Debugging the OmniTable Way

Andrew Quinn
UC Santa Cruz

Jason Flinn
Meta

Michael Cafarella
MIT

Baris Kasikci
University of Michigan

Abstract
Debugging is time-consuming, accounting for roughly 50% of a developer’s time. To identify the cause of a failure, a developer usually tracks the state of their program as it executes on a failing input. Unfortunately, most debugging tools make it difficult for a developer to specify the program state that they wish to observe and computationally expensive to observe execution state. Moreover, existing work to improve our debugging tools often restrict the state that a developer can track by either exposing incomplete execution state or requiring manual instrumentation.

In this paper, we propose an OmniTable, an abstraction that captures all execution state as a large queryable data table. We build a query model around an OmniTable that supports SQL to simplify debugging without restricting the state that a developer can observe: we find that OmniTable debugging queries are more succinct than equivalent logic specified using existing tools. An OmniTable decouples debugging logic from the original execution, which SteamDrill, our prototype, uses to reduce the performance overhead of debugging. The system employs lazy materialization: it uses deterministic record/replay to store the execution associated with each OmniTable and resolves queries by inspecting replay executions. It employs a novel multi-replay strategy that partitions query resolution across multiple replays and a parallel resolution strategy that simultaneously observes state at multiple points-in-time. We find that SteamDrill queries are an order-of-magnitude faster than existing debugging tools.

1 Introduction
Developers spend the majority of their time debugging their software [26]. Usually, a developer debugs by iteratively executing their program and using debugging tools to observe its state during the failing execution.

A developer can often identify the root cause of a simple bug by making a few observations about their program’s execution state. However, to identify the root cause of a complex bug, such as an atomicity violation or performance degradation, the developer will need to make sophisticated observations. Conceptually, we can model the logic for such sophisticated observations as a debugging program, designed to make sense of the failing program. For example, when debugging, a developer may observe all of the values to which a variable is assigned during an execution. Their debugging program consists of a set data structure to store the values, logic after each assignment in the failing execution that adds the assigned value to the set, and a print statement to print the set when the execution terminates.

Unfortunately, many debugging tools, such as gdb, “printf”-debugging, and binary instrumentation, support debugging programs that have both high programming complexity and high performance overhead. Such tools support procedural debugging programs that observe state as a failing program executes. Procedural debugging programs have considerable programming complexity, especially for sophisticated tasks that track execution state over time (§6.2). High complexity can lead to bugs [15, 44] that prevent a developer from understanding the failing program. Additionally, such debugging programs impose high performance overhead since sophisticated debugging programs observe a lot of execution state which existing tools extract within the same execution context as the failing program. Consequently, procedural debugging programs can slow execution by between a factor of 2–1000 (§6.3), which can preclude the use of sophisticated debugging programs [11].

Alas, prior debugging work retains, or even exacerbates, high programming complexity or high performance overhead to improve the other. Some proposals lower the performance overhead of debugging by employing parallelism (e.g., Speck [30], SledgeHammer [35]) or low-level optimizations (e.g., optimistic hybrid analysis [9], efficient path profiling [3]). At best, such techniques require redesigning debugging programs, at worst, they require novel research contributions to accelerate even a single task (e.g., taint tracking [4]).

High-level debugging tools decrease programming complexity by allowing a developer to observe and summarize execution state using a high-level programming model (e.g.,
Fay [12], G2 [17], EndoScope [7]). However, such tools retain high performance overhead since they perform a debugging program's observations while executing the original failing program. To curtail the effect of high performance overhead, high-level debugging tools restrict the execution state that a developer can observe, either explicitly (e.g., by minimizing the times when a debugging program can observe state [12, 14, 25]) or implicitly (e.g., by requiring extensive manual instrumentation to specify observable execution state [17, 24, 40]). Such systems are well suited for tasks that only need to observe partial execution state, such as distributed tracing [24] or identifying specific classes of bugs [25], but are less suited for debugging complex issues.

This paper proposes the OmniTable query model, a new debugging paradigm that reduces the programming complexity and performance overhead of debugging without restricting the execution state that a developer can observe. The new OmniTable abstraction empowers the model. An OmniTable reduces programming complexity by presenting all of an execution's state as a large queryable data object. An OmniTable reduces performance overhead by decoupling a debugging program's observations from the original programs' execution to enable automated optimizations of debugging programs.

The OmniTable query model enables debugging programs that can observe any execution state with low programming complexity by turning to relational logic. Concretely, an OmniTable is a database table representation of an execution that contains all architectural state (i.e., the value of all bytes of memory and all registers) before every instruction executed by the program. From a developer's perspective, an OmniTable is extracted as a program executes and can later be queried using an extended SQL language to observe the execution's state. The model bridges the gap between the architectural state in an OmniTable and common debugging abstractions (e.g., the functions executed, variables assigned, etc.) by re-purposing existing database primitives (e.g., high-level views) and creating new query operators (e.g., traversal functions).

Unfortunately, naively materializing an OmniTable would lead to considerable performance overhead, since it would require performing a core-dump before every instruction. Instead, our prototype, SteamDrill, employs lazy materialization. Lazy materialization defers the calculation of an OmniTable's state until a developer queries it. Rather than extract an OmniTable in its entirety during execution, SteamDrill uses deterministic record and replay to store the execution associated with the OmniTable. Deterministic record and replay enables SteamDrill to compress and store years worth of OmniTables on a commodity hard drive [10]. When a developer issues a query over an OmniTable, SteamDrill generates instrumentation which it injects into a new replay of the execution associated with the OmniTable to produce the execution state needed for the query.

SteamDrill reduces performance overhead by decoupling a debugging query's execution from the original program execution. SteamDrill uses a query planning approach that decomposes a debugging query into independent stages. SteamDrill implements a novel multi-replay query resolution strategy that executes each stage in a separate replay so that it can use data that is computationally inexpensive to observe (e.g., data about functions in an OmniTable) to reduce the compute cost of observing data that is computationally expensive to observe (e.g., data about each instruction in an OmniTable). In essence, multi-replay resolution uses the decoupling between an OmniTable query and the original execution to repeatedly observe OmniTable state at increasing detail. SteamDrill also uses decoupling to observe execution state from multiple points-in-time in parallel using thousands of machines [35, 47].

We built a SteamDrill prototype on top of Spark [47] and Arnold [10]. We evaluate the prototype using 5 detailed case studies of bugs reported in popular open-source applications (Memcached, redis, Apache, and SQLite). We identified 14 debugging programs that a developer would use to identify the root cause of each bug, including ad-hoc programs (e.g., “How many control-flow instructions did my function issue?”) and standard dynamic analyses (e.g., a memory leak detector). We implemented the debugging programs using OmniTable queries and gdb's python bindings, which provide a high-level language over gdb features. We found that OmniTable queries require up to 11.67 times fewer lines (with a geometric mean of 3.74 times fewer lines), up to 5.73 times fewer terms (with a geometric mean of 1.70 times fewer terms), and up to 23.49 times less estimated development time (with a geometric mean of 2.75 times less estimated development time) than gdb scripts. We evaluated the performance of SteamDrill on 3 representative debugging queries and find that it is faster than gdb by a factor of 99 based on geometric mean.

We make the following contributions:

- The OmniTable query model, which decouples a debugging program from a failing execution to reduce the programming complexity and performance overhead of debugging.
- SteamDrill, which optimizes OmniTable queries using query planning, cluster-scale parallelization, and a novel multi-replay query resolution approach.
- An evaluation of 5 case studies and 14 queries that shows that OmniTable queries are more succinct and SteamDrill has lower latency than state-of-the-art tools.

2 Motivation

In this section, we describe a motivational case study showing how the OmniTable query model simplifies debugging. In the case study, a developer uses an OmniTable to diagnose a performance problem in redis [36]. In the study, a developer deploys redis as an in-memory key-value LRU cache for a
slow back-end service. Over time, the average end-to-end latency of their deployment creeps upwards; the developer notices that the increase correlates with the back-end service processing a higher percentage of requests.

The bug is challenging to diagnose since the developer only starts with a high-level symptom and is unaware of which parts of the program are related to the error. To determine the root cause of the bug, the developer summarizes an execution’s behavior over time. The OmniTable allows the developer to observe all of the execution state of the program without requiring instrumentation; the query model’s support for SQL aggregations allows the developer to succinctly summarize large amounts of execution state. Moreover, the OmniTable enables repeated queries over the same buggy execution, instead of requiring the bug to be reproduced for each query.

In contrast, summarizing execution state over time is challenging with existing tools (§7). To use a procedural debugging tool (e.g., gdb), the developer must identify numerous instrumentation points, track execution state over time in complex data-structures, and implement algorithms to group data and calculate statistics. Other debugging tools simplify execution summarization, but provide incomplete interfaces in that they do not expose the execution state (e.g., PTQL [25], Fay [12]) or do not support the operators (e.g., Pivot Tracing [24], Execution Mining [20]) required for this case study. Finally, instrumentation-based tools (e.g., G2 [17], Pivot Tracing [24]) require extensive manual instrumentation to perform the necessary observations.

The developer uses 5 OmniTable queries to identify the root cause of the performance degradation. Rather than query an OmniTable directly, the developer uses derived views to simplify their queries. A derived view labels execution state according to an abstraction of execution behavior, such as the functions, in-scope variables, or memory read by each instruction in an OmniTable. Below, we describe the derived views that the developer uses. Then, we describe the OmniTable queries that the developer uses and compare them to debugging programs expressed using existing debugging tools.

2.1 Views

The developer uses two derived views, Vars(ot) and Funcs(ot), which can be calculated over an OmniTable: ot. Figure 1 shows their schemas.

Vars(ot)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>Long</td>
<td>Time of instruction</td>
</tr>
<tr>
<td>thread</td>
<td>String</td>
<td>Thread that executed instruction</td>
</tr>
<tr>
<td>eip</td>
<td>Long</td>
<td>Program counter of instruction</td>
</tr>
<tr>
<td>name</td>
<td>String</td>
<td>Variable name</td>
</tr>
<tr>
<td>value</td>
<td>Any</td>
<td>Assigned value</td>
</tr>
</tbody>
</table>

Funcs(ot)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enterTime</td>
<td>Long</td>
<td>Time of function entry</td>
</tr>
<tr>
<td>exitTime</td>
<td>Long</td>
<td>Time of function exit (or null)</td>
</tr>
<tr>
<td>name</td>
<td>String</td>
<td>Function name</td>
</tr>
<tr>
<td>thread</td>
<td>String</td>
<td>Thread that executed function</td>
</tr>
<tr>
<td>callStack</td>
<td>String</td>
<td>Call stack of function</td>
</tr>
<tr>
<td>args</td>
<td>Map[String->Any]</td>
<td>Argument values</td>
</tr>
<tr>
<td>rVal</td>
<td>Any</td>
<td>Return value of function execution</td>
</tr>
</tbody>
</table>

Figure 1: The schema of the Funcs(ot) and Vars(ot) views. Each line in each table describes a column in the view.
2.2 Queries

Next, we describe how the developer diagnoses the cause of the performance bug. First, they use deterministic record and replay to capture the OmniTable for an execution of redis during which the issue occurs. Then, they construct and execute the following five OmniTable queries.

2.2.1 First Query

The developer’s first query (Listing 1) uses a windowed aggregation to approximate the number of items that the deployment caches in redis (i.e., the working set size) during the performance degradation. The developer suspects that the working set size increases over time, which would lead to additional cache misses in redis. Each cache miss sends a request to the back-end service, so this hypothesis would explain the creeping latency of the deployment.

The developer begins by inspecting redis’s source code to identify the function, `lookupKey`, that finds an item in the cache. For each `lookupKey` execution, the developer creates a window containing the preceding 10,000 executions of `lookupKey` and counts the number of distinct keys passed to each function call in each window. The OmniTable query model succinctly represents this logic using SQL aggregates. SQL aggregates calculate a mathematical operation (e.g., `count`, `sum`) over a group of rows. An aggregate can operate over a window of requests, in which each group is an ordered list of rows that match an `Over` clause, as is the case in this query. Alternatively, an aggregate can operate over a group of rows that match a `Group By` clause, as is the case in the developer’s third query (§2.2.3).

In detail, the query uses the `Over` operator to create sliding windows, each of which contains 10,000 consecutive calls to `lookupKey`, by ordering `Funcs(ot)` by `enterTime` (Lines 2–3). The query filters non-lookupKey windows (Line 5). It counts the number of distinct keys passed to each function call in each window using the `key` argument (args["key"]) and the `count` and `distinct` operators.

Existing debugging tools either cannot support the query, impose high programming complexity, or impose high performance overhead. EndoScope [7] and Fay [12] could support the developer’s query, but imposes a high overhead since they tightly couple debugging logic’s execution with the original program execution. Most high-level debugging tools do not support windowed-aggregations and are either unable to compute the query (e.g., Pivot Tracing [24], Execution Mining [20]) or require a developer to write a custom operator to compute the query (e.g., G2 [17] requires expressing the window clause in terms of a vertex-based graph-traversal). Instrumentation-based debugging tools (e.g., Pivot Tracing [24]) would require the developer manually instrument the `lookupKey` function to produce the value of `key`.

An equivalent procedural debugging program is complex. The debugging program must navigate the performance-complexity tradeoff—creating a program with high overhead is straightforward, but creating one with low overhead requires complex logic to ensure consistency of two data structures. A mistake can lead to a misdiagnosis of the bug—our first version of the debugging program included such a mistake.

Listing 2 shows an implementation for gdb’s Python bindings, which provide a Python interface for gdb features such as breakpoints and backtraces. The developer creates a custom `Breakpoint` class, `bp` (Lines 6–15); by creating a `bp` with the argument "lookupKey" (Line 16), the developer instructs the gdb framework to call the developer-supplied `stop` function at each call to `lookupKey`. The developer tracks the sliding window of 10,000 requests by storing the value of the `key` argument into `keys`, a queue, and removing the first element if there are more than 10,000 elements in `keys` (Lines 7, 9, and 13). The developer could recompute the unique values in `keys` in `stop`, but that would add significant performance overhead since `lookupKey` is executed frequently. Instead, the developer uses a dictionary object, `indexed`, to track the number of times each `key` value appears in the `keys` window (Lines 5, 8, and 10–12). This logic is subtle and challenging to get right—for example, we initially used a set to track the unique elements in `keys` instead of using a dictionary to track the number of times each element appears in `keys`. Our buggy implementation erroneously removes elements from `indexed` and produces misleading results.

```
1 Select enterTime, count(distinct args["key"]) Over(
2 Order By enterTime
3 Rows Between 10000 Preceding and Current Row)
4 From Funcs(ot)
5 Where f.name="lookupKey"

Listing 1: The developer’s first query.

Listing 2: The developer’s first query written for gdb’s Python bindings.

from gdb import Breakpoint, parse_and_eval
from collections import deque, defaultdict
class bp(Breakpoint):
    indexed=defaultdict(int)
    def stop(self):
        keys.append(parse_and_eval("key")
        indexed[keys[-1]] += 1
        if len(keys) > 10000:
            indexed[keys[0]] -= 1
            if indexed[keys[0]] == 0:
                del indexed[keys[0]]
                keys.popleft()
        print(len(indexed))
        return False
bp("lookupKey")
```
Listing 3: The developer’s second query.

```
1 Select v.time, v.value
2 From Vars(ot) as v Join Funcs(ot) as f
3 Where v.name = "used" And f.name = "lookupKey"
4 And f.enterTime < v.time
```

The second query’s output shows that the number of items in the cache decreases throughout the execution. Since the redis configuration specifies a total memory size for the cache and the deployment uses constant sized items, a declining number of items in the cache implies that there is a memory leak. Unfortunately, redis does not clean up memory on shutdown, so existing leak detection tools (e.g., memcheck [29] and AddressSanitizer [39]) report nearly all memory allocations as leaks.

The developer’s third query uses an alternative approach: it tracks the number of leaked bytes by each allocation site (defined as the call stack of the allocation) over time. Allocation sites that produce bug-inducing leaks will have a gradual increase of leaked bytes throughout the execution. The developer’s query observes three separate types of execution events with different happens-before relationships, which is greatly simplified by the OmniTable query model.

The developer first creates a view, DefinedMemory(ot) (Listing 4), that contains the window of time during which each memory object is defined, i.e., allocated and not freed. The view joins each call to malloc with the subsequent call to free whose pointer argument, ptr, is equal to the return value from malloc (Lines 5–8). Since a pointer could be deallocated by malloc after being freed, the query only matches calls to free that occur after the call to malloc (m.exitTime < f.enterTime at Line 7). Additionally, it only matches each malloc with the next matching call to free, as ordered by exitTime and enterTime, respectively, by using NextJoin, a new operator provided by the OmniTable query model (Lines 5–6). The developer uses Left NextJoin, which produces output from the left relation even if there is no matching row in the right relation, so that memory which is never freed (i.e., leaked) has a NULL value for the end column.

The third query tracks the amount of data leaked by each allocation site over time. For each leaking allocation (Lines 12–13), the developer constructs a window containing all preceding leaking allocations from the same allocation site by using the Over operator (Line 11). They sum the number of bytes leaked within each window (Line 10).

Like with the previous queries, existing debugging tools either cannot support the third query, impose high programming complexity, or impose high performance overhead.

Listing 4: The definition of the DefinedMemory(ot) view (Lines 1–8) and the developer’s third query (Lines 10–13).

```
Define DefinedMemory(ot) as:
1 Select m.rVal as pointer, sum(size) as size
2 From Funcs(ot) as m Left NextJoin Funcs(ot) as f
3 On m.exitTime, f.enterTime,
4 m.name="malloc" And m.exitTime<f.enterTime
5 And f.name="free" And m.rVal=f.arg["ptr"]
6 Select start, allocSite, sum(size)
7 Over[Partition By allocSite Order By start]
8 From DefinedMemory(ot)
9 Where end=NULL
```

Listing 5: The developer’s fourth query.

```
Select dm.pointer, Count(*)
2 From Funcs(ot) as f Join DefinedMemory(ot) as dm
3 Where dm.allocSite=leakSite And dm.exit=NULL
4 And f.name="decrRefCount" Or f.name="incrRefCount"
5 And dm.pointer=f.arg["obj"]
6 Group By dm.pointer, r.name
```

The output of the third query identifies a single leaking allocation site, leakSite. redis uses reference counters to manage allocations from leakSite. Each counter tracks the number of live references to each object; redis should garbage collect the object when the count reaches 0. So, the developer suspects a problem in the reference counting and writes a query to count the updates to the reference counters of leak-
We outline the features of the OmniTable (e.g., debugging symbols). It adds new operators for debugging, such as traversal functions and new Join functions that allow queries to reference non-execution state (e.g., debug-ging symbols). For example, Defs identifies the functions defined in a binary; the following produces all such definitions for an executable, “a.out”: Select * From Defs("a.out"). Generator input can depend on query data. For example, Binaries is useful for bootstrapping queries; it uses the deterministic record/replay log to identify the binaries mapped into the address space of an OmniTable. The following determines all functions defined in all binaries that are loaded in ot, an OmniTable, which we use to define the FuncDefs view: Select * From Defs (Select * From Binaries (ot)). Developers create Generators by writing a program that produces relational output; we have built a Generator that determines all variables defined in all binaries mapped into an OmniTable, and one that creates stored procedures that produce the memory read and written by each instruction in an OmniTable.

3 The OmniTable Query Model

We outline the features of the OmniTable query model that enable a developer to succinctly reason about the entire history of execution state. The central abstraction is an OmniTable, a database table containing all user-level architectural state of an execution immediately before every instruction in the execution. Concretely, an OmniTable contains a column for every byte of architectural state and a row immediately before each instruction. The model supports debugging queries over an OmniTable expressed using SQL-style Select...From...Where queries.

Alas, an OmniTable alone offers an inadequate debugging interface, since a developer would need to reference execution state in architectural terms. For example, a developer would need to determine the exact memory location of each variable whose value they wish to observe. So, the OmniTable model adopts and extends database concepts to enable debugging abstractions. It uses Generators, user-defined-table-functions that allow queries to reference non-execution state (e.g., debugging symbols). It adds new operators for debugging, such as traversal functions and new Join variants. Finally, the model uses derived views to label an OmniTable’s state according to familiar debugging abstractions such as the functions executed in an OmniTable or the variables in scope at each instruction in an OmniTable. A single row in an OmniTable represents the state of architectural state at each instruction in an execution.

3.1 Relations

The OmniTable query model supports two relational base tables, OmniTables and Generators. It supports columns with primitive types (e.g., Long, String), Structs, Maps, Arrays, and Any, a polymorphic type.

OmniTable. An OmniTable is a database table that includes all architectural execution state immediately before each instruction in the execution; Figure 4 shows an example. Before each instruction, the OmniTable contains the current thread, the value of all registers and memory addresses, and the top of the stack of the thread. To dereference an address, addr, a query specifies Memory[addr]. Additionally, each row includes a monotonically increasing logical time, which provides a total ordering of events in the OmniTable and uniquely identifies each row. In a multi-threaded program, the time field is a total ordering that is consistent with the partial ordering of the original execution. Together, the thread and time columns enable a developer to reason about concurrency.

Generators. Generators allow developers to bridge the semantic gap between traditional programming abstractions (e.g., functions, lines of code) and an OmniTable’s architectural state by referencing non-execution state (e.g., debugging symbols). For example, Defs identifies the functions defined in a binary; the following produces all such definitions for an executable, “a.out”: Select * From Defs("a.out"). Generator input can depend on query data. For example, Binaries is useful for bootstrapping queries; it uses the deterministic record/replay log to identify the binaries mapped into the address space of an OmniTable. The following determines all functions defined in all binaries that are loaded in ot, an OmniTable, which we use to define the FuncDefs view: Select * From Defs (Select * From Binaries (ot)). Developers create Generators by writing a program that produces relational output; we have built a Generator that determines all variables defined in all binaries mapped into an OmniTable, and one that creates stored procedures that produce the memory read and written by each instruction in an OmniTable.

3.2 Relational Operators

The model supports join, group by, order by, and pivot. It also introduces three Join variants for debugging. StackJoin. SQL is unable to model a function stack, which would prevent the OmniTable query model from expressing critical debugging abstractions, such as Funcs (ot), which is used in all of the queries in the redis case study (§2). Prior high-level debugging tools either remove support for such se-
Omnitable

Metadata

<table>
<thead>
<tr>
<th>time</th>
<th>thread</th>
<th>stackTop</th>
<th>...</th>
<th>eip</th>
<th>eax</th>
<th>ebx</th>
<th>...</th>
<th>0x0</th>
<th>0x1</th>
<th>...</th>
<th>0xffffffff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0x2000</td>
<td>...</td>
<td>0x1000</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>0x2000</td>
<td>...</td>
<td>0x1004</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>0x2000</td>
<td>...</td>
<td>0x1064</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 4: An Omnitable for a short execution.

Listing 6: An Example StackJoin

```sql
Select *
From fenter(ot) as e StackJoin freturn(ot) as r
On e.time, r.time, e.thread=r.thread AND e.name=r.name
```

Column Operators

The Omnitable query model supports many column operators, including arithmetic and conditional operators, field expressions (a.b), subscript expressions (a[b]), traversal functions, stored procedures, and standard aggregations (e.g., Count, Max, Min, etc.) over groups and windows. The model also supports pointer dereferences by converting them into expressions over the Memory column (e.g., a->b becomes Memory[a].b). We elaborate on traversal functions and stored procedures.

Traversal Functions

SQL makes it difficult to traverse the elements in a data structure since it does not support unbounded traversals. So, the Omnitable query model builds new primitives for these operations. Given a pointer-typed column and a field within the pointed-to type, the traverse (column, field) expression produces a row of output for each element in the transitive closure of the structure by starting at column and following field pointers until the value is NULL. For example, traverse(node, "next") traverses the next pointer of all elements in a structure, starting at node.

Stored Procedures

Debugging logic often varies by execution context (e.g., the memory location of function arguments varies by function). Stored procedures [43] store relational logic in a table and allow a query to decide query logic during query resolution. Developers call stored procedures in their Omnitable queries with function syntax; for example, a developer could specify Var_Loc(esp) to use Var_Loc, a stored procedure that calculates the memory location of a variable given the value of the stack pointer.

3.4 Derived Views

The Omnitable query model allows developers to construct derived views for labeling execution state. The Define operator in Listing 4 shows how a developer constructs DefinedMemory(ot). Our implementation provides three high-level views, Funcs(ot) (§2.1), Vars(ot) (§2.1), and Insts(ot), a view that encodes information about each instruction in an Omnitable.

4 Design

In this section, we describe the design of SteamDrill, our system that supports the Omnitable query model. From a developer’s perspective, SteamDrill computes queries over Omnitables that are extracted during execution and stored in a database. However, materializing an entire Omnitable is infeasible due to high storage and compute costs: an Omnitable’s size is equal to the addressable memory size.
SteamRoller

1. Parsing (§4.1)
2. Planning (§4.2)
 Logical Planning (§4.2.1)
 Physical Planning (§4.2.2)
3. Execution (§4.3)

Figure 5: SteamDrill steps for query resolution. Blue steps re-use or customize existing approaches, and white steps are new designs.

Listing 7: A simplified undefined use query.

1 Select eip, read, write
2 From Insts(ot) as i Left Join DefinedMemory(ot) as dm
3 On [i.read=dm.pointer Or i.write=dm.pointer]
4 And i.time>=dm.start And i.time<dm.end
5 Where dm.start=NULL

query resolution. Delaying the materialization of an otherwise computationally expensive-to-materialize OmniTable often allows SteamDrill to filter the computationally expensive materialization using data from a less computationally expensive-to-materialize OmniTable. For example, to reduce the latency of the use-after-free query, the system first materializes the OmniTable state needed for the DefinedMemory view and uses the materialized data to filter the materialization of the Insts(ot) view.

Accordingly, SteamDrill uses multi-replay resolution—it splits OmniTable materialization across multiple replay executions. It uses query planning to determine the OmniTable materialization order and assigns OmniTable materialization to replay executions (§4.2). SteamDrill implements OmniTable-specific optimization strategies to decide the join order and join algorithm for each join in the tree (§4.2.1) which it uses to assign each operator to a stage. The system uses a single replay execution to materializes all OmniTables in the same stage. This approach minimizes the number of replay executions (since each replay execution adds additional overhead) and enables SteamDrill to limit OmniTable materialization.

4.1 Parsing

First, SteamDrill converts the query into a tree of relational operators over data tables using a standard SQL parser [2]; the tree encodes the logic required to resolve the query in terms of easy-to-optimize relational operations. The tree encodes each relational operator in the query as an internal node (i.e., a projection (Π), selection (σ), or join operator) and each OmniTable and each Generator in the query as a separate
leaf node. SteamDrill recursively decomposes each view into the relational logic that generates them until the tree is comprised entirely of relational logic and base tables (§3.1). A directed edge from node \(n_1 \) to node \(n_2 \) in the tree identifies that the operator \(n_2 \) consumes the output of \(n_1 \).

Figure 6 is the relational tree produced by SteamDrill for Listing 7. SteamDrill contains the internal logic of the \(\text{Insts}(ot) \) and \(\text{DefinedMemory}(ot) \) views (shown as dotted rectangles). The tree contains the logic of the \(\text{Insts}(ot) \) view: a \text{Join} between an \(\text{OmniTable} \) and \(\text{InstructionDefs} \), a \text{Generator} containing metadata about the instructions defined in binaries used by an \(\text{OmniTable} \).

The tree includes the internal logic of \(\text{DefinedMemory}(ot) \) and, recursively, all of the derived views comprising \(\text{DefinedMemory}(ot) \). The tree contains the \(\text{DefinedMemory}(ot) \) logic (Listing 4): a \text{Join} between two \(\text{Funcs}(ot) \) views, one for executions of malloc (\(\text{Funcs}(ot) \) as \(m \)) and one for executions of free (\(\text{Funcs}(ot) \) as \(f \)). The tree contains the logic of each \(\text{Funcs}(ot) \) view (§3.2 and Listing 6): a \text{StackJoin} that combines \(\text{fentry}(ot) \) and \(\text{fexit}(ot) \), relations over the entry and exit to each function in the \(\text{OmniTable} \). Finally, the tree contains the logic for each \(\text{fentry}(ot) \) and \(\text{fexit}(ot) \): a \text{Join} between an \(\text{OmniTable} \) and \(\text{FuncDefs} \). Note, the tree includes the \(\text{fentry}(ot) \) of malloc and \(\text{fexit}(ot) \) of free even though the query does not use their output; during planning, SteamDrill determines that the query does not use the views and prunes them.

4.2 Planning

SteamDrill performs two tasks during planning. During logical planning, the system optimizes the relational tree using standard optimizations (e.g., predicate push-down) and determines the join order and join algorithm for each join in the tree using \(\text{OmniTable} \)-specific strategies (§4.2.1). The most crucial task in logical planning is determining the join order and algorithms for the query, since the join order and algorithms imply the partial order in which SteamDrill will materialize the \(\text{OmniTable} \) nodes contained in the query. SteamDrill supports two join algorithms: merge joins, which operate over two fully realized relations, and block-nested-loop joins (loop joins), which first calculate the left relation and use the left relation’s output to limit right relation materialization.

During physical planning, SteamDrill produces a staged execution plan, which uses the join order and algorithms assigned during logical planning to assign each operator in the tree to a stage. In particular, physical planning assigns the children of merge joins to the same stage (so SteamDrill materializes them using the same replay) and assigns the right child of a loop join to the stage after the loop join’s left child (so SteamDrill materializes them using different replays).

4.2.1 Logical Planning

Traditional techniques for deciding join order and algorithms perform poorly on \(\text{OmniTable} \) queries for three reasons: First, similar subtrees in a relational tree have vastly different computational costs to materialize (e.g., the \text{Join} subtree in the \(\text{Funcs}(ot) \) subtree is similar but much less computationally expensive than the \text{Join} subtree in the \(\text{Insts}(ot) \) subtree). Second, the materialization cost of an \(\text{OmniTable} \) often depends on unpredictable properties of the underlying execution (e.g., it is difficult to predict the execution frequency of a particular function). Third, the enormous compute cost of materializing an \(\text{OmniTable} \) invalidates conventional rules.

Consequently, SteamDrill turns to a rule-based planner [1] that enables developers to encode semantic information that would be difficult or impossible for SteamDrill to deduce on its own. Each rule specifies regular-expression-like rules that pattern match subtrees of the relational tree and produce modified operators [1]. The join order and algorithm rules produce a left-deep join structure in which \(\text{OmniTable} \) nodes are isolated on the right-hand side of a join node (Figure 7), since these structures allow SteamDrill to perform as much filtering as possible when extracting data from an \(\text{OmniTable} \). When queries join relations with different expected materialization compute costs, the rules place the less expensive relations on the left side, the more expensive relation on the right side and employ a loop join. When joining relations with the same expected materialization compute costs (e.g., two instances of \(\text{Funcs}(ot) \)), the rules use a merge join. Heuristically, SteamDrill expects that \(\text{Funcs}(ot) \) relations are less computationally expensive to materialize than \(\text{Vars}(ot) \) relations, which are less computationally expensive than \(\text{Insts}(ot) \) relations, which are less computationally expensive than \(\text{OmniTable} \) relations. Rules also encode traditional database optimizations.

Executing the relational tree in Figure 6 without logical planning would have high latency; SteamDrill would materialize the \(\text{OmniTable} \) five separate times! In contrast, SteamDrill’s logical plan (Figure 7) uses multi-replay resolution to
observe only the exit from malloc, entry to free, and load/store instructions. Moreover, the plan reduces latency by only producing data for load/stores to defined memory as they are observed, rather than producing data for all loads/stores and performing a join to determine undefined uses afterwards.

First, SteamDrill uses traditional database optimizations (e.g., operator push-down) to push operators towards leaf nodes to (1) produce FunctionDefs data for only malloc and free (σ₁ and σ₂), (2) produce InstructionDefs data only for loads and stores (σ₃) and (3) eliminate the fentry(ot) for malloc and fexit(ot) for free. The system uses loop joins for Loop Join₁ and Loop Join₂, which materialize σ₁ and σ₂ before OT₁ and OT₂ to limit OmniTable state to the exit of malloc and entry to free in OT₁ and OT₂, respectively. The system joins them using a Merge Join (Merge Join₁) to limit the number of replay executions that it uses. OT₃, created for the Insts(ot) view, is computationally expensive to materialize, so SteamDrill defers its materialization. SteamDrill uses a Merge Join (Merge Join₂) to join σ₃ and Merge Join₁, which requires a Cartesian product and violates the traditional rule that such approaches be avoided. Materializing Merge Join₂ and using a loop join (Loop Join₂) to join it with OT₃ allows SteamDrill to identify only the loads/stores to undefined memory (i.e., loads/stores that read/write an address at a time when it is not contained in DefinedMemory(ot)) as they are performed by the execution rather than in an expensive join afterwards. In some queries, using a loop join like Loop Join₁ enables SteamDrill to elide inspection of some instructions altogether (e.g., Listing 8).

4.2.2 Physical Planning

Next, SteamDrill converts the optimized relational tree into a staged execution plan by assigning each operator from the tree into a stage. Each stage corresponds to a new replay execution (§4.3). SteamDrill assigns operators to stages that follow the partial order of OmniTable materialization that is implied by the join order and algorithm, but uses as few stages as possible, since each stage will require the additional latency and overhead of a replay execution.

SteamDrill performs a depth-first traversal of the tree starting at the root node and maintains an integer id for the current stage, starting at 1. The system assigns leaf nodes (OmniTable, Generators) to the current stage and unary nodes (i.e., all non-join operators) to their child’s stage. The system assigns merge join operators to the largest stage among the join’s children. For loop join operators, SteamDrill first assigns stages to operators in the left (inexpensive) child, adds one to the current stage, assigns the loop join to the new stage and traverses the right (expensive) child.

Figure 8 shows the staged execution plan for Listing 7. SteamDrill assigns FD₁, σ₁, FD₂, σ₂, ID₁, and σ₃ to the first stage. It assigns OT₁ and OT₂ to the second stage since Loop Join₁ and Loop Join₂ indicate that OT₁ and OT₂ should be materialized after σ₁ and σ₂, respectively. SteamDrill also assigns Π₁, Π₂, Merge Join₁, and Merge Join₂ to the second stage since they inherit the largest stage of their children. The system assigns Loop Join₃, OT₃, and Π₃ to the third stage to follow the order required for Loop Join₃.

4.3 Execution

Finally, SteamDrill executes the staged execution plan. For each stage, the system generates instrumentation to materialize the state needed from each OmniTable, materializes each OmniTable, and calculates each operator in the stage.

4.3.1 Instrumentation Generation

SteamDrill generates instrumentation that it will inject into a replay execution for the OmniTables in a stage by determining instrumentation operators for each OmniTable node in the stage. For each OmniTable node, the system gathers all stateless operators (e.g., projections (Π) and selections(σ)) that only consume data from (1) the OmniTable node, (2) nodes resolved in previous stages, or (3) other nodes satisfying (1) and (2). For example, the instrumentation operators for OT₁ in Figure 8 includes Π₁ and Loop Join₁. Selecting stateless operations ensures that the resulting instrumentation will be parallelizable during materialization.

Then, SteamDrill creates a cursor object for each OmniTable node that combines all of the node’s instrumentation operations. Cursor objects contain a filter and an output clause; logically, a cursor inspects the execution instruction-by-instruction, producing the output whenever the filter is true. SteamDrill generates the filter clause of the cursor for each OmniTable in the stage by combining all selection (σ) and loop join instrumentation operators and generates the output clause using the output of the top-most projection (Π) instrumentation operator.
We observe that instructions progress from low to high, except in the case of a backwards control-flow (e.g., branch, call, or return instructions that jump to a program location at a lower address). Thus, our prototype uses the number of backwards control-flow operations as the first element of the time column and breaks ties using the instruction pointer. Serendipitously, Intel provides deterministic performance counters for conditional branch and call instructions\(^2\), which allow our prototype to compute the number of backwards control-flow operations by counting the number of unconditional backwards branches during execution and adding the value of these performance counters.

6 Evaluation

In this section, we evaluate the OmniTable query model and SteamDrill by answering the following questions: “Does the OmniTable query model improve upon existing debugging interfaces?”, “Does SteamDrill accelerate debugging questions?”, and “How do SteamDrill design decisions impact query performance?”.

We perform 5 detailed case studies of how a developer could use an OmniTable and SteamDrill to solve real-world bugs from open-source servers (§6.1) from which we derive 14 debugging questions. We implement the debugging questions using OmniTable queries and gdb’s python bindings, which provide a python interface for traditional gdb features (e.g., breakpoints and backtraces). We compare the complexity of the 14 OmniTable queries and gdb scripts using metrics from the software engineering community (§6.2). We deploy SteamDrill on a CloudLab [37] cluster of 8 r320 machines (8-core Xeon E5-2450 2.1 GHz processor, 16 GB Ram, 10 Gbps NIC) to evaluate the performance for 3 representatives from the original 14 debugging questions (§6.3). We calculate the latency results below as the average over 10 trials and include 95% confidence intervals.

6.1 Case Studies

We performed 5 detailed case studies by identifying the debugging questions that a developer would ask when solving real-world bugs. We choose notoriously difficult bugs including livelock, intermittent performance problems, and atomicity violations (on average, the bugs in our study took 159 days from being opened to the commit that fixed the bug). We choose case studies from popular open-source applications: redis, Memcached, Apache, and Sqlite. The redis 4323 case study is described in §2; below, we describe case studies for debugging a livelock [28] and atomicity violation [27] in Memcached. We omit a description of a performance degradation in Apache [6] and a segmentation fault in Sqlite [41].

The case studies illustrate the benefits of the OmniTable query model along two key dimensions: first, the all-inclusive

\(^2\)Note that most performance counters are not deterministic
state exposed by the table offers a powerful window into an execution’s behavior. Second, SQL aggregations provide a powerful tool for summarizing and comparing program state. These features are particularly powerful when used in tandem. For example, in Memcached 271, the developer identifies the function that contains a livelock by counting the number of instructions executed by the functions left on the call stack at the end of the execution. This logic cannot be expressed in existing high-level debugging tools and is very complex when expressed using procedural tools such as gdb.

Memcached 271. In this case study, a developer observes livelock in the Memcached key-value store [28]. Livelock is notoriously difficult to diagnose since a developer needs to identify the cause of a missing property: forward progress [33].

In contrast, the OmniTable model allows the developer to succinctly track millions of execution events and use aggregations to identify anomalous execution state. Their first query, shown in Listing 8, identifies which function contains the livelock by counting the number of instructions executed during each function on each thread’s call stack at program termination. The query matches each executed instruction with the most recent function called on the same thread to determine which function contained the instruction (Lines 2 and 3). It counts how many instructions were executed (Line 1) by each function that did not return (Line 4).

The output identifies a single function with a high number of branches. The function traverses a linked-list, which the developer suspects is corrupted. The developer’s second query counts how many times each function that updates the linked list is called with every possible function argument value and shows a single anomalous call to free a linked-list item in which the item is still resident in the linked-list. Memcached reference counts linked-list items, so the developer’s third and final query tracks all reference count updates and identifies an overflow that leads to the erroneous free of the item.

Memcached 127. This case study involves an atomicity violation in Memcached. An integer stored in the cache has the wrong value after all updates, which is challenging to debug since the developer does not know which program state to track or when to track it. Atomicity violation tools [32] use heuristics and may misidentify the root cause of the bug.

<table>
<thead>
<tr>
<th>Query</th>
<th>Lines OT</th>
<th>Nodes OT</th>
<th>Halstead (s) OT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache 60956 Q1</td>
<td>20</td>
<td>6</td>
<td>94</td>
</tr>
<tr>
<td>Apache 60956 Q2</td>
<td>30</td>
<td>9</td>
<td>113</td>
</tr>
<tr>
<td>Memcached 127 Q1</td>
<td>7</td>
<td>4</td>
<td>48</td>
</tr>
<tr>
<td>Memcached 127 Q2</td>
<td>11</td>
<td>4</td>
<td>74</td>
</tr>
<tr>
<td>Memcached 271 Q1</td>
<td>35</td>
<td>3</td>
<td>149</td>
</tr>
<tr>
<td>Memcached 271 Q2</td>
<td>12</td>
<td>4</td>
<td>69</td>
</tr>
<tr>
<td>Memcached 271 Q3</td>
<td>10</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>redis 4323 Q1</td>
<td>17</td>
<td>3</td>
<td>74</td>
</tr>
<tr>
<td>redis 4323 Q2</td>
<td>7</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>redis 4323 Q3</td>
<td>22</td>
<td>3</td>
<td>113</td>
</tr>
<tr>
<td>redis 4323 Q4</td>
<td>33</td>
<td>5</td>
<td>147</td>
</tr>
<tr>
<td>redis 4323 Q5</td>
<td>7</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>sqlite 787fa71 Q1</td>
<td>22</td>
<td>10</td>
<td>110</td>
</tr>
<tr>
<td>sqlite 787fa71 Q2</td>
<td>41</td>
<td>8</td>
<td>151</td>
</tr>
<tr>
<td>Average</td>
<td>20</td>
<td>5</td>
<td>88</td>
</tr>
</tbody>
</table>

Table 1: Lines, Nodes, and Halstead Complexity for debugging questions expressed using OmniTable queries (OT) and gdb python scripts (gdb).

The OmniTable model, particularly SQL aggregations, provide a powerful tool for comparing the state of their program at many points-in-time to identify anomalous program state. The developer first isolates the module that contains the error. In particular, they determine if the bug arises when initially parsing requests or when processing them by using a count aggregate to count the number of times the function at the boundary between parsing and processing is called with each possible set of arguments. The query shows that the problem arises when processing requests.

The processing code maintains a boolean variable, valid, that tracks the validity of a global pointer used by the code. The developer’s second query, shown in Listing 9, identifies how often valid is set to true and false during each of the instruction within the processing logic. It uses a Pivot operator to produce a row for each instruction and show the number of times valid is set to true and false across all executions of the instruction. The second query identifies a few instructions at which status has an anomalous state. The anomalous instructions do not modify the status, so the developer concludes that another thread must modify the status and identifies a mistake in the processing logic’s use of a mutex.

6.2 Complexity

We implemented the 14 debugging queries from our 5 case studies using OmniTable queries and implemented equivalent logic using gdb python scripts. Qualitatively, we observe that OmniTable queries are less complex due SQL aggregations, the all-inclusive nature of an OmniTable, and the structured approach provided by high-level views. OmniTable queries usually involve an aggregation after joining a few high level views, whereas imperative debugging scripts regularly use multi-dimensional data-structures to track state, nested control-flow to implement aggregations, and complex
regular expressions to identify instrumentation points. We measure complexity of each OmniTable query and gdb script using three software engineering metrics: the number of lines of code, the number of terms in the abstract syntax tree (AST), and the Halstead complexity, which estimates the amount of time it would take to correctly produce the query or script using properties of the AST [18]. We included the definition of user-defined views (e.g., DefinedMemory(ot)) into the OmniTable queries that use them, so our results are an upper-bound on OmniTable query complexity.

Table 1 shows the results, indicating that OmniTable queries are less complex than gdb scripts. By geometric mean, OmniTable queries require 3.74 times fewer lines, 1.70 times fewer nodes, and 2.75 times less estimated time to develop than gdb scripts. There are only three queries that are more complex when expressed using the OmniTable model, the second and fifth redis 4323 queries, and the second Apache 60956 query. The two redis queries are small for both representations. The second Apache query suffers from the lack of kernel state in an OmniTable. The query identifies all blocking file descriptors, which requires substantial logic to track all function calls in the OmniTable model, but can be calculated in gdb using fcntl. Extending the OmniTable to include kernel state would reduce the complexity.

6.3 Query Latency

We evaluate the latency of OmniTable queries and gdb scripts for 3 representative queries from our case studies. We choose queries that use all of the high level views in our prototype (i.e., Funcs(ot), Vars(ot), and Insts(ot)) and offer a wide range of performance on current tools, from ~22 minutes to ~2 days. Figure 9 shows the latency of each debugging question evaluated using gdb, SteamDrill with a single core, and SteamDrill with 64 cores, with latency plotted on a log-scale. We executed Memcached 271 Q1 for 48 hours before killing the program and report its latency as 48 hours.

SteamDrill is significantly faster than gdb. SteamDrill query latency is between 2 and 290 times (with a geometric mean of 17) faster than gdb latency when using a single core, and between 6.9 and 1809 (with a geometric mean of 99) times faster than gdb latency when using 64 cores.

6.4 Optimizations

Next, we evaluate the impact of three optimizations on SteamDrill’s latency: parallelization, multi-replay resolution, and performance-counters.

Scalability. We evaluate the query latency of SteamDrill queries when using 1–64 cores; Figure 10 shows the speedup on a log-log scale. SteamDrill queries are 10.5 times faster using 64 cores than when run sequentially. Importantly, whereas prior parallelization efforts require the developer to substantially redesign their debugging code [30, 34, 35, 38, 46], the parallelized and sequential OmniTable queries are identical. The current scalability bottlenecks are caused by high initialization and serialization cost in Spark and the high cost of compiling cursors.

Multi-Replay Resolution. We evaluate the impact of multi-replay query resolution on the Memcached 271 Q2 query. We calculate the query latency when using two rounds of replay (the approach chosen by the SteamDrill planner) and when using a single round of replay on 64 cores. SteamDrill is 3.6 times faster when using multi-replay resolution.

Performance Counters. We evaluate the impact of using performance counters to accelerate the calculation of the time column in an OmniTable. We executed the 3 queries with and
without using performance counters (when disabled, SteamDrill instruments all `jump, call, and return` instructions) on 64 cores. The performance counter optimization accelerates query latency by a factor of 1.6.

7 Related Work

The OmniTable query model is the first debugging model that exposes all application state as a single entity and enables succinct observations via a high-level declarative language. Below we describe work related to high-level languages for debugging, using deterministic replay for debugging, and applying optimizations to accelerate debugging.

Existing systems support high-level debugging languages to reduce programming complexity; Table 2 illustrates the limitations of prior work compared to the OmniTable model. Execution Mining [20], PQL [25], EBBA [5] and EndoScope [7] expose a time-stream model of execution, which complicates debugging since it is difficult to summarize data over time (e.g., these tools cannot express the `Funcs(ot)` view since it contains execution data from multiple points-in-time). Other systems limit visibility of execution state: Fay [12], PQL [25], EBBA [5], and EndoScope [7], and PTQL [14] expose partial program state consisting of only the function calls or global variables values in an execution. Pivot Tracing [24], G2 [17], EBBA [5], and TQuel [40] require manual instrumentation to enable observations, which essentially amounts to supporting queries over software logs. Finally, many tools provide no, or very few, aggregates [14,20,25]; G2 [17] supports aggregates but requires that they be expressed in terms of a graph processing language.

Many OmniTable queries compare correct execution behavior to incorrect execution behavior, similar to statistical debugging approaches [22]. There are two key differences: (1) statistical bug isolation requires observing many correct and incorrect executions to come to a statistical verdict, whereas developers can often get a “sense” for correctness using an OmniTable query with fewer examples and (2) statistical debugging approaches hard code the values that they compare (e.g., function argument values), whereas developers can customize OmniTable queries to use program constructs best suited to their applications.

Many systems have noted that deterministic replay can be a great help when debugging software problems [8,13,19,31,42,45]. Such systems enable a debugging program to explore an execution’s time-sequence in reverse, but retain a procedural interface.

Recently, JetStream [34] and Sledgehammer [35] use deterministic replay as a vehicle for parallelizing debugging, which our prototype uses to accelerate OmniTable queries. However, these tools support procedural debugging models, similar to `gdb`, and consequently suffer from the programming complexity.

Existing tools do not decouple debugging logic’s execution from the original execution to optimize query latency. PARTICLE [14], Fay [12], Pivot Tracing [24] and PMSS [21] reduce the debugging performance overhead using traditional SQL optimizations (e.g., predicate push-down). However, these tools add instrumentation to the program and re-execute it to recreate the bug, which tightly couples the execution of debugging and the original execution and increases performance overhead. Additionally, by inspecting new executions, these systems are cannot perform all SteamDrill performance optimizations, particularly multi-replay query resolution.

8 Conclusion

In this paper, we propose the OmniTable query model, a new debugging paradigm that reduces the programming complexity and performance overhead of debugging without restricting the execution state that a developer can observe. We show that the query model simplifies debugging questions compared to existing state-of-the-art tools by performing case studies of bugs reported in popular open-source software. Unfortunately, an OmniTable, the key abstraction in the model, cannot be stored or calculated due to its extreme size. So, our prototype, SteamDrill, implements lazy materialization: it delays an OmniTable’s calculation until a developer queries the table. It uses deterministic record and replay to store the execution associated with each OmniTable and then generates instrumentation and traces a new replay execution to resolve each developer query on-demand. The system uses declarative optimizations, debugging optimizations, and a novel multi-replay strategy to accelerate debugging queries by an order of magnitude compared to state-of-the-art tools.

9 Acknowledgements

We would like to thank our shepherd, Ding Yuan, and the anonymous reviewers for their insightful comments. The work was supported by the National Science Foundation under grant DGE-1256260.
References

[20] Geoffrey Lefebvre, Brendan Cully, Christopher Head, Mark Spear, Norm Hutchinson, Mike Feeley, and Andrew Warfield. Execution Mining. In *Proceedings of
the 2012 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE), March 2012.

