Lockout: Efficient Testing for Deadlock Bugs

Ali Kheradmand, Baris Kasikci, George Candea

G\

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Deadlock

 Set of threads

* Each holding a lock needed by another thread

* Waiting for another lock to be released by some
other thread

Why Do Deadlocks Matter?

e Common in modern software
* Hard to detect manually
* Occur rarely during execution

W “
N T
N\, %
BN s

Apache Eclipse LimeWire

Deadlock Detection

* Traditional testing
— Deadlocks manifest rarely X

e Static detection
— Fast (run offline)
— Few false negatives
— Many false positives X
* Dynamic detection
— Slow (high runtime overhead) X
— Many false negatives X
— Few false positives

Best of Two Worlds

 Normal tests can’t discover enough deadlocks

* Deadlock avoidance or fixing tools tools
(Dimmunix [OSDI’08]) take a long time
* Need to find the schedules that lead to a deadlock

* How to increase the probability of
encountering a deadlock?

Lockout

e Systematic deadlock testing

* Increases deadlock probability
e By steering the scheduling

* Leverages past program executions

Outline

© Lockout architecture

* Deadlock triggering algorithm

* Preliminary results
e Summary and future work

Lockout Architecture
Static Phase

Source Instrumented
Code Binary
4 \\ 4) 4) (\
Stal‘iC 0100100
; . . 1010101
cout << "Hello, |f——> Analysis —> Instrumentation || o1o01010
World!\n”; 0100110
1010101
__ y, _ y,
RaceMob

[SOSP’13]

Lockout Architecture
Dynamic Phase

End of execution

4 R D
~N_

Instrumented
Program Previous executions info

Schedule ‘.'
\ / perturbaﬁon : \ /

ent executions

Vv
DeadlockFuzzer
[PLDI'09]

Outline

* Lockout architecture

* Deadlock triggering algorithm

* Preliminary results
e Summary and future work

10

Runtime Lock Order Graph (RLG)

Thread 1

lock(a) lock G

lock(b)

O - ©

lock(c)

Lock
acquisition order

Potential deadlock

Deadlock Triggering

* Selects a directed cycle in RLG
* Delays threads accordingly

* Improves simple preemption (CHESS [OSDI'08])

* Preemption before each lock

lock(a)

X

lock(b)

Deadlock Triggering

Time Thread1l Thread2 Thread3

lock(a)
lock(b)
unlock(b)
unlock(a)
lock(b)
lock(c)
unlock(c)
unlock(b)
lock(c)
lock(a)
M unlock(a)

unlock(c)

Time

Deadlock Triggering

Thread 1-—-Thread 2—-Thread 3

Before lock (a)

RT()
lock(a)
RT ()

= -

RT ()
lock(b)
RT ()

lock(b)

lock(c)

Contjiue
. efore lock (b)

Before TIock (@)

RT()
lock (cg iCont&a@\e (a)

ore éﬁCQ@\(b) 4

RT() - Befge - D

‘iot ~pel Tay
r_' Contj xS

JA

1a‘1

lock(a)

Race Dependent Deadlocks

Preempt before memory accesses
* |deally only shared memory accesses

Can be approximated by preempting after
locks

Can be improved using static analysis
Can be improved using data race detection

Outline

 Lockout architecture

« Deadlock triggering algorithm

* Preliminary results

e Summary and future work

16

Program

Lockout Effectiveness

Fraction of executions resulting in deadlock (%)

Simple Deadlock Deadlock
preemption triggering triggering
+ + +
Post-lock Pre-memory Post-lock
preemption access preemption
preemption
Microbench 0.00066 % 0.5% 50 % 50 %
SQLite 3.3.0 0.00064 % 4 % 50 % 50 %
HawkNL 1.6b3 | 23 % 64 % 50 % 50 %
Pbzip2 1.1.6 0% 0% 0% 0%
Httpd 2.0.65 0% 0% 0% 0%

Fraction of executions with deadlocks
increased up to three orders of magnitude

Outline

_ockout architecture
Deadlock triggering algorithm

Preliminary results
Summary and future work

Lockout

Increases deadlock probability
Leverages past program executions
Effective

* Up to 3 orders of magnitude more deadlock prone

Open source:
* https://github.com/dslab-epfl/lockout

Future Work

* Increasing effectiveness with low overhead
 Static analysis (data races, shared variables)

* Lockout + Automatic failure fixing/avoidance
(Dimmunix [OSDI’08], CFix [OSDI’12], Aviso
[ASPLOS’13])

* |In production
* For testing

* Crowdsourcing (Aviso [ASPLOS’13], RaceMob
[SOSP’13])

