I[-SPY: Context-Driven Conditional Instruction
Prefetching with Coalescing

Tanvir Ahmed Khan* Akshitha Sriraman*
*University of Michigan TUniversity of Pennsylvania
*{takh, akshitha, barisk } @umich.edu

Abstract—Modern data center applications have rapidly
expanding instruction footprints that lead to frequent instruction
cache misses, increasing cost and degrading data center perfor-
mance and energy efficiency. Mitigating instruction cache misses
is challenging since existing techniques (1) require significant
hardware modifications, (2) expect impractical on-chip storage,
or (3) prefetch instructions based on inaccurate understanding
of program miss behavior.

To overcome these limitations, we first investigate the chal-
lenges of effective instruction prefetching. We then use insights
derived from our investigation to develop I-SPY, a novel profile-
driven prefetching technique. I-SPY uses dynamic miss profiles
to drive an offline analysis of I-cache miss behavior, which it uses
to inform prefetching decisions. Two key techniques underlie I-
SPY’s design: (1) conditional prefetching, which only prefetches
instructions if the program context is known to lead to misses, and
(2) prefetch coalescing, which merges multiple prefetches of non-
contiguous cache lines into a single prefetch instruction. I-SPY
exposes these techniques via a family of light-weight hardware
code prefetch instructions.

We study I-SPY in the context of nine data center applications
and show that it provides an average of 15.5% (up to 45.9%)
speedup and 95.9% (and up to 98.4%) reduction in instruc-
tion cache misses, outperforming the state-of-the-art prefetching
technique by 22.5%. We show that I-SPY achieves performance
improvements that are on average 90.5% of the performance of
an ideal cache with no misses.

Index Terms—Prefetching, frontend stalls, memory systems.

I. INTRODUCTION

The expanding user base and feature portfolio of modern
data center applications is driving a precipitous growth in
their complexity [1]. Data center applications are increasingly
composed of deep and complex software stacks with several
layers of kernel networking and storage modules, data retrieval,
processing elements, and logging components [2-4]. As a result,
code footprints are often a hundred times larger than a typical
L1 instruction cache (I-cache) [5], and further increase rapidly
every year [1].

I-cache misses are becoming a critical performance bot-
tleneck due to increasing instruction footprints [1,2, 6]. Even
modern out-of-order mechanisms do not hide instruction misses
that show up as glaring stalls in the critical path of execution.
Hence, reducing I-cache misses can significantly improve data
center application performance, leading to millions of dollars
in cost and energy savings [2, 7].

The importance of mechanisms that reduce I-cache misses
(e.g., instruction prefetching) has long been recognized. Prior
works have proposed next-line or history-based hardware

Joseph Devietti’
*Intel Corporation
Tdevietti @cis.upenn.edu

Gilles Pokam* Heiner Litz® Baris Kasikci*
§University of California, Santa Cruz

*gilles.a.pokam@intel.com Shlitz@ucsc.edu

instruction prefetchers [3, 4, 8—14] and several software mecha-
nisms have been proposed to perform code layout optimizations
for improving instruction locality [15-19]. While these tech-
niques are promising, they (1) demand impractical on-chip
storage [10, 12, 13], (2) require significant hardware modifi-
cations [3,4], or (3) face inaccuracies due to approximations
used in computing a cache-optimal code layout [18,20].

A recent profile-guided prefetching proposal, AsmDB [2],
was able to reduce I-cache misses in Google workloads.
However, we find that even AsmDB can fall short of an ideal
prefetcher by 25.5% on average. To completely eliminate I-
cache misses, it is important to first understand: why do existing
state-of-the-art prefetching mechanisms achieve sub-optimal
performance? What are the challenges in building a prefetcher
that achieves near-ideal application speedup?

To this end, we perform a comprehensive characterization
of the challenges in developing an ideal instruction prefetcher.
We find that an ideal instruction prefetcher must make careful
decisions about (1) what information is needed to efficiently
predict an I-cache miss, (2) when to prefetch an instruction,
(3) where to introduce a prefetch operation in the application
code, and (4) how to sparingly prefetch instructions. Each of
these design decisions introduces non-trivial trade-offs affecting
performance and increasing the burden of developing an ideal
prefetcher. For example, the state-of-the-art prefetcher, AsmDB,
injects prefetches at link time based on application’s miss
profiles. However, control flow may not be predicted at link
time or may diverge from the profile at run time (e.g., due to
input dependencies), resulting in many prefetched cache lines
that never get used and pollute the cache. Moreover, AsmDB
suffers from static and dynamic code bloat due to additional
prefetch instructions injected into the code.

In this work, we aim to reduce I-cache misses with I-
SPY—a prefetching technique that carefully identifies I-cache
misses, sparingly injects “code prefetch” instructions in suitable
program locations at link time, and selectively executes injected
prefetch instructions at run time. /-SPY proposes two novel
mechanisms that enable on average 90.4% of ideal speedup:
conditional prefetching and prefetch coalescing.

Conditional prefetching. Prior techniques [2,21] either
prefetch excessively to hide more I-cache misses, or prefetch
conservatively to prevent unnecessary prefetch operations that
pollute the I-cache. To hide more I-cache misses as well
as to reduce unnecessary prefetches, we propose conditional
prefetching, wherein we use profiled execution context to inject

code prefetch instructions that cover each miss, at link time.

At run-time, we reduce unnecessary prefetches by executing

an injected prefetch instruction only when the miss-inducing

context is observed again.

To implement conditional prefetching with I-SPY, we
propose two new hardware modifications. First, we propose
simple CPU modifications that use Intel’s Last Branch Record
(LBR) [22] to enable a server to selectively execute an injected
prefetch instruction based on the likelihood of the prefetch
being successful. We also propose a “code prefetch” instruction
called Cprefetch that holds miss-inducing context infor-
mation in its operands, to enable an I-SPY-aware CPU to
conditionally execute the prefetch instruction.

Prefetch coalescing. Whereas conditional prefetching facil-

itates eliminating more I-cache misses without prefetching

unnecessarily at run time, it can still inject too many prefetch
instructions that might further increase the static code foot-
print. Since data center applications face significant I-cache
misses [1, 7], injecting even a single prefetch instruction for
each I-cache miss can significantly increase an already-large
static code footprint. To avoid a significant code footprint
increase, we propose prefetch coalescing, wherein we prefetch
multiple cache lines with a single instruction. We find that
several applications face I-cache misses from non-contiguous
cache lines, i.e., in a window of N lines after a miss, only

a subset of the N lines will incur a miss. We propose a

new instruction called Lprefetch to prefetch these non-

contiguous cache lines using a single instruction.

We study /I-SPY in the context of nine popular data center
applications that face frequent I-cache misses. Across all appli-
cations, we demonstrate an average performance improvement
of 15.5% (up to 45.9%) due to a mean 95.9% (up to 98.4%)
L1 I-cache miss reduction. We also show that /-SPY improves
application performance by 22.4% compared to the state-of-the-
art instruction prefetcher [2]. I-SPY increases the dynamically-
executed instruction count by 5.1% on average and incurs an
8.2% mean static code footprint increase.

In summary, we make the following contributions:

o A detailed analysis of the challenges involved in building a
prefetcher that provides close-to-ideal speedups.

o Conditional prefetching: A novel profile-guided prefetching
technique that accurately identifies miss-inducing program
contexts to prefetch I-cache lines only when needed.

e Prefetch coalescing: A technique that coalesces multiple
non-contiguous cache line prefetches based on run-time
information obtained from execution profiles.

e I-SPY: An end-to-end system that combines conditional
prefetching with prefetch coalescing using a new family
of instructions to achieve near-ideal speedup.

II. UNDERSTANDING THE CHALLENGES OF INSTRUCTION
PREFETCHING

In this section, we present a detailed characterization of
the challenges in developing an ideal instruction prefetching
technique. We define an ideal prefetcher as one that achieves
the performance of an I-cache with no misses, i.e., where every

(o]
o

Frontend-bound

(2]
o

N
o

Stalled Slots (%)
S
o

o

AP o R i el o (e
cagsa“ A “3@6‘0“2‘\§a®e G “\gd\"’ O e \1\10‘69
A

Fig. 1: Several widely-used data center applications spend a
significant fraction of their pipeline slots on “Frontend-bound”
stalls, waiting for I-cache misses to return (measured using the
Top-down methodology [23]).

access hits in the L1 I-cache (a theoretical upper bound). We
characterize prefetching challenges by exploring four important
questions: (1) What information is needed to efficiently predict
an I-cache miss?, (2) When must an instruction be prefetched
to avoid an I-cache miss? (3) Where should a prefetcher inject
a code prefetch instruction in the program?, and (4) How can a
prefetcher sparingly prefetch instructions while still eliminating
most I-cache misses?

We characterize challenges using nine popular real-world
applications that exhibit significant I-cache misses. In Fig. 1,
we show the “frontend” pipeline stalls that the nine applications
exhibit when waiting for I-cache misses to return. We observe
that these data center applications can spend 23% - 80% of
their pipeline slots in waiting for I-cache misses to return.
Hence, we include these applications in our study.

From Facebook’s HHVM OSS-performance [24] benchmark
suite, we analyze (1) Drupal: a PHP content management
system, (2) Mediawiki: an open-source Wiki engine, and (3)
Wordpress: a PHP-based content management system used
by services such as Bloomberg Professional and Microsoft
News. From the Java DaCapo [25] benchmark suite, we
analyze (a) Cassandra [26]: a NoSQL database management
system used by companies such as Instagram and Netflix, (b)
Kafka: Apache’s stream-processing software platform used by
companies such as Uber and Linkedin, and (c) Tomcat [27]:
Apache’s implementation of the Java Servlet and WebSocket.
From the Java Renaissance [28] benchmark suite, we analyze
Finagle-Chirper and Finagle-HTTP [29]: Twitter Finagle’s
micro-blogging service and HTTP server, respectively. We
also study Verilator [30], a tool used by cloud companies to
simulate custom hardware designs. We describe our complete
experimental setup and simulation parameters in Sec. V.

A. What Information is Needed to Efficiently Predict an I-Cache
Miss?

An ideal prefetcher must predict all I-cache misses before
they occur, to prefetch them into the I-cache in time. To this
end, prior work [2,8-10] (e.g., next-in-line prefetching) has
shown that an I-cache miss can be predicted using the program
instructions executed before the miss. Since any arbitrary
instruction (e.g., direct/indirect branches or function returns)

appropriateprefetch windowlIn our example, we assume block

G is a timely injection candidate in the prefetch window.
Prior work [2] empirically determines an ideal prefetch

window using average application-specic IPC to inject a

prefetch instruction that hides a cache misSPY relies on

this approach and injects prefetch instructions 27 - 200 cycles

before a miss, a window we determine in our evaluation.

Observation: An instruction must be prefetched in

) i .) timely manner to avoid a miss.
Fig. 2: A partial example of a m|ss-annotated_dynam|c contrl Insight: Empirically determining the prefetch windo
ow graph. Dashed edges represent execution paths that| ¢,ch that a prefetch is not too early or too late, ¢

not lead to a miss. effectively eliminate a miss.

could execute before a miss, the application's dynamic conti©l Where to Inject a Prefetch?
ow must be tracked to predict a miss using the program paths
that lead to it. An application's execution can be represented by .~ . .) .
a dynamic Control Flow Graph (CFG). In a dynamic CFG, th@ hieving fullmiss coverageTo achieve full miss coverage, a

nodes represent basic blocks (sequence of instructions withB[ﬁfetC_h?r SUCh“ as the one pr?p_osed bY Lu_k and Mawry [2.1]’
a branch) and the edges represent branches. Fig. 2 sho Iight Inject a code prefetch Instruction into every basp

dynamic CFG, where the cache miss at basic blkckan ock preceding an I-cache miss. However, the problem of this

be reached via various paths. The CFG's edges are typicg}E}eJroach is that due to dynamic control ow changes, naively

weighted by a branch's execution count. For brevity, we assu cting a pref_etch into a predecessor basic block causes a
all the weights are equal to one in this example. igh number of inaccurate prefetches whenever the predecessor

Software-driven prefetchers [2, 17, 19] construct an applic%qes not lead to the miss. Prefetching irrelevant lines hurts
tion's dynamic CFG and id entify, mi’ss locations that can b%refetch accuracythe fraction of useful prefetches) and leads

eliminated using a suitable prefetch instruction. For examp‘8,|'0aChe pollution, degradlr_\g application performance.
AsmDB [2] uses DynamoRIO's [31] memory trace client to Prefetch accuracy can be mpr_oved b)_/ assessing the useful-
capture an application's dynamic CFG for locating |-cacHaess of a prefetch_and by _restrlctlng the injection of prefetches
misses in the captured trace. Unfortunately, DynamoRIO [31 those that are likely to improve performance. To determine
incurs undue overhead [32], making it costly to deploy i e likelihood of a prefetg:h_ be'lng u§eful, we can analyze the
production. To ef ciently generate miss-annotated dynam|g@n-outof the prefetch's injection site. We de ne fan-out as
CFGs, we propose augmenting dynamic CFG traces frdff Percentage of paths that do not lead to a target miss from
Intel's LBR [22] with L1 I-cache miss pro les collected with @ 91ven injection site. For example, in Fig. 2, the candidate

Intel's Precise Event Based Sampling (PEBS) [33] performant€ction siteG has a fan-out of 75% as only one out of four

counters. Generating dynamic CFGs using such lightweidtfths leads to the miss. _
monitoring enables pro ling applications in production. By limiting prefetch injection to nodes whose fan-out is
below a certain threshold, accuracy can be improved, however,

Observation: Representing a program's execution usirjg coverage is also reduced. The fan-out threshold that decides
a dynamic CFG and augmenting it with L1 I-cache migs whether to inject a prefetch represents a control knob to trade-
pro les enables determining prefetch candidates. off coverage vs. accuracy. To determine this threshold, Fig. 3
Insight: Generating a lightweight miss-annotategl analyzes the impact of fan-out on accuracy and coverage for the
dynamic CFG using Intel's LBR and PEBS incurs loyv wordpressapplication. As it can be seen, for real applications
run-time performance overhead and enables predictipg with large CFGs, a high fan-out of 99% is required to achieve

n ideal prefetcher would eliminate all I-cache misses,

miss locations in production systems. the best performance, although accuracy starts to drop sharply
. at this point. Hence, prior works (including AsmDB) that rely
B. When To Prefetch an Instruction? on static analysis for injecting prefetches fall short of achieving

A prefetch is successful only if it is timely. In the dynamicclose to ideal performance (65% in the casevoidpress.
CFG in Fig. 2, a prefetch instruction injected at predecessorWith I-SPY, we aim to break this trade-off by optimizing
basic blocksH or | is too late: the prefetcher will not befor prefetch accuracy and miss coverage simultaneously. To
able to bring the line into the I-cache in time and a miss withis end, we propose context sensitive conditional prefetching,
occur atK. In contrast, if a prefetch instruction is injected aa technique that statically injects prefetches to cover each miss
predecessork or F, the prefetched line may not be neede(.e., high miss coverage), but dynamically executes injected
soon enough, and it may (1) either evict other lines that wilirefetches only when the prefetch is likely to be successful,
be accessed sooner, or (2) itself get prematurely evicted beformimizing unused prefetches (i.e., high prefetch accuracy).
it is accessed. Instead, the prefetch must be injected in lanSection Ill-A, we describe our conditional prefetching

Fig. 3: Prefetch accuracy vs. miss coverage tradeoff in AsmDB

and its relation to ideal cache performance: Miss-coveraggy. 5: Speedup of Contiguous-8 (prefetches all 8 contiguous
increases with an increase in fan-out threshold, but prefetghes after a miss) vs. Non-contiguous-8 (prefetches only the
accuracy starts to reduce. Only 65% of ideal cache performanfgses in an 8-line window after a miss): Prefetching non-
can be reached at 99% fan-out due to low prefetch accuraggntiguous cache lines offers a greater speedup opportunity.

perform inaccurate prefetches. However, a large number of
statically-injected code prefetch instructions can still increase
an application's static code footprint.

A nave approach to statically inject fewer instructions is
to leverage the spatial locality of I-cache misses to prefetch

. . . . o multiple contiguous cache lines with a single prefetch instruc-
Fig. 4: AsmDB's static and dynamic code footprint mcreasE/'

Al S o on rather than a single line at a time [8,9]. In contrast,
Injecting prefetches in high fan-out predecessors signi cant hother approach [3] nds value in prefetching multiple non-
increases static and dynamic code footprints.

contiguous cache lines together. Similarly, we posit that it is
unlikely that all the contiguous cache lines in a windownof

technique and our approach that leverages dynamic cont“e%s after a given miss will incur misses. It is more likely that

) : : a’Subset of the next-lines will incur misses, whereas others
information to decide whether to execute a prefetch or not.”.)
will not. To validate this hypothesis, we consider a window of

Observation: It is challenging to achieve both high mis¢ €ight cache lines immediately following a miss to implement
coverage and prefetch accuracy if we determine prefe chtwo prefetchers: (1Contiguous-8 that prefetches all eight

injection candidate blocks based on a static CFG analyfsiscontiguous cache lines after a miss and ign-contiguous-8
alone. that prefetches only the missed cache lines in the eight cache

Insight: Leveraging dynamic run-time information t¢ line window.

c_onditionally e>§ecute statically-_injected prefetch instru- We pro le all our benchmarks to detect I-cache misses and
tions can help improve both miss coverage and prefe{ch e a5 re the speedup achieved by both prefetchers in Fig. 5. We
accuracy. nd that Non-contiguous-8 provides an average 7.6% speedup
over Contiguous-8. We conclude that prefetch coalescing of
non-contiguous, but spatially nearby I-cache misses, via a single
Several pro le-guided prefetchers [2,21] require at leagirefetch instruction can improve performance while minimizing
one code prefetch instruction to mitigate an I-cache miss. e number of static and dynamic prefetch instructions. We note
example, the state-of-the-art prefetcher, AsmDB [2], covetisat our conclusion holds for larger windows of cache lines (e.g.,
each miss by injecting a prefetch instruction into a high fan-ows and 32). We nd that a window of eight lines offers a good
(99%) predecessor. However, statically injecting numerouade-off between speedup and circuit complexity required to
prefetch instructions and executing them at run time, increasgspport a larger window size. We provide a sensitivity analysis
the static and dynamic application code footprint by 13.7%r window sizes inxVI-B.
and 7.3% respectively, as portrayed in Fig. 4. An increape
in static and dynamic code footprints can pollute the I-cac| Observation: Injecting too many prefetch instructiony
and cause unnecessary cache line evictions, further degraq C€an increase static and dynamic code footprints, inducig
application performance. Hence, it is critical to sparing] additional cache line evictions.
prefetch instructions to minimize code footprints. Insight: Conditional prefetching can minimize dynamif
Prefetch coalescing.Our conditional prefetching proposal| code footprints; coalescing spatially-near non-contiguols
allows statically injecting more prefetch instructions to elin] |-cache miss lines into a single prefetch instruction cgn
inate more I-cache misses, without having to dynamical Minimize both static and dynamic code footprints.

D. How to Sparingly Prefetch Instructions?

. 1-SPY

I-SPY proposes two novel techniques to improve pro le-
guided instruction prefetching-SPY introducesconditional
prefetchingto address the dichotomy between high coverage
and accuracy discussed xi-C. Furthermore]-SPY proposes
prefetch coalescingp reduce the static code footprint increase
due to injected prefetch instructions exploredxihD. I-SPY
relies on pro le-guided analysis at link-time to determine
frequently missing blocks and prefetch injection sites using Intel
LBR [22] and PEBS [33]. We provide a detailed description
of I-SPYs usage model irxlV. I-SPY also introduces minor
hardware modi cations to improve prefetch ef ciency at run
time. As a result, our proposed techniques close the gap Al executions of basic block G including executions that lead to
between static and dynamic prefetching by combining themiss
performance of dynamic hardware-based mechanisms with the
low complexity of static software prefetching schemes.

A. Conditional Prefetching

Conditionally executing prefetches has a two-fold bene t:
I-SPY can liberally inject conditional prefetch instructions
to cover each miss (i.e., achieve high miss coverage) while
simultaneously minimizing unused prefetches (i.e., achieve
high accuracy)l-SPY uses the execution context to decide
whether to conditionally execute a prefetch or not. We rst Fig. 6: An example ol-SPYs context discovery process
discuss how-SPY computes contexts leading to misses. We
then explain how-SPY's conditional prefetching instruction
is implemented, and nally discuss micro-architectural detailprobability of leading to the miss in blodk, given an execution
Miss context discovery.Similar to many other branch pre-context of either (B), or (E), or both (B and E).
diction schemes [3,4, 34,35];SPY uses the basic block [|-SPYthen selects the combination with the highest probabil-
execution history to compute the execution context. Initiallify as the context for a given miss. In our example, this context,
we attempted to use the exact basic block sequence to predmely 8 andE) will be encoded into the conditional prefetch
a miss. However, we found this approach intractable singgstruction injected aG. At run time, the conditional prefetch
the number of block sequences (i.e., the number of executioill be executed if the run-time branch history contains the
paths) leading to a miss grows exponentially with the increasgcorded context. We now detailSPYs conditional prefetch
in sequence length. As a resultSPY only considers the instruction.
presence of certain important basic blocks in the recent cont&anditional prefetch instruction. We propose a new prefetch
history to inform its prefetching decisions. This approach is imstruction, Cprefetch that requires an extra operand to
line with prior work [36] that observes that prediction accuracgpecify the execution context. Each basic block in the context is
is largely insensitive to the basic block order sequence. identi ed by its address, i.e., the address of the rst instruction

We use the dynamic CFG in Fig. 2 to describe the migs the basic blockl-SPY computes the basic block address
context discovery process. Recall that in this example, the missing the LBR data.
occurs in basic block and blockG is the injection site in the To reduce the code size @prefetch , I-SPY hashes
prefetch window. As shown in Fig. 6a, there are six executidhe individual basic block addresses in the context into an
paths including the candidate injection sfeand two of these n-byteimmediate operand ¢ontext-hash) using hash
paths lead to the basic blodk, where the miss occurs. functions, FNV-1 [37] and MurmurHash3 [38]. When a

I-SPY starts miss context discovery by identifyipgedictor Cprefetch is executed at run time, the processor recomputes
basic blocks—blocks with the highest frequency of occurrenca hash valuer(intime-hash) using the last 32 predecessor
in the execution paths leading to each miss. In our examgasic blocks (Intel LBR [22] provides the addresses of 32 most
B andE are predictor blocks. SindeSPY only relies on the recently executed basic blocks), and compares it against the
presence of blocks to identify the context (as opposed to relyingntext-hash . The prefetch operation is performed only if
on the order of blocks), it computes combinations of predicttie set-bits incontext-hash are a subset of the set-bits in
blocks as potentiatontextsfor a given miss. Thenl-SPY the runtime-hash
calculates the conditional probability of eacbntextleading Both runtime-hash and context-hash are com-
to a miss in a blockB, i.e., P(Miss in Block “B”jcontex) as pressed representations of multiple basic block addresses.
per the Bayes theorem. As shown in Fig. B#5PY computes While compressing multiple 64 bit basic block addresses into
P(Miss KjB), P(Miss KjE), and P(Miss KjB\ E), i.e., the fewer bits reduces the code bloat, it might also introduce

(b) Probability calculation for a context leading to a miss

Fig. 8: An example of-SPYs prefetch coalescing process

Fig. 7: Micro-architectural changes needed to execute t

g S . . F&ult of subset comparison betweeontext-hash and
context-sensitive conditional prefetch instructi@prefetch

runtime-hash will be true and a prefetch will be triggered.

B. Prefetching Coalescing

false positives. A false positive might occur when the set- . . _ .
bits in context-hash are a subset of the set-bits in Conditional prefetchlng ena_bles high-accuracy prefetching.
runtime-hash , however, not all the basic blocks represente.’é‘everthele.ss’ it leads to ;tanc code blpat .aslevery prefetch
by context-hash are present among the 32 most recentq|£_|stru<:t|on increases the size of the .appl|cat|ons text segment.
executed basic blocks representedrbgtime-hash . We refetch coaIescmgeduces the static code blqat as v_veII as
analyze a range of values for tloentext-hash size in the n_ur_nber of _dynamlcally-ex_ecuted_prefgtch ms_tructlons by
Fig. 21 and determine that a 16 bit immediate offers a go88mb'_”'”9 multiple pref_etches Into a_smgle Instruction. We rst
tradeoff between code bloat and false positive rates. describe hOW'SPY decides which lines ShOUId. be. coale;ced,

] i o) followed by details of-SPYs coalesced prefetching instruction.
Micro-architectural modi cations ~ Cprefetch requires \ye then detail the micro-architectural modi cations required
minor micro-architectural modi cations. Intel's Xeon datgq sypport prefetch coalescing.
center processors support an LBR [22] control ow tracing 14 nerform coalescing;SPY analyzes all prefetch instruc-

facility, which tracks the program counter and target addreggns injected into a basic block and groups them by context.
of the 32 most recently executed branches. As shown in Fig. 8, prefetches for addres8a# andOxD are

I-SPY extends the LBR to maintain a rollinggrouped together since they are conditional on the same context,
runtime-hash of its contents. Fig. 7 shows the microCO0. Similarly, 0x4 , 0x2, andOx7 are grouped together since
architectural requirements ¢SPYs context-sensitive prefetch they share the same conte31.
instruction for 32 predecessor basic blocks and a 16 bitNext, I-SPY attempts to merge a group of prefetch instruc-
context-hash . Since the LBR is a FIFO, we maintaintions into a single prefetch instructiohSPY uses am-bit
theruntime-hash incrementally. Using a counting Bloombitmap to select a subset of cache lines within a window of
Ilter [39,40], we assign a 6-bit counter to each of the 16 consecutive cache lines. In the example shown in Fig. 8,
bits of theruntime-hash (96 bits in total). Whenever a the coalesced prefetch for conte®6 has two bits set in the
new entry is added into the LBR, we hash the correspondiB@imask to encode line8x4 and0x7 where the base address
block address and increment the corresponding countgfshe prefetch i9x2 . While a larger bitmask allows coalescing
in the runtime-hash ; the counters for the hash of themore prefetches, it also increases hardware complexity. We
evicted LBR entry are decremented. The counters newidy the effect of bitmask size in Fig. 17.
over ow and theruntime-hash precisely tracks the LBR Coalesced prefetch instruction. Our proposed coalesced
contents since there are only ever 32 branches recordechiBfetch instruction,Lprefetch , requires an additional
the runtime-hash . We also add a small amount of logicoperand for specifying the coalescing bit-vector. Prefetch
to reduce each counter to a single “is-zero” bit; in those }&structions in current hardware (e.qorefetcht * on
bits, we check if thecontext-hash bits are a subset of yg6 and pli on ARM) follow the format, prefetch,
the runtime-hash . If they are, the prefetch res, otherwise zqdress), which takes address as an operand and
it is disabled. prefetches the cache line corresponding address .

To clarify how Bloom lIters help I-SPY match Lprefetch takes an extra operandjit-vector . The
runtime-hash to context-hash , let's consider the same prefetcht = instruction on x86 has a size of 7 bytes, hence,
example in Fig. 6. Let's assume the 16-bit hasheB ahdE are with the addition of am = 8 bits bitmask,Lprefetch has
0x2 and0x10, respectively. Therefore, thentext-hash a size of 8 bytes.
would be0x12, where the Least Signi cant Bits (LSB) 1 |-SPYcombines prefetch coalescing and conditional prefetch-
and 4 are set. To enable prefetchingntime-hash must ing via another instructionCLprefetch , with the format
also have these bits set. At run time,Bfis present in the (prefetch , address , context-hash , bit-vector)
last 32 predecessors, the bloom Iter counter correspondiag shown in Fig. 8CLprefetch prefetches all the prefetch
to LSB-1 must be greater than 0. Similarly fBt the counter targets speci ed bybit-vector only if the current context
corresponding to LSB-4 must be greater than 0. Hence, tmatches with the context encoded in tbentext-hash

predecessors within the prefetch window as the LBR pro le
already includes dynamic cycle information for each basic
block. Apart from this, the algorithm to nd the best prefetch
injection site is similar to prior work [2] and has a worst-case
complexity of O(nlogn).

After nding the best prefetch injection site to cover each
miss, I-SPY runs two extra analyses, context discovery and
prefetch coalescing. First, if the prefetch injection site has
a non-zero fan-outl-SPY analyzes the predecessors of the
injection site to reduce its fan-out (Fig. 6). Next, if the same
injection site is selected for prefetching multiple cache lines,
I-SPY applies prefetch coalescing to reduce the number of
prefetch instructions (Fig. 8).

Oncel-SPY nishes identifying opportunities for conditional
prefetching and prefetch coalescing, it injects appropriate
prefetch instructions to cover all misses. Speci calhEPY
injects four kinds of prefetch instruction&)).

This new instruction has a size of 10 bytes (2 extra bytes toIf the context of a given prefgtch inst_ruction diﬁer; from the
specifycontext-hash). contexts of all other prefetch instructions, then this prefetch

Micro-architectural modi cations. Coalesced prefetch instruction cannot be coalesced with others. In that daS&Y

instructions require minor micro-architectural modi cationénjeCtS aCprefetch _ instruction.

that mainly consists of a series of simple incrementers. Thesecond't'on"’IIIy prefetchlng a line based on the exgcutlon
text may not improve the prefetch accuracy. In this case,

incrementers decode the 8-bit coalescing vector and enappaext - , , .
prefetching up to 9 cache lines (the initial prefetch target, leIJ'SsPYW'” try to inject an Lprefetch Instruction. I m”'?'p'e

up to 8 bit-vector-dependent targets). The resultant cache |fFghe lines are within a range nfines (where n is the size of
addresses are then forwarded to the prefetch engine. bit-vector used to perform cqalgscmg ashil-B) from
Replacement policy for prefetched linesl-SPYs prefetch the ”e?reSt prefet.ch t_argdatSP_Y will inject an Lprefetch
instructions also update the replacement policy priority of th(gtherw[sej-SPYw[ll inject multiple AstB-sterprefetch .
prefetched cache line. Instead of assigning the highest prioﬂwtructlor}s_ that simply p_refeftch a single target_cache line.
to the prefetched cache line (as done for demand-loads), 't conditional prefetching improves prefetching accuracy
SPYs prefetch instructions assign the prefetched cache line®3d multiple cache lines can be coalesce&PY injects
priority equal to the half of the highest prioriti:SPYs goal CLPrefetch instructions.

with this policy is to reduce the adverse effects of a potentially The neéw binary updated with code prefetch instructions
inaccurate prefetch operation. iS deployed on I-SPY-aware data center servers that can

conditionally execute and (or) coalesce the injected prefetches.

Fig. 9: Usage model of-SPY

IV. USAGE MODEL

. . . V. EVALUATION METHODOLOGY
We provide an overview of the high-level usage model of

I-SPY in Fig. 9.1-SPY pro les an application's execution at We envision an end-to-erléSPY system that uses application
run time, and uses these pro les to perform an of ine analysisro le information and our proposed family of hardware code
of I-cache misses to suitably inject code prefetch instructiopsefetch instructions. We evaluat&PY using simulation since
Online pro ling. I-SPY rst pro les an application's execution existing server-class processors do not support our proposed
at run time (stegd)). It uses Intel's LBR [22] to construct a hardware modi cations for conditional prefetching and prefetch
dynamic CFG (such as the one shown in Fig. 2), and augment&lescing. Additionally, simulation enables replaying memory
the dynamic CFG with L1 I-cache miss pro les collected witltraces to conduct limit studies and comp&®PYs perfor-
Intel's PEBS [33] hardware performance counters. At everymance against an ideal prefetch mechanism. We prototype the
cache missl|-SPYrecords the program counters of the previoustate-of-the-art prefetcher, AsmDB [2], and comp&@PY

32 branches that the program executed (on 886 LBR has against it. We now describe (1) the experimental setup that
a 32-entry limit). Run-time pro ling using Intel LBR's and we use to collect an application's execution pro le, (2) our
Intel PEBS's lightweight monitoring [22, 41] enables pro lingsimulation infrastructure, (3)-SPYs system parameters, and
applications online, in production. (4) the data center applications we study.

Of ine analysis. Next, I-SPY performs an of ine analysis])) Data collection. During I-SPYs ofine phase, we use

of the miss-annotated dynamic CFG that it generates at runtel's LBR [22] and PEBS counters [42] (more speci cally
time. For each missl-SPY considers all predecessor basi¢frontend_retired.l1i_miss)) to collect an applica-
blocks within the prefetch window. Unlike prior work [2}; tion's execution pro le and L1 I-cache miss information. We
SPY does not require the per-application IPC metric to ndecord up to 100 million instructions executed in steady-state.

TABLE I: Simulated System

[Parameter [Value
CPU Intel Xeon Haswell
Number of cores per socket 20
L1 instruction cache 32 KiB, 8-way
L1 data cache 32 KiB, 8-way
L2 uni ed cache 1 MB, 16-way
L3 uni ed cache Shared 10 MiB/core, 20-way
All-core turbo frequency 2.5 GHz
L1 I-cache latency 3 cycles
L1 D-cache latency 4 cycles
tg EZEE: :2::23 ;é gg:zz Fig. 10: I-SPYs speedup compared to an ideal cache and
- i i 0
Memory Tatency 260 cycies AstB. I-SPY achieves an average speedup that is 90.4% of
Memory bandwidth 6.25 GB/s ideal.

We also perform a sensitivity analysis BEPYs system

We combine our captur_ed |miss_, pro les and instructi_On tfac%%rameters by evaluating the effect of varying the (1) number of
to construct an application's miss-annotated dynamic CFG-predecessors ioontext-hash , (2) minimum and maximum

Simulation. We use the ZSim simulator [43] to evaludt8PY. prefetch distances, (3) coalescing size, and (4) context size
We modify ZSim [43] to support conditional prefetching andised to conditionally prefetch.

prefetch coalescing. We use ZSim in a trace-driven execution

mode, modeling an out-of-order processor. The detailed system VI. EVALUATION

parameters are summarized in Table I. Additionally, we |n this section, we evaluate holSPY improves application
extend ZSim to support our family of hardware code prefetgherformance compared to an ideal cache implementation and
instructions. Our implemented code prefetch instructions inséfie state-of-the-art prefetcher [2], AsmDB, using the evaluation
prefetched cache lines with a lower replacement policy priorifyietrics de ned inxV. We then perform sensitivity studies to
than any demand load requests. determine the effect of varyingSPYs con gurations.

System parameters.Based on the sensitivity analysis (see .

Fig. 18), we use 27 cycles as minimum prefetch distan(?é, I-SPY: Performance Analysis

and 200 cycles as maximum prefetch distance. Additional§peedup.We rst evaluate the speedup achieved bgPY

we empirically determine that coalescing non-contiguo@sross all applications. In Fig. 10, we sh&\8PYs speedup
prefetches that occur within a cache line window of 8 caclfgreen bars) compared against an ideal cache that faces no
lines yields the best performance. misses (brown bars) and AsmDB [2] (blue bars).

Data center applications.We evaluate nine popular data center W& nd that|-SPYattains a near-ideal speedup, achieving an
applications described in Sec. II. We allow an application@€rage speedup that is 90.4% (up to 96.4%) of an ideal cache

binary to be built with classic compiler code layout optimizdhat aways hits in the L1 I-cach&:SPY falls slightly short of
tions such as in-lining [44], hot/cold splitting [45], or pro le-2" ideal cache since (1) it executes more instructions due to the

guided code alignment [19]. We study these applications withjected prefetch instructions and (2) a previously unobserved
different input parameters offered to the client's load generatof:

ggyecution context might not trigger a prefetch, precipitating a
(e.g., number of requests per second or the number of threai§s- Additionally,I-SPY outperforms AsmDB by 22.4% on
véerage (up to 41.2%), since it eliminates more |-cache misses

. al
Evaluation metrics. We use six evaluation metrics to evaluat?han AsmDB as we show next

I-SPYs effectiveness. First, we compalk&sPYs performance L1 l-cache MPKI reduction. We next evaluate how welk

improvement against an ideal cache and AsmDB. Second, WBY reduces L1 l-cache misses compared to AsmDB [2] in
study how welll-SPY reduces L1 I-cache MPKI comparedFig_ 11. We evaluate across all nine applications.

to tlhe sthate-of—the';art grefetcher,.AstB [Z]t' -I;h"d’ fvve We observe thai-SPY achieves a high miss coverage,
analyze now much perlormance improvement stems 1rq ducing L1 I-cache MPKI by an average of 95.8% across

conditional prefetching and prefetch coalescing, individualgn applications. Furthermoré-SPY reduces MPKI compared
Fourth, we comparé&SPYs prefetch accuracy with ASmDB. o AsmDB by an average of 15.7% across all applications

Fifth, we analyze the static and dynamic code footprint increaa e greatest improvement is 28.4% faerilator). The MPKI

induced byl-SPY. Sixth, we determine Whethda{SPYacmeveg reduction is due to conditionally executing prefetches and

%%alescing them, thereby eliminating more I-cache misses. In
ntrast, AsmDB executes a large number of unused prefetches
at evict useful data from the cache.

data center applications often run continuously, applicati
inputs can drastically vary (e.g., diurnal load trends or lo
transients [46, 47]). Hence, a pro le-guided optimization for

data center applications must be able to improve performarféerformance of conditional prefetching and prefetch coa-
across diverse inputs. lescing.In Fig. 12, we quantify how muchSPYs conditional

Fig. 11:1-SPYs L1 I-cache MPKI reduction compared withFig. 13:1-SPYs prefetch accuracy compared with AsmDB:
AsmDB: I-SPY removes 15.7% more misses than AsmDB. SPYachieves an average of 8.2% better accuracy than AsmDB.

Fig. 12: Speedup achieved by conditional prefetching afdg. 14: I-SPYs static code footprint increase compared
prefetch coalescing over AsmDB: Conditional prefetchingp AsmDB: I-SPY statically injects 37% (average) fewer
often offers better speedup than coalescing, but their combiriedtructions than AsmDB.

speedup is signi cantly better.

dynamic code footprints. First, we illustrate the static code

prefetching and prefetch coalescing mechanisms contributefdgotprint increase induced BySPYin Fig. 14. We also compare
net application speedup. We show the performance improagainst AsmDB's static code footprint.
ment achieved by these novel mechanisms over AsmDB, acros$\Ve observe that-SPY increases the static code footprint by
all nine applications. We make two observations. 5.1% - 9.5% across all applications. By coalescing multiple

First, we note that both conditional prefetching and prefetgirefetches into a single prefetch instructit§PY introduces
coalescing provide gains over AsmDB across all applicatiofiewer prefetch instructions into the application's binary. In
Conditional prefetching improves performance more thamontrast, we nd that AsmDB increases the static code footprint
coalescing for eight of our applications, since it covers moreriruch more starkly—7.6% - 15.1%.
cache misses with better accuracyvhrilator, we observe that Next, we study by how muchSPY increases the dynamic
coalescing offers a better performance since 75%eoilator's application footprint in Fig. 15 across all nine applications.
misses have a high spatial locality even within a cache livee note thai-SPY executes 3.7% - 7.2% additional dynamic
window of 8 lines. instructions since it covers I-cache misses by executing injected

Second, we nd that the performance gains achieved lspde prefetch instructions. We observe that AsmDB has a higher
conditional prefetching and prefetch coalescing are not strictlynamic instruction footprint across eight applications (ranging
additive. Asl-SPY only coalesces prefetches that have the sarfrem 5.5% - 11.6%), since it does not coalesce prefetches like
condition, many prefetch instructions that depend on differeRSPY. For verilator, I-SPYs dynamic footprint is higher than
conditions are not coalesced. Yet, combining both techniquesmDB sincel-SPY covers 28.4% more misses than AsmDB
offers better speedup than their individual counterparts. by executing more prefetch instructions, while also providing
Prefetch accuracy.We portray the prefetch accuracy achieve85.9% performance improvement over AsmDB.
by I-SPY across all nine applications in Fig. 13. We alsGeneralization across application inputs. To determine
comparel-SPYs prefetch accuracy against AsmDB. whetherl-SPY achieves a performance improvement with an

We nd that I-SPY achieves an average of 80.3% prefetchpplication input that is different from the pro led input, we
accuracy. Furthermord;SPYs accuracy is 8.2% (average)characterizd-SPYs performance for ve different inputs fed
better than AsmDB's accuracy, sindeSPYs conditional to three of our applications€rupal, mediawikj wordpress
prefetching avoids trading off prefetch accuracy for mig#ig. 16). We choose these three applications, because they
coverage, unlike AsmDB. have the greatest variety of readily-available test inputs that
Static and dynamic code footprint increase We next eval- we can run. We compareSPY against AsmDB in terms of
uate by how mucH-SPY increases applications' static anddeal cache performance.

Fig. 15:1-SPYs dynamic code footprint increase comparefig. 17:1-SPYs conditional prefetching achieves better per-
to AsmDB: On averagd;SPY executes 36% fewer prefetchformance with an increase in the number of predecessors
instructions than AsmDB. comprising the context.

Fig. 16:1-SPYs performance compared against AsmDB foFig. 18:I-SPYs average performance variation in response
different application test inputs:SPY outperforms AsmDB to changes in the minimum (left) and the maximum (right)
when the application input differs from the pro led input. prefetch distance.

We observe thal-SPY achieves a speedup that is closer tprocess takes tens of minutes to complete with more than 4
the ideal speedup than the speedup provided by AsmDB acrpssdecessors, which can be a bottleneck in the build process.
all test inputsl-SPYis more resilient to the input changes tharsincel-SPYs conditional prefetching achieves more than 85%
AsmDB because of conditional prefetchingSPY achieves of ideal cache performance even with four predecessers,
at least 70% (up to 86.84%) of ideal cache performance 8PYs design uses four predecessors to de ne context and

inputs that are different from the pro led input. keeps the computational overhead of context discovery low.
Minimum and maximum prefetch distance. We next analyze

B. I-SPY: Sensitivity Analysis how I-SPYs performance varies with an increase in the

We next evaluate howSPYs performance varies in responsgninimum and maximum prefetch distances, in Fig. 18. We

to variations of the different system parameters. observe thatl-SPY achieves maximum performance for a

Number of predecessors comprising the contextn Fig. 17, minimum prefetch distance of 20-30 cycles (which is greater
we observe how thé&SPY conditional prefetching's perfor- than typical L2 access latency but less than L3 access latency).
mance varies in response to a variation in the number @n the other hand, an increase in the maximum prefetch
predecessors comprising the context condition (seellbéc). distance always improvesSPYs performance. However, the
We vary predecessor counts from 1 to 32 (with a geometiitcrease is very slow after 200 cycles. Based on these results,
progression of 2) and show theSPY conditional prefetching's we use 27 cycles as the minimum prefetch distance, and 200
average performance improvement across all nine applicatigh&les as the maximum prefetch distance F&PY.

We nd that thel-SPY conditional prefetching's performanceCoalescing size We next study the sensitivity oFSPYs
improves with an increase in the number of predecess@refetch coalescing to the coalesce bitmask size X8e8)
composing the context condition. Using more predecessditsFig. 19. We vary the coalesce bitmask size from 1 bit to
enables a more complete context description, and sligh@¢ bits, prefetching up to 2 and 65 cache lines using a single
improves performance by predicting I-cache misses monstruction, respectively. We then measure the percentage of
accurately. However, a large number of predecessors impdideal speedup achieved SPYs prefetch coalescing as an
a signi cant context-discovery computation overhead. Speciaverage across all applications.
cally, the search space of possible predecessor candidates growse note that-SPYs performance improves slightly with a
exponentially with the number of predecessors comprisif@rger bitmask, since larger bitmasks enable coalescing more
the context condition. Consequently, the context discovetgche lines, reducing spurious evictions. However, a large

Fig. 19:1-SPYs average performance variation in response f5i9. 21: (left) I-SPYs false positive rate variation in response

increasing the coalescing size: Larger coalescing sizes achilf¢d" increase in context size: False positives are reduced
higher gains. with a larger context; (right)-SPYs static code footprint size

variation in response to context size: Static code footprint
increases with an increase in context size.

Prefetching already resident cache lines.Although our
process of discovering high-probability contexts that lead to
cache misses is effective, we also found that many times,
the target cache line of @prefetch is already resident in
the cache. However, the overhead of such resident prefetch
operations is low since they do not poison the cache by bringing
in new unnecessary cache lines. To make this overhead even
Fig. 20: (left) The probability of coalesced prefetching reducdewer, we design our proposed prefetch instructions such that
with an increase in cache line distance. (right) Coalesctity are always inserted with a lower priority as demand loads
prefetch instructions usually bring in less than 4 cache linei regards to the replacement policy.
Prefetching within JITted code. Most instruction cache
misses in code generated at run time are out®PYs scope.
bitmask will introduce hardware design complexities sinog/hile I-SPY is able to prefetch for some of these misses via
the microarchitecture must now support additional in- ighCprefetch instructions inserted into non-JITted code, there
prefetch operations. Similar to prior work [3], to minimizeare still up to 10% of code misses in JITted code (mostly
hardware complexity, we desigrSPY with an 8-bit coalescing for the three HHVM applicationswordpress drupal, and
bitmask, since it can be implemented with minor hardwargediawik) that are not covered. To handle these additional
modi cations (as described inlll-B). misses|-SPY could be integrated with a JIT compiler since
Additionally, we examine which and how many nearby cachal of I1-SPYs of ine machinery (which leverages hardware
lines a coalesced prefetch instruction typically prefetches fperformance monitoring mechanisms) can, in principle, be used
all nine applications. As shown in Fig. 20, the probabilitpnline by the runtime instead.
of coalesced prefetching reduces with an increase in cache
line distance. Moreover, most coalesced prefetch instructions VIIl. RELATED WORK
(82.4% averaged across nine applications) prefetch less thamhe performance criticality of instruction cache misses has
four cache lines. resulted in a rich body of prior literature. We discuss three
Context hash sizeWe next analyze howSPYs false positive categories of related work.
rate varies with an increase in the context hash size, in Fig. 3bftware prefetching. Several software techniques [17, 21, 48—
We study thevordpressbenchmark since its speedup is heavil3] improve instruction locality by relocating infrequently exe-
impacted by prefetch accuracy (see Fig. 3). cuted code via Pro le-Guided Optimizations (PGO) at compile
We observe that increasing the number of bits in the contdkne [17], link time [16, 18], or post link time [15, 19]. However,
hash reduces the false positive rate. However, an increasenéing the optimal cache-conscious layout is intractable in
the context hash size increases the static code footprint,pagctice [2], since it requires meandering through a vast number
shown in Fig. 21. To minimize the static code footprint whil®f control-ow combinations. Hence, existing techniques
still achieving a low false positive raté,SPYs design uses a must oftentimes make inaccurate control- ow approximations.
16-bit context hash—13% false positive rate and 4.6% staéhereas PGO-based techniques have been shown to improve
code increase. data center application performance [17, 19], they still eliminate
only a small subset of all instruction cache misses [2].
VII. DiscussIoN Hardware prefetching. Hardware instruction prefetching tech-
In this section we discuss some limitations|eéBPY and niques began with next-line instruction prefetchers that exploit
offer potential solutions. the common case of fetching sequential instructions [54].

	Introduction
	Understanding the Challenges of Instruction Prefetching
	What Information is Needed to Efficiently Predict an I-Cache Miss?
	When To Prefetch an Instruction?
	Where to Inject a Prefetch?
	How to Sparingly Prefetch Instructions?

	I-SPY
	Conditional Prefetching
	Prefetching Coalescing

	Usage Model
	Evaluation Methodology
	Evaluation
	I-SPY: Performance Analysis
	I-SPY: Sensitivity Analysis

	Discussion
	Related Work
	Conclusion
	References

