
286 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 6, NO. 4, DECEMBER 2014

Optimal Rewards for Cooperative Agents
Bingyao Liu, Satinder Singh, Richard L. Lewis, and Shiyin Qin

Abstract—Following work on designing optimal rewards for
single agents, we define a multiagent optimal rewards problem
(ORP) in cooperative (specifically, common-payoff or team)
settings. This new problem solves for individual agent reward
functions that guide agents to better overall team performance
relative to teams in which all agents guide their behavior with
the same given team-reward function. We present a multiagent
architecture in which each agent learns good reward functions
from experience using a gradient-based algorithm in addition
to performing the usual task of planning good policies (except
in this case with respect to the learned rather than the given
reward function). Multiagency introduces the challenge of nonsta-
tionarity: because the agents learn simultaneously, each agent’s
reward-learning problem is nonstationary and interdependent
on the other agents evolving reward functions. We demonstrate
on two simple domains that the proposed architecture outper-
forms the conventional approach in which all the agents use the
same given team-reward function (even when accounting for
the resource overhead of the reward learning); that the learning
algorithm performs stably despite the nonstationarity; and that
learning individual reward functions can lead to better specializa-
tion of roles than is possible with shared reward, whether learned
or given.

Index Terms—Intrinsicmotivation,multiagent learning, optimal
rewards, reinforcement learning.

I. INTRODUCTION

W E CONSIDER the problem of designing reward func-
tions for individual agents in multiagent sequential

decision-making problems in the cooperative (specifically,
common-payoff or team) setting. Throughout we will be fo-
cused on decentralized planning/learning approaches and will
assume no direct communication among the agents. Further-
more, the shared reward function that defines the objective in
the team problem is assumed known. The usual approach to
such problems would, of course, make the given joint reward
function the reward function for each agent. Why should a
designer of multiagent systems do anything different? As we
discuss below, in single agent settings it has been shown that

Manuscript received March 07, 2014; revised July 17, 2014; accepted
September 08, 2014. Date of publication October 13, 2014; date of current ver-
sion December 09, 2014 . This work was supported by NSF Grants IIS-0905146
and IIS-1148668. Any opinions, findings, conclusions, or recommendations
expressed here are those of the authors and do not necessarily reflect the views
of the sponsors.
B. Liu is with the School of Automation Science & Engineering, Beihang

University, Beijing, China (e-mail: bingyao.liu@gmail.com).
S. Singh is with the Division of Computer Science & Engineering, University

of Michigan, Ann Arbor, MI 48109 USA (e-mail: baveja@umich.edu).
R. Lewis is with the Department of Psychology, University of Michigan, Ann

Arbor, MI 48109 USA (e-mail: rickl@umich.edu).
S. Qin is with the School of Automation Science and Engineering, Beihang

University, Beijing, China (e-mail: qsy@buaa.edu.cn).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TAMD.2014.2362682

designing reward functions different from the given reward
function can help mitigate agent limitations, e.g., help over-
come computational limitations that prevent perfect planning.
In this paper, directly following work [1], [2] on designing
optimal rewards in single agent settings, we present an algo-
rithm for learning individual reward functions in multiagent
team problems and investigate three questions: 1) whether
multiagent optimal rewards are capable of overcoming agent
limitations that include individual agents not knowing exactly
how other agents would behave; 2) whether our proposed
multiagent optimal reward function learning algorithm is able
to successfully handle the nonstationarity that comes from
multiple agents learning simultaneously when their actions
collectively impact the experience of all agents; and 3) whether
in some domains learning individually-customized reward
functions leads to more effective specialization of roles for the
agents, and thus more effective coordination among the agents.
Background on Designing Rewards in Single-Agent Set-

tings. The problem of designing rewards for single agents is
typically studied in cases where a reward function is initially un-
available.1 Nevertheless, multiple approaches have been devel-
oped for the seemingly counterintuitive problem of designing
reward functions when already given a reward function. For ex-
ample, reward-shaping of the variety developed byNg et al. [10]
considered the question of what space of reward functions yields
the same optimal policy as the given reward function with the
hope that such a space contains an alternative reward function
that makes the learning task faced by the agent easier. Shaping
[11], as practiced in animal learning in Psychology commonly
produces a sequence of reward functions or tasks that start easy
and become harder with the hope that an animal can thus be led
to performing well on the given (and ultimate in the sequence)
reward function. More recently, intrinsic rewards based on psy-
chological motivations such as curiosity and exploration that are
added to the given reward as bonuses have been shown to im-
prove the performance of computational agents [12]–[21].
In this paper, we exploit the recent optimal rewards frame-

work of Singh et al. [1] that stems from the observation that
reward functions play two distinct roles in autonomous agents:
an evaluation role, because cumulative expected reward deter-
mines a preference-ordering over policies, and a guidance role,
because approximate value functions computed/learned using

1For example, the field of preference elicitation develops methods for elic-
iting an approximate reward function from some human expert through queries
(e.g., [3] and [4]), while the field of inverse reinforcement learning infers an ap-
proximate reward function from data observed by having a human expert tele-
operate the autonomous agent (e.g., [5] and [6]). Of course, other approaches
to dealing with unknown reward functions in constructing autonomous agents
eschew the problem of designing rewards altogether and instead learn agent-
policies directly from observed expert behavior using some form of imitation
learning (e.g., [7]) or learning by demonstration (e.g., [8]) or supervised learning
(e.g., [9]).

1943-0604 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LIU et al.: OPTIMAL REWARDS FOR COOPERATIVE AGENTS 287

the reward function determine the actual behavior of the au-
tonomous agent. Separating these two distinct roles into two
separate reward functions (with the given reward function used
for evaluation) sets up the formal optimal rewards problem
(ORP) whose solution is the reward function used for guidance
(the ORP can also be seen to be an optimization approach to
learning intrinsic reward functions [1]). If the agent is limited
in some form (constraints on computation or knowledge), then
solving the ORP for a guidance-reward function can improve
the agent’s performance relative to using the evaluation-reward
function for guidance [2]; in other words, optimal rewards can
mitigate agent limitations. In addition, algorithms and architec-
tures to solve the ORP have demonstrated empirical success
[22] and we will build upon those in this paper.
Our departure from prior work on ORP is in extending it to

multiagent teams. Our contributions include: 1) defining the op-
timal rewards problem in the multiagent team setting; 2) ex-
tending a single-agent gradient-based approach to learning op-
timal rewards from experience to multiagent teams; 3) empiri-
cally demonstrating that despite the nonstationarity introduced
by the multiagency, learning optimal rewards can mitigate agent
limitations; and 4) empirically demonstrating that learning op-
timal rewards in teams can lead to more effective specialization
in that each agent is able to learn its own guidance-reward whilst
sharing the team’s evaluation-reward.

II. MULTIAGENT OPTIMAL REWARDS PROBLEM

Let the set of agents be ; our mathematical formula-
tion is for arbitrary though our empirical evaluation will be
restricted to . At time step agent gets an observation

from the environment and takes an action .
Agent ’s history at time is . The
joint observation, action and history at time are denoted ,
and respectively. The joint action causes a stochastic

change in the underlying state of the environment which in turn
influences the next joint observation . The given joint (i.e.
common or team) reward function, hereafter the objective re-
ward function, is denoted and will be used to evaluate joint
histories, i.e., the objective utility achieved by the agents after
history is . In the conventional
formulation the reward to each agent at history would be

. Here we allow an individual guidance reward function
for agent (here the notation of superscript serves to both

index the agent and denotes that the guidance reward function
is internal to the agent). Thus the guidance utility for agent
with joint history is . (In practice
reward functions, both objective and guidance, are defined as
mappings from some abstraction of history to scalar rewards
but for complete generality we present our formulation with no
abstractions.) In single-agent settings, the agent’s guidance re-
ward function determines its behavior. In multiagent settings,
the joint setting of themultiple individual guidance reward func-
tions will collectively determine the team’s behavior. Note that
the agents cannot communicate with each other and thus any co-
ordination among the agents has to be the result of independent
learning/planning guided by the individual reward functions.
Agent using guidance reward function is denoted

for ease of notation.

Definition of multiagent optimal rewards problem. Given
a set of agents , a search space2 of joint-reward func-
tions , an environment , and the objective reward
function , the set of reward functions is jointly
optimal for the team of agents, if and only if

(1)

where is the expectation operator and indicates that the quan-
tity to be maximized by the selection of is the expected
objective utility of histories , that
is, histories sampled3 from the interaction of the set of agents

using guidance rewards in environment .
In other words, the optimal set of guidance reward func-

tions for the team of agents is the choice of individual reward
functions that guide the team of agents to joint-behavior that
in expectation maximizes the objective utility as measured by
the given joint (team) reward function. This paper is about
approaches to solving this new multiagent ORP.
Multiagent optimal rewards versus other approaches to

multiagent rewards. Crucially, the optimal set of guidance re-
ward functions are optimal not just with respect to the envi-
ronment and given objective reward function, but also with re-
spect to the details of the architectures and algorithms of the
various agents. Specifically, the agents and their limitations (in-
cluding those arising from multiagency) help determine the dis-
tribution over which in turn determines the effectiveness of
choices of guidance reward functions. This sets the multiagent
optimal rewards problem and its solutions apart from other ap-
proaches to designing rewards that also frame the problem of
finding good rewards or incentives in multiagent settings as an
optimization problem, e.g., from the collective intelligence ap-
proach [23] that ignores the limitations of the agents and fo-
cuses on dealing with strategic settings, and from approaches
based onmechanism design [24] that typically assume the avail-
ability of a central auctioneer and more importantly assume that
the agents know and can communicate their correct utility func-
tion to the central auctioneer. This paper is also different from
a recent and related approach to learning social awareness via
intrinsic rewards for multiagent systems [25] that only demon-
strates weak-mitigation, while our emphasis is on the greater
challenge of strong-mitigation (see Section III for this impor-
tant distinction).
The potential for specialization. By definition, in team

problems the agents have to learn to cooperate and coordinate
to achieve high shared objective utility. In some problems such
coordination requires different members of the team to adopt
different roles, i.e., to specialize. Thus one of the questions
of interest is whether the ability to learn different guidance
reward functions by the different agents can lead to increased
specialization of roles, and thereby an improvement in coordi-
nation among the team. We address this question empirically in
Section V-B.

2Note that is used to denote a space of reward functions while is used to
denote a specific reward function.
3Here the distribution over histories results from the stochastic effects of the

joint action on the agent state as well as any stochasticity in the agents’ action
selection as a function of history.



288 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 6, NO. 4, DECEMBER 2014

III. MULTIAGENT STRONG-MITIGATION ARCHITECTURE

As in the single-agent setting, it is straightforward (see
Eq. (1) that as long as the search space of reward functions for
each agent contains the objective reward function, the objective
utility obtained by using the optimal guidance reward functions
will be at least as high as that obtained by the conventional
use of the objective reward function as the guidance reward
function for all agents. For the case of bounded agents, the
reward space may contain guidance reward functions that yield
higher objective utility than the objective reward function.
This is called the weak-mitigation property [26] in single-agent
settings, and it has a straightforward analog in multiagent set-
tings as well. But note that the existence (in the reward space)
of guidance reward functions better than the objective reward
function, which is all that weak-mitigation demands, does not
mean that such reward functions can be found cheaply or at all.
A more interesting result would be to show that it is worth it for
an agent to devote some of its limited computational resources
to learning a good guidance reward function at the cost of
having fewer computational resources to plan good behavior
with respect to the guidance reward function, i.e. learning a
guidance reward function and behavior policy simultaneously
can still be beneficial even when accounting for computational
costs. Such a favorable property was called strong-mitiga-
tion[26] in single agent settings and it accounts for the cost of
finding good reward functions (while weak- mitigation ignores
it). Our first experimental objective below is to demonstrate
strong-mitigation in the multiagent team setting.
Bratman et al. [26] showed that strong-mitigation implic-

itly suggests a nested optimal reward and control (NORC) ar-
chitecture in which an overall agent has two components, an
actor-agent which is the usual agent that takes actions so as
to optimize reward, and a novel critic-agent that learns guid-
ance reward functions. They demonstrated strong-mitigation in
a setting where the single-agent repeatedly plans from the cur-
rent state to select a current action, and where the computa-
tional constraint is the CPU-time available per action-decision.
For different constraints on the amount of CPU-time per deci-
sion available, they compared the performance of two agents:
1) an NORC agent that splits the available CPU-time between
the critic-agent updating the guidance reward function and the
actor-agent doing limited planning with respect to the guidance
reward function learned by the critic-agent; and 2) a conven-
tional agent that spends all available CPU-time per decision on
planning more deeply. They showed that with limited CPU-time
per decision, the NORC agent does better in terms of objective
utility than the conventional agent. In this paper, we will follow
the same empirical approach by considering limited CPU-time
per decision constraints and comparing the performance of our
multiagent NORC architecture (described next) and a conven-
tional multiagent architecture.
Multiagent NORC Architecture. Fig. 1 illustrates our

multiagent NORC architecture. Each agent has within it an
actor-agent and a critic-agent. In our empirical work the
actor-agent is a UCT-based planner (UCT stands for Upper
Confidence bounds on Trees) [27] and the critic-agent uses
the Policy Gradient for Reward Design or PGRD algorithm

Fig. 1. Multiagent nested optimal reward and control (MNORC) architecture.
Each agent is composed of a conventional actor-agent and a novel critic-agent.
The critic-agent learns a guidance reward function that guides the associated
actor-agent’s behavior. The joint action of all the agents influences the shared
objective reward received by all the agents. Note the large irregular shape
showing that the actor–agent-1’s environment includes the external environ-
ment as well as all the other agents, and the wider and more-rectangular shape
showing that the critic–agent-1’s environment includes its own actor–agent-1
as well as the external environment and the other agents.

of Sorg et al. [22] (we describe this algorithm briefly below).
The significant departure from the single-agent setting is that
while each agent gets its own observation and produces its own
action, it is the joint action of the agents that determines the
shared objective reward.
Another way of understanding the additional challenge posed

by multiagency is to consider the effective environment of a
particular actor-agent. As shown in Fig. 1, the environment of
actor–agent-1 includes not only the external environment but
also all the other agents including their critic-agents. Even if all
the other actor-agents are fixed planners, the fact that the critic-
agents are learners and thus nonstationary make each actor-
agent’s environment nonstationary. Fig. 1 also shows a critic-
agent’s environment, and again because of multiagency it in-
cludes other learning components. The big open questions are
whether multiple NORC agents simultaneously learning guid-
ance reward functions and acting in the world will converge
reliably and stably to good guidance functions for each agent,
and whether multiagent strong-mitigation will be achieved, i.e.,
whether given CPU-time per decision constraints the multiagent
NORC architecture will achieve more expected objective utility
than the conventional multiagent architecture. Before we turn to
our empirical results that are focused on these questions, we de-
scribe the actor-agent and critic-agent briefly.
Actor-Agents and the search for good policies.We assume

that the actor-agents have a perfect model of the dynamics of the
environment (but not what actions the other agent will take; see
below) and use UCT to plan. UCT has two parameters and ;
it builds a search tree by simulating (from the current history)
trajectories of depth where action-choices in the trajectory

generation are treated as a bandit problem solved by the UCB1
[with upper confidence bounds (UCB)] algorithm [28] using
the guidance reward function. The guidance reward function is



LIU et al.: OPTIMAL REWARDS FOR COOPERATIVE AGENTS 289

also used to compute from the resulting search-tree an estimated
long-term utility for each action at the root node of the tree,
and finally the best-estimated-utility action at the root node is
selected. This process is repeated afresh at each time step for
the current history as root node. The CPU-time per decision is
heavily dependent on the two parameters and .
Because this is a distributed multiagent setting and the agents

can not communicate with each other, there is an interesting
challenge, however. When it builds a UCT tree, each agent
must decide what actions the other agents would take at each
step. A further complication is that if there is any learning by
the agents, as will be the case if the guidance reward func-
tions are learned through experience, then the behavior of the
other agents will be nonstationary and thus difficult to predict.
In all our experiments, agents learn the other agents stochastic
policy using the empirical probabilities observed in historical
data, and use this learned behavior model to sample the other
agents actions during the tree-building process in UCT (we de-
scribe the learned models in more detail in Section V-D). Each
NORC agent thus has two learning components, one for learning
models of other agents behavior and one for learning guidance-
reward functions.
Critic-Agents and the search for good guidance rewards.

We assume that the search space of reward functions for each
agent is defined as a continuously-parameterized function of
reward-features (specific examples are in the empirical results
below). The policy gradient for reward design (PGRD) algo-
rithm is based on the insight that the actor-agent is a proce-
dure for translating the continuous parameters of the guidance
reward function to a policy via planning. For certain classes
of actor-agents, including the UCT agents used here, PGRD
adapts standard policy-gradient approaches to use experience
to update the guidance reward space parameters in the direc-
tion of the gradient of the expected objective utility. We refer
the reader to Sorg et al. [22], [29] for the details of PGRD.
In our multiagent NORC architecture each critic-agent imple-
ments a straightforward adaptation of the PGRD algorithm for
the UCT-planning actor-agents. Specifically, multiagency re-
quires that during UCT-planning each agent has to account for
the action choices of all the other agents. As indicated above, our
multiagent NORC architecture will use learned models of the
other agents; we provide additional detail below in Section V-D.
The main challenge that this adaptation of PGRD introduces is
the fact that the additional nonstationarity in the learned other-
agents-models may prevent convergence of the guidance reward
function learning or create additional low-quality local minima
in reward space.

IV. EXPERIMENTAL OBJECTIVES AND STRUCTURE

We now describe a set of experiments in which we field our
multiagent NORC architecture in two different environments,
one (called “Food-Shelter”) which has intuitively separate roles
for the two agents, and one (called “Pursuit”) which still de-
mands cooperation between the two agents but does not have
intuitively separate roles. We provide descriptions of the envi-
ronments below, but first lay out what we intend to demonstrate
with these experiments via a set of key comparisons among dif-
ferent agent types.

A. Overall Objectives and Key Comparisons

Our experiments have four main objectives:
1) demonstrate strong-mitigation in team problems using our
multiagent NORC architecture;

2) demonstrate that learning individual guidance reward
functions affords better specialization than using objec-
tive reward functions for shared guidance;

3) demonstrate that independent PGRD learning by the critic-
agents can lead to relatively stable and effective learning
of guidance reward functions;

4) demonstrate that even when the model of the other agent
available for planning via PGRD is of poor quality, our
multiagent NORC architecture is able to outperform the
conventional use of objective reward functions for shared
guidance.

These four demonstrations take the form of comparisons of
the performance of three different multiagent systems (MASs)
realized as multiagent NORC architectures that vary in the
critic-agent:
• UCT-ObjRe. In this MAS, both UCT-based actor agents
use the objective reward function as their guidance reward
functions; i.e., the critic agent supplies a single stationary
guidance reward that is fixed to be the objective reward.
Note that this is the conventional MAS implemented here
by specializing the NORC architecture of each agent so
that the critic-agent simply passes on the objective reward
as guidance reward without any changes.

• UCT-PGRD. In this MAS, the actor-agents plan with guid-
ance reward functions learned independently by the critic-
agents via PGRD4 using gradients of the objective utility
with respect to the coefficients on the reward-features. We
describe the search space of reward functions below.

• UCT-PGRDSame. In this MAS, both agents use PGRD to
update guidance reward functions, but are constrained to
use the same learned guidance reward function. We im-
plemented this constraint by averaging the gradients com-
puted independently for each agent and updating both re-
ward functions with the same average gradient. All param-
eters for the PGRD algorithm here are the same as with
UCT-PGRD agents.

To demonstrate strong mitigation (Objective 1), we must
show that UCT-PGRD outperforms UCT-ObjRe with equiva-
lent resource consumption. To demonstrate better specialization
via learned individual guidance rewards (Objective 2), we must
show that UCT-PGRD outperforms UCT-PGRDSame (the
MAS constrained to learn a single guidance reward for both
agents) and does so via increased specialization of reward
and behavior. To demonstrate stable and effective learning
of guidance reward functions (Objective 3), we must show
that UCT-PGRD both outperforms UCT-ObjRe and does so
while settling on stable guidance rewards despite the non-
stationarity of the reward-learning problem. To demonstrate
relative robustness of our architecture to the quality of the
learned other-agent-model (Objective 4), we must show that

4Throughout all the experiments, we used the following PGRD parameters
without tuning, discount rate , temperature , learning rate

, decay parameter , and regularization parameter .
See Sorg et al. [22], [29] for details about the role of these parameters.



290 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 6, NO. 4, DECEMBER 2014

Fig. 2. (a) Food-Shelter. (b) Pursuit. Two multiagent domains. In each domain
circled numbers indicate different agents. (a) In Food-Shelter, thick black lines
indicate impassable walls, the large solid circle represents one possible location
for the consumable food, and the shaded grid square in the middle of the bottom
row is the shelter for the agents. (b) In Pursuit, the triangle represents the prey.
Agents capture prey by pinning it in a corner. The configurations shows for each
domain are the starting configurations.

UCT-PGRD outperformsUCT-ObjRe for multiple approximate
models generated by a systematic exploration/generation of
model quality.

B. Two Environments: Food-Shelter and Pursuit

Food-Shelter. The first environment has two clear and sep-
arate roles for the two agents: one should gather food and the
other should keep the shelter repaired. As illustrated in Fig. 2(a),
it is a grid world with a shelter for the agents in the middle
of the bottom row and 5 vertical corridors separated by impass-
able walls at the top.
Dynamics. The shelter breaks down (perhaps by unmodeled

invaders) with probability 0.3 at each time step; once broken it
remains so until repaired. Food appears at the top of one of the
corridors; when food is gathered new food reappears at the top
of a different (randomly chosen) corridor. The agents have four
deterministic actions corresponding to each cardinal direction;
if the resulting direction is blocked by awall or the boundary, the
action results in no movement. The agents have a gather action
when at a food location and a repair action when at the shelter
location that repairs a broken shelter immediately. The agents
act simultaneously at each time step. The starting location of
both agents is at the shelter.5

Objective reward. Gathering food contributes a joint objec-
tive reward of 1.0 while if the shelter is broken it contributes
an objective reward of ; otherwise the objective reward is
0. The agents objective utility is the expected objective reward
per time step. In the results reported below we measure the ob-
jective utility over a lifetime of 5000 time steps. Thus the task
for the two agents is to gather as much food as possible while
keeping the shelter repaired; ideally one agent should focus on
keeping the shelter repaired and the other agent should focus on
gathering food.
Observations and prior-knowledge. Both agents observe

the full state of the environment, i.e., observe the location of
both agents, the location of the food, and whether the shelter is
broken or not. The agents have a perfect model of the dynamics

5Experimental results not reported here show that all our qualitative results
are unchanged by setting agents to random initial locations; there is some ad-
ditional variance in the expected utility in the early stages of learning but this
does not impact the performance after the early stages.

of the environment. They don’t know how the other agent will
act, of course, but they can observe how the other agent has
acted in the past.
Pursuit. This second environment also demands cooperation

between two agents to catch a prey but does not have intuitively
separate roles for the two agents. As shown in Fig. 2(b), it is a

discrete, square grid-like world in which two agents (cir-
cles) need to coordinate to capture a prey (triangle). The prey’s
movements are fixed and not learned (see details below). The
agents capture prey by pinning it any one of the 4 corners.
Dynamics. Both agents and the prey have five deterministic

actions corresponding to each cardinal direction and the “stay
in place” action; if the resulting direction is blocked by the
boundary, the action results in no movement. At each time step,
the two agents move simultaneously while the prey observes the
agents new locations before moving. The prey moves so as to
maximize distance to both agents.6 The initial positions of the
agents and prey are at opposite corners as shown in Fig. 2(b);
the predators and prey are reset to this position once the prey is
captured.7

Objective reward. The objective reward function pro-
vides a reward of 1.0 when the prey is captured and a reward of 0
otherwise. The agents objective utility is the expected objective
reward per time step. In the results reported below we measure
the objective utility over a lifetime of 10,000 time steps.
Observations and prior-knowledge. Both agents observe the

full state, i.e., the locations of the two agents and the prey. The
actor-agents have a perfect model of environment dynamics. As
for the Food-Shelter domain, the agents don’t know how the
other agent will act but can observe how the other agent has
acted in the past.

C. Learning a Model for the Other Agent’s Actions

In order to plan its actions using UCT, each agent has to ac-
count for the action choices of the other agent during its plan-
ning procedure. For this purpose, in our MNORC architecture,
each agent incrementally learns a model of the other agent as
the historical empirical probability of the other agent’s actions
conditioned on the observation of joint state in the environment,
and uses this learned behavior model to sample the other agent’s
action during the tree building process in UCT. By allowing the
empirical probability distribution over actions to condition on
various subsets of the joint state, we can get different models
with varying degrees of size and detail. Recall that because the
other agent’s behavior is nonstationary due to its learning of
guidance reward functions, no model would be perfect. Specif-
ically, for the results presented in Sections V-A to Section V-C,
the model used for the Food-Shelter domain conditions learned

6Formally, the prey chooses its action from the intersection of two sets:
the first set is , which
maximize the distance to the closest predator agent; and the second set is

, which can further
prevent the prey from moving towards the other predator agent; where
represent the predator agents’ locations and is the prey’s next location after
taking its action , and measures the Manhattan distance between the
predator agent and prey.
7As for Food-Shelter, unreported experimental results on Pursuit show that

our qualitative results are unchanged by setting/resetting agents to random initial
locations.



LIU et al.: OPTIMAL REWARDS FOR COOPERATIVE AGENTS 291

action probabilities on the location of the other agent (team-
mate) only, while the model used for the Pursuit domain condi-
tions learned action probabilities on the joint state, i.e., on loca-
tion of the agent itself, location of the other agent, and the loca-
tion of prey. These particular models were chosen because they
performed best from among a set of choices; in Section V-D,
we explore the robustness of our results to model quality and
therein we describe multiple choices for models and their em-
pirical consequences.

D. Search Space of Guidance Reward Functions

For both domains and both UCT-PGRD and UCT-PGRD-
Same, we define the reward function search space as linear com-
binations of two features of history, the objective reward and an
inverse-recency feature. The inverse-recency feature for agent
in history , is defined as , where
is the number of time steps since the agent was in the

same location as the location at the end of history . Low values
of this feature (close to 0) indicate that the agent is visiting a lo-
cation it visited recently while large values of this feature (close
to 1) indicate that the agent is visiting a location it has not vis-
ited recently. Formally, guidance reward as a function of history
is of the form

(2)

where is the one continuous scalar parameter and its
range provides the search space of reward functions.8 Note that
a positive value of will mean that the agent should want
to visit locations not visited recently while a negative value of

will mean that the agent should want to avoid loca-
tions not visited recently. This form of reward function space
was used in previous work with single-agent ORP [22], [26]
and was found to be effective in overcoming limited planning
by encouraging a more systematic approach to exploration. We
use this same reward function space because it is not task-spe-
cific and because seeking or avoiding exploration is an inter-
esting abstract form of specialization that might manifest it-
self in interesting ways (and we will see such a phenomenon
in Food-Shelter).
Eq. (2) defines a one dimensional continuous search space

for PGRD in each critic-agent in the UCT-PGRD MAS for a
2-dimensional joint search space. Recall that for UCT-PGRD-
Same the two critic-agents are required to use the same reward
function and thus the joint search space is one dimensional. In
both MASs, for , the initial value of , i.e.,
the critic-agents start with the objective reward function as the
guidance reward function.

V. EXPERIMENTAL RESULTS

The results below are organized around the four main
empirical objectives set out in Section IV-A and use the
following methodology. For demonstrating strong mitiga-
tion we focus on computational time as the resource of
interest. Because the majority of CPU-time-per-decision

8Note that the inverse-recency reward function feature is only a function of
and not and so does not require any communication among the agents. The

objective reward is already assumed to be shared among the agents.

of an agent is spent on building a UCT search tree with
trajectories of depth , instead of imposing a priori

CPU-time-per-decision constraints, for both domains we
evaluate all three MASs with UCT planning depths

and number of Monte Carlo (MC) trajec-
tories .
By choosing these parameters, we densely explored a certain
range of the CPU-time-per-decision of the agents in terms of
and ; from building a shallow-sparse search tree (e.g.,

, ) to building a deeper-dense search tree (e.g.,
, ). The aspects of MAS performance collected

will include CPU-time per decision, average objective utility,
the guidance reward functions learned, and the behavior of the
agents. In particular, this means that we present the results in
a way that does not commit to a particular combination of
and as being best for some given time-per-decision limit.
Analysis of these results will allow us to address our empirical
objectives set out in Section IV-A.

A. Demonstrations of Strong Mitigation (Objective 1)

Food-Shelter Environment. Fig. 3(a) shows the per-time-step
objective utility in Food-Shelter over 5000 time-steps plotted
against CPU-time per decision for the three different MASs;
the results are averages over 100 trials. The points in the
figure correspond to different architectures (shown as circles
for ObjRe, squares for PGRD, and stars for PGRDSame);
different points of the same shape correspond to different
UCT parameters (depth,trajectories). For all constraints on
CPU-time per decision, using PGRD to learn reward functions
is better than simply using the given objective reward. This
is seen most clearly via the upper envelope curves in which
UCT-PGRD—learning separate guidance reward functions
for both agents—does the best, UCT-PGRDSame with the
constraint that both agents use the same learned guidance
reward functions is slightly worse, and finally UCT-ObjRe
that employs the objective reward function for guidance is far
worse.
Fig. 3(a) provides clear evidence of strong mitigation in this

domain. Consider any point on the x-axis—for example 0.8 sec-
onds per decision. If that were to be the computational bound on
the MAS, spending some of those resources on learning guid-
ance reward functions is far better than spending all those re-
sources on action-planning. This improvement is the vertical
gap between the corresponding upper-envelope curves at the
vertical line . In other words, using PGRD in the critic-
agent to learn guidance reward functions helps overcome the
bounded depth/trajectories in UCT planning as well as the lim-
ited knowledge of the other agent’s actions.
Fig. 3(b) shows the Depth-View of the same data in which

each curve is for a specific depth , with the points along a
curve from left to right corresponding to larger number of tra-
jectories . Fig. 3(c) shows the Trajectory-View of the same
data in which each curve is for a specific number of trajectories,
with the points along a curve from left to right corresponding
to larger depth . Both views illustrate that the UCT-PGRD
MAS significantly outperforms the UCT-ObjRe MAS. It is also
evident that over the range of depth and number of trajectories



292 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 6, NO. 4, DECEMBER 2014

Fig. 3. (a) Food-Shelter: Envelope View. (b) Food-Shelter: Depth View. (c) Food-Shelter: Trajectory View. (d) Pursuit: Envelope View. (e) Pursuit: Depth View.
(f) Pursuit: Trajectory View. Evidence for strong mitigation. Panels (a)–(c) present three different views of the same data for the Food-Shelter domain while
Panels (d)–(f) present results similarly for the Pursuit domain. The x-axis in each figure is seconds-per-decision while the y-axis is average objective utility. In the
Envelope View (top), each point corresponds to a particular choice of UCT parameters , . The minimum point in this set for each
MAS is and the maximum is . (To illustrate, two specific settings of are labeled on the graph). The curves plotted in the Envelope views
are upper-envelopes—that is, the best performing at each seconds-per-decision resource level. Each curve corresponds to a different MAS architecture. In
Depth View, each curve correspond to a particular planning depth for each MAS, the marked points on a curve from left to right correspond to increasing number
of trajectories. In Trajectory View, each curve correspond to a particular number of sampling trajectories for each MAS, the marked points on a curve from left
to right correspond to increasing planning depth. Note that the data points underlying the results in the three views for a domain are the same, only connected by
curves with different meanings, and where for readability we omit some data points in the depth and trajectory views.

explored, limited depth is a far more consequential limitation
on the agents than is limited number of trajectories because the
slope of the curves are flatter in the Depth-View relative to the
slope of the curves in the Trajectory-View.
Pursuit Environment. Fig. 3(d) shows the results for Pursuit in

the same format as above. As was the case for the Food-Shelter,
for all constraints on time per decision, using PGRD to learn
guidance reward functions is better than simply using the given
objective reward. The main difference from the Food-Shelter

results is that the performance of the UCT-PGRDSame MAS
is better than the performance of the UCT-PGRD MAS (this
difference is unsurprising because Food-Shelter was designed
to elicit specialization of roles which is precluded by PGRD-
Same while Pursuit was designed to not need specialization
of roles and hence PGRDSame has an easier guidance-reward-
function learning task). We emphasize that as for Food-Shelter
both PGRD-based MASs are significantly better than the UCT-
ObjRe MAS. Strong-mitigation is observed again in that for all



LIU et al.: OPTIMAL REWARDS FOR COOPERATIVE AGENTS 293

constraints on the available seconds per decision, i.e., for all
points on the x-axis, the vertical gap between the upper-enve-
lope curves for UCT-PGRDSame and UCT-ObjRe is the perfor-
mance advantage of spending some of the fixed computational
resource on updating the guidance reward function.
Fig. 3(e) shows the Depth-View of the same data in which

each curve is for a specific depth, with the points along a curve
from left to right corresponding to larger number of trajecto-
ries. Fig. 3(f) shows the Trajectory-View of the same data in
which each curve is for a specific number of trajectories, with
the points along a curve from left to right corresponding to
larger depth. In both views UCT-PGRDSame significantly out-
performs UCT-ObjRe. As for the Food-Shelter domain, again it
is evident that limited depth is a more consequential limitation
on the agents than is limited number of trajectories.

B. Demonstrations of Specialization (Objective 2)

As expected intuitively from the specifics of the two do-
mains, we did not find specialization in Pursuit and so focus
here primarily on analyzing the results of Food-Shelter. Our
first positive result concerning specialization is in the domi-
nance of UCT-PGRD over UCT-PGRDSame in Food-Shelter
as described above (see Fig. 3(a)): learning individual guidance
rewards does produce greater to slightly greater performance,
depending on the CPU-time per decision constraint, than
learning a shared reward. But is this dominance in performance
associated with clearly specialized behavior and clearly spe-
cialized individual rewards? We address these two questions
here.
The expression of specialization in behavior. By design, in

order to achieve high objective utility in Food-Shelter, one agent
needs to focus on shelter-repairing work while the other focuses
on food-gathering work. We defined a measure of this special-
ization as follows. For each agent we compute the following
fraction: the number of times it gathers food divided by the
number of times it gathers food and repairs shelter. For each run,
the absolute value of the difference between this fraction for the
two agents is a measure of the specialization for that run. This
difference in specialization ratio is between 0 and 1. The more
specialized the agents are the closer the specialization ratio will
be to one, and the less specialized they are the closer the special-
ization ratio will be to zero. Fig. 4 shows the average amount of
specialization as a function of CPU-time-per-decision in curves
that correspond to different number of trajectories (the UCT pa-
rameter). The points along a curve from left to right correspond
to increasing depth. It is clear that the UCT-PGRD MAS spe-
cializes far more than the UCT-ObjRe MAS. Finally, observe
that in each pair of curves corresponding to the same number of
trajectories, the rightmost points that correspond to the highest
depths show that as the consequential computational limitation
that small depth imposes on UCT is removed from the agents,
the UCT-ObjReMAS specializes just as well or even better than
the UCT-PGRD MAS. This is because learning guidance re-
ward functions can really only help in bounded agents and at the
largest depth the agents have no planning bounds. In Pursuit,
there is little specialization between the two agents’ behavior,
and this is explored further during the later discussion of the ex-
pression of specialization in the learned reward functions.

Fig. 4. Specialization Ratio Curves for Food-Shelter. Each point is for a dis-
tinct MAS (circles for ObjRe and squares for PGRD) using particular UCT pa-
rameters. The and values of each point are the seconds per decision and
the specialization ratio respectively for the corresponding MAS. Curves con-
nect points for MASs with the same number of trajectories in UCT. The main
result is that PGRD agents achieve higher specialization ratios relative to ObjRe
agents when both are constrained to similar CPU-time per decision. See text for
further explanation and discussion.

Fig. 5. The two panels (a) and (b) correspond to UCT-PGRD MAS
agents in Food-Shelter and Pursuit domains respectively. Each of

100 data points in panel (a) corresponds to a separate run and plots the coefficient
for the inverse-recency reward feature for one agent against the same coefficient
for the other agent. The striking specialization of reward functions in Food-
Shelter is apparent from most of the points being off-diagonal in panel (a). This
is in contrast to Pursuit in which the lack of reward function specialization is
apparent in most of the points being close to the diagonal in panel (b).

The expression of specialization in the learned reward func-
tions.What form did the learned guidance reward functions ac-
tually take in the two domains? Fig. 5(a) present the results for
the UCT-PGRD MAS (with and ) on Food-
Shelter. Each point is for a separate run; it plots the learned coef-
ficients on the inverse-recency reward feature for the two agents.
As is visually clear, one agent tends to learn a slightly nega-
tive coefficient while the other agent tends to learn a slightly
positive coefficient. Recall that a positive coefficient for the in-
verse-recency reward features encourages the agent to explore,
to visit places it hasn’t visited recently, and this helps this agent
become better at finding food which moves from place to place.
The agent with a slightly negative coefficient for the inverse-re-
cency reward feature is discouraged from exploring and this
helps it stay put at the shelter location. Thus, it is clear that the
critic-agents for the two agents learn quite different guidance
reward functions, i.e., there is specialization in the guidance re-
ward functions. Fig. 6(a–d) show that there is specialization also
in behavior as a result. Each panel shows the number of time



294 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 6, NO. 4, DECEMBER 2014

Fig. 6. (a) ObjRe Food Agent (b) ObjRe Shelter Agent (c) PGRD Food Agent
(d) PGRD Shelter Agent (e) ObjRe Agent 1 (f) ObjRe Agent 2 (g) PGRD Agent
1 (h) PGRDAgent 2.The occupancy-maps above show the number of time steps
an agent spends in each location on average over a 100 runs. Darker colors in
grid-squares indicate more time spent in those locations. The top row is for
Food-Shelter with UCT-parameters , . In the bottom row for
Pursuit, the UCT-parameters are , . PGRD Agent 1 is the agent
with larger coefficient for inverse-recency reward feature; PGRD Agent 2 has
the smaller coefficient. The top-row provides evidence for greater specialization
in behavior for Food-Shelter relative to the undifferentiated occupancy-maps in
the lower-row for Pursuit. See text for further discussion.

steps spent in each location of the grid where darker color means
more time spent. Panels (a) and (b) are for the UCT-ObjReMAS
and correspond respectively to the agent that gathers food more
often and the agent that repairs the shelter more often. Simi-
larly, panels (c) and (d) are for the UCT-PGRD MAS food and
shelter agents. It is clear that there is increased behavioral spe-
cialization in the MAS that learns guidance reward functions;
the shelter agent concentrates more on the shelter location in the
UCT-PGRDMAS compared to the shelter agent in UCT-ObjRe
MAS.
Fig. 5(b) plots the coefficients for the inverse-recency reward

features for the two agents in UCT-PGRD MAS for Pursuit.
Visually it is clear that for most of the 100 runs, agents learn
roughly the same coefficients. There is little specialization of
the guidance reward functions in Pursuit. This lack of behavioral
specialization is apparent as well from panels (e–h) in Fig. 6 in
which both UCT-ObjRe agent’s occupancy-maps (panels e&f)
look similar to each other as well as similar to the occupancy-
maps for the two agents in the UCT-PGRDMAS (panels g&h).
The effect of enlarging the action space. In our final demon-

stration of specialization, we explored the effect of enlarging
the action space in the Food-Shelter domain by adding a Stay
action, which intuitively might be more usefully exploited by
the Shelter agent than the Food agent (indeed its use would hurt
the Food agent). But increasing the set of actions that are always
available to each agent (recall that theGather andRepair actions
are available only when the agent is at a food or shelter location)
from four (North, South, East, West) to five (North, South, East,
West, Stay) also increases the branching factor in the planning
search tree and so maymake planning less effective for bounded
agents. Thus, for any given fixed computational resource for the
UCT planners (setting of depth and trajectories ), adding the
Stay action could either increase or decrease the obtained utility.

Fig. 7. Effects of adding a fifth action (Stay) to Food-Shelter. The x-axis labels
identify the type of MAS (including the UCT parameters); the y-axis is objec-
tive utility. For each MAS type, the two bars correspond to the final (at end of
lifetime) performance with FourActions and FiveActions respectively. The re-
sults presented are averages over 100 independent runs; standard error bars are
shown. The smaller gap between FourActions and FiveActions for the PGRD
agents relative to the ObjRe agents shows how PGRD is able to successfully
mitigate the additional planning burden caused by the fifth action. We discuss
in the main text how this mitigation is achieved by exploiting this fifth action
for more effective specialization.

Fig. 8. Evidence that the addition of the fifth navigation action (Stay) in-
creases specialization of the guidance reward functions. The graph shows
reward learning curves for the PGRD agent with different
action sets. Curves marked with represent the agent learning a larger/positive
coefficient on inverse-recency feature (indicating a Food-agent), and the curves
marked with represent the agent learning a smaller/negative coefficient
(indicating a Shelter-agent). Each curve is averaged over 100 independent runs.

The interesting questions we ask here are whether the UCT-
PGRD agents will better exploit the additional action and mit-
igate the additional planning cost, and whether they will do
so through specialization of the reward function. The answer
to both questions is yes. Fig. 7 provides evidence that there is
a planning cost incurred by all agents by adding the Stay ac-
tion, but that this cost is mitigated by the PGRD agents. Fig. 8
shows the learned reward features over time for the original
four-navigation-action setting and the new setting with the Stay
action. There is evidence that the additional action increases
reward function specialization—there is additional separation
of the two agents’ reward functions in the five-action setting.
There is also a difference in behavioral specialization between
the PGRD and ObjRe agents: the number of Stay actions ex-
ecuted by PGRD Food-Agents is far smaller than the ObjRe
agents (185 vs. 1113 for and 140 vs. 683
for ). Thus, the ObjRe agents are obtaining
less food because the Food-Agents are spending more time on
useless Stay actions.



LIU et al.: OPTIMAL REWARDS FOR COOPERATIVE AGENTS 295

Fig. 9. Stability of learning guidance reward functions. The graphs show the
specialization ratio as a function of time steps for 100 independent runs in Food-
Shelter for UCT-ObjRe and UCT-PGRD MASs (with , ). See
text for more details and discussion.

In summary, there is evidence that PGRD mitigates the addi-
tional planning cost incurred by adding an action that is useful
to one agent but not another; there is evidence from the learned
reward features that enlarging the action space in this way in-
creases the reward function specialization; and there is evidence
that the mitigation arises because one agent learns to exploit the
action while the other learns to more effectively ignore it.

C. Demonstration of Stability in the Face of Nonstationarity
(Objective 3)

Fig. 9 illustrates how adapting the guidance reward functions
can lead to more stable agent behavior. The curves in the two
panels show the specialization ratio as a function of time for 100
different independent runs in Food-Shelter (we do not present
results for Pursuit because by design the agents do not specialize
in that domain). The left panel is for UCT-ObjRe and the right
panel is for UCT-PGRD. It is apparent that for a greater frac-
tion of runs in UCT-PGRD the specialization ratio converges to
nearly 1. This is evidence of behavioral stability in that relative
to UCT-ObjRe in UCT-PGRD it is more often the case across
runs that one agent mostly focuses on food whilst the other fo-
cuses mostly on shelter.

D. Demonstration of Ability to Improve Performance with
Approximate Models (Objective 4)

In the results reported thus far on Food-Shelter all of the
architectures used what we will call Model1 below, while all
the results reported thus far on Pursuit used what we will call
Model 6 below. These choices were determined via exploration
of seven models (Model0 to Model6), described next.
All the models defined below share the following common

structure. Each agent independently learns a separate model of
the other agent. At any given time step, each agent’s model is
a mapping from some subset of the full joint state to a prob-
ability distribution over the other agent’s actions. These map-
pings are all initialized to be uniformly random and then are
updated to be the empirical probabilities from the observed his-
tory; thus the model changes from time step to time step. When
planning the action to execute at a time step, each agent uses
the learned model’s mapping to sample the other agent’s actions
during the tree building process in UCT. The actions taken by
the two agents at a time step add to the history available at the
next time step, and this cycle repeats until the end of the lifetime.
So what is different across the different models? What differs is

Fig. 10. (a) Food-Shelter. (b) Pursuit. Performance with seven different models
in Food-Shelter and Pursuit. Panel (a) corresponds to Food-Shelter with UCT-
ObjRe MAS and UCT-PGRD MAS (with UCT-parameters ,
and 5000 time steps). Panel (b) corresponds to Pursuit with UCT-ObjRe MAS
and UCT-PGRDSame MAS (with UCT-parameters , and
10000 time steps). The x-axis is the label of the model-type used while the
y-axis is averaged objective utility. The two bars within the same model-type
label represent the averaged objective utility achieved by UCT-ObjReMAS and
UCT-PGRD MAS in Food-Shelter, and UCT-ObjRe MAS and UCT-PGRD-
Same MAS in Pursuit. The results presented are for averages over 100 indepen-
dent runs.

the subset of state variables that form the domain of the map-
ping learned in constructing the model. We define these subsets
next.
Recall that for the Pursuit domain the full joint state at any

given point of time is composed of three state variables: the lo-
cation of the modeling agent (locSelf below), the location of the
other agent (locTeammate below), and the location of the prey
(locFood below). For the Food-Shelter domain, in addition to
the same three state variables there is a fourth state variable, the
status (whether broken or repaired) of the shelter; however, we
found that including this variable in the domain of the model’s
mapping was not useful and hence we do not consider this vari-
able below. Specifically, we evaluated the relative performance
of the different MAS architectures for each of the following
seven models:
• Model0: empty (unconditional distribution);
• Model1: locTeammate;
• Model2: locFood;
• Model3: locTeammate, locFood;
• Model4: locSelf;
• Model5: locSelf, locFood;
• Model6: locSelf, locTeammate, locFood.
Fig. 10 shows the end-of-lifetime objective utility per time

step in Food-Shelter (Panel (a)) & Pursuit (Panel (b)) plotted
as a bar-graph for each of the seven models above. For each



296 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 6, NO. 4, DECEMBER 2014

Fig. 11. Learning curves (of reward parameter) for the two agents in UCT-
PGRDMAS in Food-Shelter domain using UCT-parameters , .
Panel (a) is for the case when the two agents use Model1 while Panel (b) is
for the case when both agents use Model6. The x-axis in each panel is time
steps while the y-axis is the value of inverse-recency coefficient (see Eq. (2)).
Each (learning) curve thus shows the adaptation of the inverse-recency coef-
ficient with time steps. The results are an average over 100 independent runs
in which the up-pointing triangles are averages for the agent with the larger
coefficients and the down-pointing triangles are averages for the agent with
smaller coefficients. Using Model1 allows for a clear separation between the
two agents in that one of the agents quickly learns to use a positive coefficient
and thus rewards exploration while the other agent quickly learns to use a neg-
ative coefficient and thus discourages exploration. Using Model6 does separate
the two agents somewhat but crucially the average values remain negative for
both agents. (a) Food-Shelter: Model1. (b) Food-Shelter: Model6.

model-type, a pair of bars are shown: the performance of UCT-
ObjRe MAS and UCT-PGRD MAS for Food-Shelter, and the
performance of UCT-ObjRe MAS and UCT-PGRDSame MAS
for Pursuit. Several interesting observations can be made from
this figure. First, it is clear that in both domains the choice of
model matters to performance. Some of the models lead to sig-
nificantly worse performance than other models. Indeed, for the
Food-Shelter domain Models 4, 5 and 6 lead to worse perfor-
mance than even Model0 (the unconditional model). Second,
for each model-type learning a guidance reward function via
PGRD achieves better/higher objective utility relative to using
the objective reward as the guidance reward. This observation
supports our basic claim that PGRD can improve performance
relative to ObjRe regardless of the quality of the model used
for UCT-planning, and is an important form of robustness that
should make PGRD useful in practice in complex MAS envi-
ronments where learning accurate models of the other agent
would be difficult. Third, the differences in the two domains lead
to different state variables being useful in the best performing
models. Specifically, including locSelf in the models’ domain
significantly degrades performance in Food-Shelter (we specu-
late that this is because the location of the food-seeking agent
varies a lot and this makes for a harder model-learning problem
for the food-seeking agent). In Pursuit, there is a three-way re-
lation among the two agents and the prey in that neither agent
can independently capture the prey, and therefore the more state
variables included in the model, the better the performance. For
example, for both ObjRe and PGRDMASs, Model3 outperform
Models 1 and 2; Model6 outperform Models 3 and 5; etc.
Finally, Fig. 10 only shows the effect of different models at

the end of the lifetime of the MASs. Figures 11 and 12 show
the dynamic effect of Model1 and Model6 on Food-Shelter and
Pursuit respectively. As seen in Fig. 11 the crucial difference
between the use of Model1 and Model6 is that Model 1 allows
for specialization in which one agent learns a positive coeffi-
cient for the inverse-recency feature while the other agent learns

Fig. 12. Learning curves (of reward parameter) for the agents in UCT-PGRD
& UCT-PGRDSame MASs in Pursuit domain using UCT-parameters ,

. Panel (a) is for the case when the all agents use Model1 while Panel
(b) is for the case when all agents use Model6. The x-axis in each panel is time
steps while the y-axis is the value of inverse-recency coefficient (see Eq. (2)).
Each (learning) curve thus shows the adaptation of the inverse-recency coef-
ficient with time steps. The results are an average over 100 independent runs,
where for UCT-PGRD the agents were separated according to higher coefficient
versus lower coefficient for the purposes of averaging. Using Model6 allows
for faster learning of larger coefficient values to encourage exploration and this
is the crucial difference relative to Model1. (a) Pursuit: Model1. (b) Pursuit:
Model6.

a negative coefficient for the inverse-recency feature. As seen
in Fig. 12 in Pursuit the crucial difference between the use of
Model1 and Model6 is that the latter model allows for faster
learning of higher positive coefficients for the inverse-recency
features leading to faster learning that exploration of states not
recently visited is a useful means to the end of obtaining higher
objective utility.

VI. CONCLUSION

In this paper, we defined a new multiagent optimal rewards
problem whose solution defines the guidance reward for each
agent in a team such that the resulting behavior of the team ends
up maximizing the objective utility of the team as measured by
a given shared objective reward function. We provided a multi-
agent nested optimal reward and control architecture for solving
this problem and empirically demonstrated on two domains that
given limited CPU-time per decision, it is better to spend some
of the limited computational resources in learning good guid-
ance reward functions instead of spending them all on planning
good actions. This is the first evidence of strong-mitigation in
learning guidance reward functions for multiagent settings. We
also showed that our specific adaptation to multiagents of ex-
isting single-agent methods for learning guidance reward func-
tions and for planning did reliably and stably learn good guid-
ance reward functions. In Food-Shelter, both guidance reward
function and increased behavioral specialization were seen in
our results.
Finally, even though our empirical results were restricted to

two-agent settings, in terms of scaling to larger number of agents
we note that each agent learns a guidance reward function sep-
arately and in parallel in our architecture and thus the computa-
tional burden to any single agent of learning a guidance reward
function is independent of the number of agents (even for the
case of more than two agents). How our empirical findings of
stable and effective learning of guidance reward functions and
the resulting specialization generalize beyond our two domains
awaits future theoretical and empirical analyses.



LIU et al.: OPTIMAL REWARDS FOR COOPERATIVE AGENTS 297

REFERENCES
[1] S. Singh, R. Lewis, A. Barto, and J. Sorg, “Intrinsically motivated re-

inforcement learning: An evolutionary perspective,” IEEE Trans. Au-
tonom. Mental Develop., vol. 2, no. 2, pp. 70–82, Jun. 2010.

[2] J. Sorg, S. Singh, and R. Lewis, “Internal rewards mitigate agent
boundedness,” presented at the Int. Conf. Mach. Learn. (ICML), 2010.

[3] U. Chajewska, D. Koller, and R. Parr, “Making rational decisions using
adaptive utility elicitation,” presented at the Nat. Conf. Artif. Intell.
(AAAI), 2000.

[4] R. Cohn, S. Singh, and E. Durfee, “Characterizing EVOI-sufficient
k-response query sets in decision problems,” presented at the 17th Int.
Con. Artif. Intell. Statist. (AISTATS), 2014.

[5] A. Ng and S. Russell, “Algorithms for inverse reinforcement learning,”
presented at the Int. Conf. Mach. Learn. (ICML), 2000.

[6] A. Coates, P. Abbeel, and A. Ng, “Apprenticeship learning for heli-
copter control,” Commun. ACM, vol. 52, no. 7, pp. 97–105, 2009.

[7] J. Kober and J. Peters, “Imitation and reinforcement learning,” IEEE
Robot. Autom. Mag., vol. 17, no. 2, pp. 55–62, Jun. 2010.

[8] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,” in
Proc. 14th Int. Conf.: Mach. Learn., 1997, pp. 12–20.

[9] G. Tesauro and T. Sejnowski, “A ‘neural’ network that learns to play
backgammon,” Neural Inf. Process. Syst. (NIPS), 1987.

[10] A. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” presented
at the Int. Conf. Mach. Learn. (ICML), 1999.

[11] B. F. Skinner, The Behavior of Organisms: An Experimental Anal-
ysis. Acton, MA, USA: Copley Publishing Group, 1938.

[12] J. Schmidhuber, “Curious model-building control systems,” presented
at the Inte. Joint Conf. Neural Netw., 1991.

[13] J. Schmidhuber, “Artificial curiosity based on discovering novel al-
gorithmic predictability through coevolution,” presented at the IEEE
Congress Evol. Comput., 1999.

[14] E. Uchibe and K. Doya, “Constrained reinforcement learning from in-
trinsic and extrinsic rewards,” presented at the IEEE Int. Conf. De-
velop. Learn., London, UK, 2007.

[15] P.-Y. Oudeyer and F. Kaplan, “What is intrinsic motivation? A ty-
pology of computational approaches,” Frontiers Neurorobot., 2007.

[16] P.-Y. Oudeyer, F. Kaplan, and V. Hafner, “Intrinsic motivation systems
for autonomousmental development,” IEEE Trans. Evol. Comput., vol.
11, no. 2, pp. 265–286, Apr. 2007.

[17] A. Baranes and P.-Y. Oudeyer, “R-iac: Robust intrinsically motivated
exploration and active learning,” IEEE Trans. Autonom. Mental De-
velop., vol. 1, no. 3, pp. 155–169, Oct. 2009.

[18] S. Hart and R. Grupen, “Learning generalizable control programs,”
IEEE Trans. Autonom. Mental Develop., vol. 3, no. 3, pp. 216–231,
Sep. 2011.

[19] C. Vigorito and A. Barto, “Intrinsically motivated hierarchical skill
learning in structured environments,” IEEE Trans. Autonom. Mental
Develop., vol. 2, no. 2, pp. 132–143, Jun. 2010.

[20] S. Niekum,A. Barto, and L. Spector, “Genetic programming for reward
function search,” IEEE Trans. Autonom. Mental Develop., vol. 2, no.
2, pp. 83–90, Jun. 2010.

[21] K. Merrick, “Intrinsic motivation and introspection in reinforcement
learning,” IEEE Trans. Autonom. Mental Develop., vol. 4, no. 4, pp.
315–329, Dec. 2012.

[22] J. Sorg, S. Singh, and R. Lewis, “Optimal rewards versus leaf-evalua-
tion heuristics in planning agents,” presented at the 25th AAAI Conf.
Artif. Intell., 2011.

[23] D. H. Wolpert and K. Tumer, “Collective intelligence,” presented at
the 4th Workshop Econ. Heterogeneous Interacting Agents, 1999.

[24] D. Parkes and S. Singh, “An MDP-based approach to online mech-
anism design,” in Proc. 17th Annu. Conf. Neural Inf. Process. Syst.
(NIPS), 2003.

[25] P. Sequeira, F. Melo, R. Prada, and A. Paiva, “Emerging social aware-
ness: Exploring intrinsic motivation in multiagent learning,” presented
at the IEEE Int. Conf. Develop. Learn., 2011.

[26] J. Bratman, S. Singh, R. Lewis, and J. Sorg, “Strongmitigation: Nesting
search for good policies within search for good reward,” presented at
the 11th Int. Conf. Autonomous Agents Multiagent Syst. (AAMAS),
2012.

[27] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
presented at the Eur. Conf. Mach. Learn., 2006.

[28] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2–3, pp.
235–256, 2002.

[29] J. Sorg, S. Singh, and R. Lewis, “Reward design via online gradient
ascent,” in Adv. Neural Inf. Process. Syst. (NIPS), 2010.

Bingyao Liu received the B.Eng. degree in au-
tomation from Central South University, Changsha,
China, in 2008. He is currently towards the Ph.D.
degree at the School of Automation Science and
Electrical Engineering at Beihang University, Bei-
jing, China.
He was a Visiting Scholar in Computer Science

and Engineering at University of Michigan, Ann
Arbor, from 2012 to 2013.

Satinder Singh received the B.Tech degree in
electrical engineering from the Indian Institute of
Technology, New Delhi, India, in 1987, and the
Ph.D. degree in computer science from the Univer-
sity of Massachusetts, Amherst, MA, USA in 1993.
He is a Professor of Computer Science and Engi-

neering at the University of Michigan, Ann Arbor,
MI, USA. He is Director of the Artificial Intelligence
Laboratory at the University of Michigan.

Richard L. Lewis received the B.S. degree (Hons)
in computer science from the University of Central
Florida, Orlando, FL, USA, in 1987, and the Ph.D.
degree in computer science from Carnegie Mellon
University, Pittsburgh, PA, USA in 1993.
He is a Professor of Psychology and Linguistics

at the University of Michigan, Ann Arbor, MI, USA.
He is Director of the Language and Cognitive Archi-
tecture Laboratory, and Chair of the Cognition and
Cognitive Neuroscience Program at the University of
Michigan.

Shiyin Qin received the bachelor’s and master’s
degrees in engineering science in automatic controls
and industrial systems engineering from Lanzhou
Jiaotong University, Lanzhou, China, in 1978 and
1984, respectively, and his the Ph.D. degree in indus-
trial control engineering and intelligent automation
from Zhejiang University, Zhejiang, China, in 1990.
He is a Professor at the School of Automation Sci-

ence and Electrical Engineering in Beihang Univer-
sity, Beijing, China.


