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Deadlock

 Set of threads

* Each holding a lock needed by another thread

* Waiting for another lock to be released by some
other thread




Why Do Deadlocks Matter?

e Common in modern software
* Hard to detect manually
* Occur rarely during execution

W “
N T
N\, %
BN s

Apache Eclipse LimeWire




Deadlock Detection

* Traditional testing
— Deadlocks manifest rarely X

e Static detection
— Fast (run offline)
— Few false negatives
— Many false positives X
* Dynamic detection
— Slow (high runtime overhead) X
— Many false negatives X
— Few false positives



Best of Two Worlds

 Normal tests can’t discover enough deadlocks

* Deadlock avoidance or fixing tools tools
(Dimmunix [OSDI’08]) take a long time
* Need to find the schedules that lead to a deadlock

* How to increase the probability of
encountering a deadlock?




Lockout

e Systematic deadlock testing

* Increases deadlock probability
e By steering the scheduling

* Leverages past program executions




Outline

© Lockout architecture

* Deadlock triggering algorithm

* Preliminary results
e Summary and future work



Lockout Architecture
Static Phase
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Lockout Architecture
Dynamic Phase

End of execution
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Runtime Lock Order Graph (RLG)
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Deadlock Triggering

* Selects a directed cycle in RLG
* Delays threads accordingly

* Improves simple preemption (CHESS [OSDI'08])

* Preemption before each lock
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Deadlock Triggering
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Time

Deadlock Triggering
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Race Dependent Deadlocks

Preempt before memory accesses
* |deally only shared memory accesses

Can be approximated by preempting after
locks

Can be improved using static analysis
Can be improved using data race detection
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Program

Lockout Effectiveness

Fraction of executions resulting in deadlock (%)

Simple Deadlock Deadlock
preemption triggering triggering
+ + +
Post-lock Pre-memory Post-lock
preemption access preemption
preemption
Microbench 0.00066 % 0.5% 50 % 50 %
SQLite 3.3.0 0.00064 % 4 % 50 % 50 %
HawkNL 1.6b3 | 23 % 64 % 50 % 50 %
Pbzip2 1.1.6 0% 0% 0% 0%
Httpd 2.0.65 0% 0% 0% 0%

Fraction of executions with deadlocks
increased up to three orders of magnitude
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Lockout

Increases deadlock probability
Leverages past program executions
Effective

* Up to 3 orders of magnitude more deadlock prone

Open source:
* https://github.com/dslab-epfl/lockout




Future Work

* Increasing effectiveness with low overhead
 Static analysis (data races, shared variables)

* Lockout + Automatic failure fixing/avoidance
(Dimmunix [OSDI’08], CFix [OSDI’12], Aviso
[ASPLOS’13])

* |In production
* For testing

* Crowdsourcing (Aviso [ASPLOS’13], RaceMob
[SOSP’13])



