. This prediction vector ψh =
{Pr(q1|h), · · · , P r(qk|h)} is a sufficient statistic for history
in that it can be used to make predictions of any test. As
Littman et. al. (2001) show, for every test t there exists
a 1 × k projection vector mt such that P (t|h) = ψh · mt

for all histories h, where importantly mt is independent of
h. Hereafter, we drop the history-subscript on ψ if the de-
pendence on history is unambiguous. Thus if we know the
predictions of core tests, then we know everything there is

to know about the history of the system. In the rest of this
paper, we use the symbol Ψ to denote the entire predictive
state space of a PSR.

A linear PSR is thus composed of the set of core test pre-
dictions maintained from the null history (the ‘start’ state)
and the update parameters (the m vectors) used to update
the state as the agent takes new actions. Given that an ac-
tion a is taken in history h and observation o is obtained, the
prediction of each core test q is updated as:

Pr(q|hao) =
Pr(aoq|h)
Pr(ao|h)

=
ψh · maoq

ψh · mao
.

Structural Abstraction in PSRs
Going back to the example in Figure 1, we sought to use the
reduced domain in Figure 1c to answer abstract questions
about the future in the original domain. These questions
are abstract in the sense that they aggregate several futures
(i.e. tests). So a question of the form, “What is the prob-
ability that I will see a shaded square if I take a particular
action?” is an aggregate of three tests, i.e. the probabil-
ity of seeing light-gray, dark-gray, or black if that action is
taken. We refer to these aggregates of tests as block-tests.
A PSR homomorphism is essentially a function that groups
tests into such blocks and maps each block-test to a unique
test in the reduced domain. The reduced domain can then
be used to make predictions of block-tests in the original
domain. So, in Figure 1, the above block-test about seeing
a shaded square maps to the test, “What is the probability
that I will observe ‘C’ if I take a particular action?” in the
domain shown in Figure 1c.

The fundamental intuition leading to homomorphisms is
that if we are only going to use the PSR model to an-
swer questions about aggregate or block futures, perhaps we
can aggregate or block pasts/histories (equivalently states).
However, the dynamics of the system would restrict the kind
of aggregations that are permissible, and it is not clear what
these constraints are. In the next section, we will define PSR
homomorphisms as functions that partition the PSR predic-
tive state space Ψ into blocks of states, and map each such
block to a unique state in the reduced model. We then exam-
ine how this leads to an aggregation of tests into block-tests
and how such block-tests abstract out details of the domain.

C

(a) Original Domain (c) Reduced Domain

      into blocks
(b) Partitioning of states

Figure 2: We can define a homomorphism that maps the
original domain (a) to a reduced domain (c). In (b) we see
the partitioning of states caused by this mapping.

PSR homomorphisms

Throughout this exposition, we will refer to homomor-
phisms as relating two domains - an original domain Σ and
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its reduced image Σ′. We use Ψ to denote the predictive state
space in Σ and use Ψ′ to denote the same in Σ′. Similarly,
A and O denote the action and observation sets in Σ, and A′
and O′ denote the same quantities in Σ′.

A partitioning of Σ’s state space Ψ is a collection of dis-
joint subsets, or blocks, B1, · · · , Bm of states such that each
Bi ⊆ Ψ and

⋃
i Bi = Ψ. We can define the block transition

probability as:

Pr(Bi|ψ, a) =
∑

ψ̂∈Bi

Pr(ψ̂|ψ, a). (1)

That is, when taking action a in state ψ, Pr(Bi|ψ, a) is the
probability that the next state is in block Bi.

Building on the concept of homomorphisms for MDPs,
we now define PSR homomorphisms. Informally, a homo-
morphism is a tuple comprised of two surjections (many to
one functions). The first is a surjection f : Ψ → Ψ′ that
maps predictive state from Σ to Σ′. We will use f−1(ψ′) to
refer to the block of states in Σ that map to ψ′ in Σ′. The
other is a surjection vψ : A → A′ that is mapping between
actions conditioned on state, i.e. specifies a separate action
mapping for every state. A homomorphism partitions Ψ into
blocks such that each block maps to unique state in Ψ′.
Definition 1. A PSR homomorphism from a PSR Σ to PSR
Σ′ is defined by a tuple of surjections 〈f, vψ(a)〉 where f :
Ψ → Ψ′ and vψ : A → A′ for all prediction vectors ψ ∈ Ψ
such that:

Pr(ψ′|f(ψ), vψ(a)) = Pr(f−1(ψ′)|ψ, a) (2)

for all ψ′ ∈ Ψ′, ψ ∈ Ψ, a ∈ A.
In words, Equation 2 requires that the transition probabil-

ity from f(ψ) to ψ′ in Σ′ equal the probability of transition
from ψ to the block f−1(ψ′) in Σ as defined in Equation 1.

We now show that a PSR homomorphism can be natu-
rally thought of and expressed in grounded terms, i.e. in
terms of actions and observations. Let uh,a : O → O′
be a surjection from observations in O to O′ in history
{h, a}, and let vh : A → A′ be a surjection from ac-
tions in A to A′ in history h. Note that uh,a and vh are
conditioned on history and define a separate mapping for
every history. Let Θ = 〈u, v〉 so that in any history h,
Θh(a, o) = {vh(a), uh,a(o)}. Implicitly, Θ also denotes
a mapping between histories in the two domains. Consider
a history h = {a1o1, · · · , anon}. The corresponding history
in Σ′ is Θø(h) = {Θø(a1o1), · · · , Θhn−1(anon)}, where
hn−1 = a1o1 · · · an−1on−1. Since predictive state is a suf-
ficient statistic for history, Θ also implies a surjection (f )
from Ψ to Ψ′ and a surjection (vψ) from A to A′.

The following theorem shows that a homomorphism from
Σ to Σ′ can be expressed in terms of surjections on actions
and observations.
Theorem 1. Consider PSRs Σ and Σ′. Define the Θ =
〈u, v〉 as above. The function Θ is a homomorphism between
Σ and Σ′ if and only if for any history h in Σ, any action a
in A and any observation o′ ∈ O′:

Pr(o′|Θø(h), vh(a)) =
∑

o∈u−1
h,a

(o′)

Pr(o|h, a). (3)

Proof. We first prove the forward direction. Let h1 be a his-
tory in Σ and let h′

1 = Θø(h1) be the corresponding history
in Σ′. Consider an action a ∈ A and action a′ = vh(a).
The probability that we take action a′ and arrive in history
h′

2 = h′
1a

′o′ is

Pr(h′
2|h′

1, a
′) = Pr(h′

1a
′o′|h′

1a
′)

= Pr(o′|h′
1a

′)

=
∑

o∈u−1
h1,a

(o′)

Pr(o|h1a)

=
∑

o∈u−1
h1,a

(o′)

Pr(h1ao|h1a)

=
∑

h2∈Θ−1
ø (h′

2)

Pr(h2|h1a).

Since predictive state is a sufficient statistic for history, the
above result implies

Pr(ψ′|h′
1, a

′) =
∑

ψ∈Θ−1
ø (ψ′)

Pr(ψ|h1a)

which satisfies the condition of Definition 1.
Since all of the above equations are equalities, the reverse

direction automatically holds. Thus, Θ is a homomorphism
from Σ to Σ′ expressed in grounded terms.

Consider Figure 2 (a redrawing of Figure 1); we now have
the machinery to define a homomorphism that maps the ex-
ample domain in Figure 2a to the domain in Figure 2c. The
mapping between observations is straightforward: In every
history, map all shades in Figure 2a to the observation ‘C’ in
Figure 2c, and map the white color in 2a to the white color
in Figure 2c. The mapping between actions is slightly more
complicated (it exploits action symmetries):
• In all histories that end in the first column (from the left)

in Figure 2a, map Move-East to Move-Right in Figure 2c.
Map all the other actions to stay in place.

• In all histories that end in the middle column in Figure
2a, map both Move-West and Move-East to Move-Left in
Figure 2c. Map all the other actions to stay in place

• In all histories that end in the third column in Figure 2a,
map Move-West to Move-Right in 2c. Map all the other
actions to stay in place

It is easy to see that this homomorphism effectively parti-
tions the states in Figure 2a into the blocks in Figure 2b.

We now examine how a PSR homomorphism (that maps
histories) leads to a surjection between tests, and how the
image PSR Σ′ can be used to answer questions about block-
tests in the original PSR Σ.

Answering Abstract (Block) Questions

As is the case for histories, a PSR homomorphism Θ
maps tests in Σ to tests in Σ′ in the following man-
ner. Let t = a1o1, · · · , anon be a test in Σ. In
any given history h, the corresponding test in Σ′ is
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Θh(t) = {Θh(a1o1), · · · , Θhtn−1(anon)}, where tn−1 =
a1o1 · · · an−1on−1. Note that this mapping between tests is
history dependent. Since Θ is a surjection, the mapping be-
tween tests will also be many-to-one. This implies that in
any given history, Θ induces a partitioning of tests in Σ into
disjoint blocks of tests such that all tests in a specific block
map to a unique test in Σ′. The block-test in Σ that maps
to test t′ in Σ′ from history h is denoted Θ−1

h (t′). By defi-
nition, all tests that belong to the same block will be of the
same length. However, tests in the same block do not have
to specify the same observation or action sequence. We use
aB to denote all the action sequences specified by tests in
the block B, and oB to denote all the observation sequences
specified by tests in B.

We say that a block-test B ‘succeeds’ in history h if some
observation sequence in oB is obtained given that a partic-
ular action sequence in aB is executed in h. As shorthand,
in a slight abuse of notation, we denote this as Pr(B|h). So
for all action sequences {a1, · · · , an} ∈ aB,

Pr(B|h) =
∑

{o1,···,on}∈oB

Pr(o1, · · · , on|ha1 · · · an). (4)

Equation 4 requires that Pr(B|h) be the probability of see-
ing oB for every action sequence in aB.

The following theorem establishes the algebraic relation-
ship between tests related by Θ, essentially stating that the
probability of B succeeding in history h is the probability
that the corresponding test t′ succeeds in Θø(h).
Theorem 2. Let Θ be a homomorphism from Σ to Σ′. Let
t′ = {a′

1o
′
1, · · · , a′

no′n} be a test in Σ′. Define B to be the
block Θ−1

h (t′) for any history h. Then,

P (B|h) = Pr(t′|Θø(h)).

Proof. Consider any action sequence {a1, · · · , an} ∈
aB. Let tn−1 be shorthand for the sequence
a1o1, · · · , an−1on−1. Then P (B|h) is:

=
∑

{o1,···,on}∈oB

Pr(o1, · · · , on|ha1 · · · an)

=
∑

o1···on∈oB

Pr(o1|h, a1) · · · Pr(on|h, tn−1, an)

=
∑

o1∈u−1
h,a1

(o′
1)

Pr(o1|ha1) · · ·
∑

on∈u−1
h,tn−1,an

(o′
n)

Pr(on|h, tn−1, an).

Let t′n−1 be shorthand for a′
1o

′
1, · · · , a′

n−1o
′
n−1. Invoking

Theorem 1, the above equation is:

= Pr(o′1|Θø(h)a′
1) · · ·Pr(o′n|Θø(h), t′n−1, a

′
n)

= Pr(o′1 · · · o′n|Θø(h)a′
1 · · · a′

n)
= Pr(t′|Θø(h)).

Thus a prediction of a test in the image Σ′ gives us a pre-
diction of a block of tests in Σ. But what kinds of questions
does the prediction of a block-test answer? Since a block-
test can contain several different observation sequences, the

prediction of a block-test is the probability that one of these
sequences will occur for some sequence of actions. These
predictions of block-tests thus generalize over observation
sequences contained in that block-test.

Let us go back to in the example of Figure 2. In the previ-
ous section we described the PSR homomorphism that maps
the domain in Figure 2a to the domain in the image PSR Fig-
ure 2c. Now consider the following test in Figure 2c: move
left, and observe ‘C’. This translates to a block-test com-
prised of 6 tests in the original domain: (a) move east and
see light gray, (b) move east and see dark gray, (c) move
east and see black, (d) move west and see light gray, (e)
move west and see dark gray, and (f) move west and see
black.

A prediction of this block would be a question of the form,
“what is the probability that I will move east and see light
gray OR dark gray OR black?”, and will not be able to dis-
ambiguate between the observations contained in the block.
Moreover this block-test can make the same prediction for
moving west. In this manner, it also captures the symmetric
nature of the move-east and move-west actions.

This example shows that predictions of block-tests ab-
stract over observations and capture symmetry in actions.
Thus, these predictions provide answers to structurally ab-
stract questions about the world.

Temporal Abstractions with Homomorphisms

In the formalism of homomorphisms developed thus far, a
homomorphic image of a domain cannot be used to answer
temporally abstract questions about the domain. A question
(and its associated prediction) is said to be temporally ab-
stract if it generalizes over action and observation sequences
of different lengths. Questions of the form, “If I walk down
this hallway, what is the probability that I will see a door?”
abstract out the length of time it takes to walk down the hall-
way and anything else that we might observe in the process.
As has been our motivating theme, we would like to scale
the complexity of the domain with the degree of temporal
coarseness of our questions. To get a more concrete idea of
the types of temporal abstractions we wish to model, con-
sider again the domain of Figure 1a. The following is a sam-
ple of the type of temporally abstract questions one can ask:
• “If I behave in a particular way (for instance, take ran-

dom actions at every time-step), what is the probability
I will see a black square in two time steps?”. Questions
such as these are only concerned with the final observa-
tion. Not only do they ignore the actions and observations
that might occur along the way, they also ignore the length
of any such sequences.

• “If I behave in a particular way, what is the probability
that I will see three white squares in succession?”. Ques-
tions such as these care about more than just the last ob-
servation. However, they still generalize over the length
of observation sequences and over all the possible action
sequences that eventually result in three white squares.

• “If I behave in a particular way, what is the probability
that I will see a black square after I turn east in a white
square?”. This question abstracts over the length of time,
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and over any actions and observations that might have oc-
curred before “white, east, black” is observed.

This is obviously not an exhaustive list, but it gives an idea
of the kind of temporal abstractions that are possible. Rather
than being conditioned on action sequences, these questions
are conditioned on ‘behaviors’ that prescribe some way of
acting in the world. We model these behaviors using the
framework of options. Options were first defined for MDPs
by Sutton, Precup, & Singh (1999) and can be viewed as
temporally extended actions that prescribe a closed loop be-
havior until some termination condition is met.

We extend PSR homomorphisms to capture this type of
temporal abstraction. The basic idea is the same as before -
a homomorphism will partition the space of tests in the orig-
inal PSR into block-tests, and then map each of these blocks
to a unique test in the image PSR. In the previous section,
structural abstraction was obtained by creating block-tests
that contained different observation sequences. It makes
sense then that temporal abstraction can be obtained by cre-
ating block-tests that contain tests of different lengths. We
will equip PSR homomorphisms to achieve such groupings.

Next, we formalize options for PSRs and define the con-
cepts of option histories and option tests (as opposed to
primitive histories and tests). We show that the definition of
PSR homomorphisms implies a mapping from option tests
in the original PSR to primitive tests in the image PSR. This
extension will give us the power and flexibility we need to
capture the kind of temporal abstractions outlined above.

Options

An option ω can be thought of as a temporally extended ac-
tion that is defined by: a) a closed loop policy πω that gives
a probability distribution over actions for any history; b) an
initiation set of histories in which the option can be exe-
cuted; and c) a set of termination conditions, βh ∈ [0, 1]
that specify the probability of the option terminating in any
given history h. Coupled with the system dynamics, an op-
tion policy also maps histories to a probability distribution
over action sequences, which we denote πω(a1 · · · an|h).

Option tests are defined as a sequence of options and
primitive tests, i.e. t̄ = ω1t1 · · ·ωntn where t1 · · · tn are
primitive tests. Similarly, an option history is a sequence
of options and primitive tests from the beginning of time,
h̄ = ω1t1 · · ·ωntn. We can trivially represent a primitive ac-
tion by wrapping it in an option that deterministically takes
the action and then terminates. Similarly, we can trivially
define a primitive test t = ao as an option-test t̄ = ωt where
ω is a wrapper for action a.

An option-test t̄ = ω1t1 · · ·ωntn is said to succeed if all
the primitive tests t1 · · · tn succeed in sequence given that
the option sequence ω1 · · ·ωn is executed. The probability
of success is given by:

Pr(t̄|h̄) = Pr(t1 · · · tn|h̄ω1 · · ·ωn)

= Pr(t1|h̄, ω1)
n∏

i=2

Pr(ti|h̄, {ωt}i−1, ωi)

where {ωt}i−1 denotes the sequence ω1t1 · · ·ωi−1ti−1. The
probability that primitive test t succeeds when option ω is

executed in history h̄ is:
Pr(t|h̄ω) = Pr(t|h̄)πω(a1 · · · an|h).

A primitive test t is said to be a possible outcome of an
option ω in history h̄ if Pr(t|h̄ω) > 0. Note that we can
condition the prediction of a primitive test on an option his-
tory since since a history represents actions and observa-
tions that have already occurred. Thus an option history
h̄ = ω1t1 · · ·ωntn can always be converted into a unique
equivalent primitive history h = t1 · · · tn.

Temporally Abstract Homomorphisms

While options are temporally abstract actions, option-tests
are not temporally abstract tests - the length of any option-
test ω1t1 · · ·ωntn is just the sum of the lengths of the com-
ponent tests t1 · · · tn. We now extend the framework of
homomorphisms to capture temporal abstraction over tests.
Consider a PSR Σ and it’s image PSR Σ′. Let Ω refer to the
set of options in Σ and let T refer to all tests that are possi-
ble outcomes of options in Ω in any history. Let A′ and O′
denote the action and observation sets in Σ′.

Define uh̄,ω : T → O′ as a surjection from tests in
T to observations in O′ in history {h̄, ω}. Define vh̄ :
Ω → A′ as a surjection from options in Ω to actions in
A′ in history h̄. Let Θ = 〈u, v〉 so that in any history h̄,
Θh̄(ω, t) = {vh̄(ω), uh̄,ω(t)}. As before, Θ also induces a
surjection from histories in Σ to Σ′. Let h̄ = ω1t1 · · ·ωntn

be a history in Σ. The corresponding history in Σ′ is
Θø(h̄) = {Θø(ω1, t1), · · · , Θh̄n−1(ωntn)}, where h̄n−1 is
used as shorthand for ω1t1 · · ·ωn−1tn−1.

The next theorem specifies the condition under which Θ
will be a homomorphism from Σ to Σ′.
Theorem 3. Let Σ be a PSR with options Ω and outcomes
T , and Σ′ be a PSR with actions A′ and observations O′.
Define the tuple Θ = 〈u, v〉 as above. The function Θ is
a homomorphism from Σ to Σ′ if and only if for all option
histories h̄ in Σ, options ω ∈ Ω, and observations o′ ∈ O′

Pr(o′|Θø(h̄), vh̄(ω)) =
∑

t∈u−1
h̄,ω

(o′)

Pr(t|h̄, ω). (5)

Proof. We first prove the forward direction. That is, given
that Equation 5 holds, we want to show that Θ is a homo-
morphism from Σ to Σ′, i.e satisfies the condition of Defi-
nition 1. Let h̄1 be a history in Σ and let h′

1 = Θø(h̄1) be
the corresponding history in Σ′. Consider an option ω ∈ Ω
and action a′ = vh̄(ω). The probability that we take action
a′ and arrive in history h′

2 = h′
1a

′o′ is
Pr(h′

2|h′
1, a

′) = Pr(h′
1a

′o′|h′
1a

′)
= Pr(o′|h′

1a
′)

=
∑

t∈u−1
h̄1,ω

(o′)

Pr(t|h̄1ω)

=
∑

t∈u−1
h̄1,ω

(o′)

Pr(h̄1ωt|h̄1ω)

=
∑

h̄2∈Θ−1
ø (h′

1)

Pr(h̄2|h̄1ω).
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Since predictive state is a sufficient statistic for history, the
above result implies

Pr(ψ′|h′
1, a

′) =
∑

ψ∈Θ−1
ø (ψ′)

Pr(ψ|h̄1ω)

Since all of the above equations are equalities, the reverse
direction also holds. Thus, Θ induces a partitioning over
the predictive state space in Σ such that the conditions of
definition 1 are satisfied.

Answering Temporally Abstract Questions

We now examine how PSR homomorphisms lead to a map-
ping from blocks of option tests in Σ to primitive tests in
Σ′. Let t̄ = ω1t1 · · ·ωntn be an option-test in Σ. In
any history h̄, the corresponding primitive test in Σ′ is
Θh̄(t̄) = {Θh̄(ω1t1), · · · , Θh̄t̄n−1

(ωntn)} where t̄n−1 is
used as shorthand for the sequence ω1t1 · · ·ωn−1tn−1.

Since Θ is a surjection, it groups option-tests in Σ into
blocks such that all option-tests in a particular block map to
the same primitive test in Σ′. Option tests in a particular
block do not have specify the same option sequence or the
same primitive-test sequence. Let ωB denote the option se-
quences contained in a block B of option-tests, and let tB
denote the sequences of primitive tests contained in B.

Moreover, unlike in the previous section, option-tests in a
particular block do not have to be of the same length either.
For instance, if in some history h, as long as Pr(t1|h̄ω) =
Pr(t2|h̄ω), option-tests ωt1 and ωt2 can belong to the same
block. No restriction is placed on their lengths.

Going back to our example in Figure 1, let ω be an option
that selects a random action at every time step. Consider the
test, “execute ω and see a black square in the next two time-
steps”. This is a block test that is comprised of several one-
step option tests. Each of these option tests is of the form ωt
where t is any length-1 or a length-2 primitive test ending
in observation “black” (e.g. (a) move-east and see black; (b)
move-south , see white, move-east , see black; etc.). So we
see that a block-test can contain primitive tests of different
lengths and different observation sequences.

As in the previous section, we say that a block test B ‘suc-
ceeds’ in history h̄ if some primitive-test sequence in tB is
observed given that a particular option sequence in ωB is ex-
ecuted. So for all option sequences ω1 · · ·ωn ∈ ωB, and any
history h, the probability that B succeeds is

Pr(B|h̄) =
∑

t1···tn∈tB

Pr(t1 · · · tn|h̄ω1 · · ·ωn).

If tB contains primitive tests of different lengths, the predic-
tion of block-test B will generalize over time.

We now show how a question in the image PSR translates
to a temporally abstract question in the original PSR. The
analogue of Theorem 2 in this context is given below, and
states that the prediction of any block-test B succeeding in
history h̄ is the probability that the corresponding primitive
test t′ succeeds in the Θø(h).

Theorem 4. Let Θ be a homomorphism from Σ to Σ′. Let
t′ = {a′

1o
′
1, · · · , a′

no′n} be a test in Σ′. Define B to be the

block Θ−1
h̄

(t′) for any history h̄. Then,

P (B|h̄) = Pr(t′|Θø(h̄)).

Thus, the prediction of any primitive test in the image
PSR translates to the prediction of a block test in the original
PSR. If this block test generalizes over lengths of tests, the
translated prediction will generalize over time. If the block
test also generalizes over observations, the translated pre-
diction will also generalize over those observations. Thus,
these translated predictions can be answers to structurally
and temporally abstract questions in the original domain.

Conclusion

In this work, we are motivated by the desire to scale the
complexity of a domain with the complexity of questions we
seek to answer. We presented PSR homomorphisms as a the-
oretical framework to transform a given PSR into an equiva-
lent smaller image PSR that answers certain questions in the
original PSR. We have shown that these questions capture
structural and temporal abstractions in the original PSR.

Since we were only interested in making predictions, we
have ignored rewards in this paper. In future work, we will
incorporate rewards into our framework for PSR homomor-
phisms and examine the implications this has on the problem
of planning.
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