
Stop! Hammer Time: Rethinking Our Approach to
Rowhammer Mitigations

Kevin Loughlin

kevlough@umich.edu

University of Michigan

Stefan Saroiu

ssaroiu@microsoft.com

Microsoft

Alec Wolman

alecw@microsoft.com

Microsoft

Baris Kasikci

barisk@umich.edu

University of Michigan

ABSTRACT
Rowhammer attacks exploit electromagnetic interference

among nearby DRAM cells to flip bits, corrupting data and al-

tering system behavior. Unfortunately, DRAM vendors have

opted for a blackbox approach to preventing these bit flips,

exposing little information about in-DRAM mitigations. De-

spite vendor claims that their mitigations prevent Rowham-

mer, recent work bypasses these defenses to corrupt data.

Further work shows that the Rowhammer problem is actually

worsening in emerging DRAM and posits that system-level

support is needed to produce adaptable and scalable defenses.

Accordingly, we argue that the systems community can

and must drive a fundamental change in Rowhammer mitiga-

tion techniques. In the short term, cloud providers and CPU

vendors must work together to supplement limited in-DRAM

mitigations—ill-equipped to handle rising susceptibility—

with their own mitigations. We propose novel hardware

primitives in the CPU’s integrated memory controller that

would enable a variety of efficient software defenses, offer-

ing flexible safeguards against future attacks. In the long

term, we assert that major consumers of DRAM must per-

suade DRAM vendors to provide precise information on their

defenses, limitations, and necessary supplemental solutions.

CCS CONCEPTS
• Security and privacy→ Systems security; Security in
hardware.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HotOS ’21, June 1–3, 2021, Ann Arbor, MI, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8438-4/21/05.

https://doi.org/10.1145/3458336.3465295

KEYWORDS
Rowhammer, DRAM Disturbance, Security

ACM Reference Format:
Kevin Loughlin, Stefan Saroiu, Alec Wolman, and Baris Kasikci.

2021. Stop! Hammer Time: Rethinking Our Approach to Rowham-

mer Mitigations. InWorkshop on Hot Topics in Operating Systems
(HotOS ’21), June 1–3, 2021, Ann Arbor, MI, USA. ACM, New York,

NY, USA, 8 pages. https://doi.org/10.1145/3458336.3465295

1 INTRODUCTION
DRAM is the most prominent main memory technology,

attractive due to its high density and low cost. DRAM cells are
organized in row-column arrays, accessed by first activating
a row (i.e., connecting it to a buffer) and then reading from

or writing to this buffer. Since cells leak charge over time,

rows are periodically refreshed to retain their data.

Unfortunately, as DRAM density increases with succes-

sive module generations (desirable for cost and efficiency

reasons), so too does the electromagnetic interference among

physically-proximate DRAM rows. Ultimately, this rising in-

terference increases DRAM disturbances [32], wherein bit

values in nearby rows of DRAM are flipped .

Concerningly, Rowhammer attacks [12, 14, 15, 19, 20, 27,

28, 30, 32, 35, 40, 43, 45–47, 50–52, 58] show that certain

memory access patterns can increase the frequency of DRAM

disturbances. In particular, frequently activating one or more

aggressor rows—prior to the scheduled refreshes of nearby

victim rows—may cause bit flips in the victim rows.

These hardware-level bit flips manifest as system-level

problems, with particularly troubling ramifications in multi-

tenant computing environments (e.g., the cloud). For in-

stance, one tenant may corrupt the data of another, leading

to data loss or machine shutdown/failure. In other scenarios,

flips of security-critical bits (e.g., page table permission bits

[47]) can compromise an entire host.

To date, DRAM vendors have shown years of unwilling-

ness (perhaps due to economic reasons) to provide a com-

prehensive solution to Rowhammer. Despite vendor claims

88

https://doi.org/10.1145/3458336.3465295
https://doi.org/10.1145/3458336.3465295


HotOS ’21, June 1–3, 2021, Ann Arbor, MI, USA Loughlin et al.

that their defenses prevent all Rowhammer attacks [38, 42],

recent work [14, 15] demonstrates that Rowhammer exploits

remain viable. Given the blackbox nature of vendor miti-

gations, system administrators are left largely powerless to

prevent these attacks, just as they were the original exploits.

In fact, recent work [30] argues that optimal defenses

should include software support. The authors show that pro-

posed hardware mitigations [32, 37, 60] struggle to scale or

cannot provide comprehensive protection given increasing

DRAM density. Consistent with these findings, state-of-the-

art follow-up defenses [44, 59] are limited by worsening per-

formance overhead and a need for increasing SRAM or CAM

area (i.e., relatively-expensive memory) as density increases.

However, existing software defenses [4, 7–9, 19, 26, 26, 34,

39, 52, 57, 62] cannot achieve compehensive and practical

protection due to the lack of hardware-based Rowhammer

management primitives. For instance, ANVIL [4] relies on

information from performance counters that do not account

for direct memory accesses (DMAs); this leaves the system

vulnerable to DMA-based Rowhammer attacks [52, 56], a

concerning threat surface for cloud providers.

The shortcomings of both hardware and software defenses

highlight the need for a hardware-software co-design to mit-

igate Rowhammer. More specifically, current hardware de-

fenses need software support to adapt and scale to emerging

attacks, while software defenses need hardware assistance

to effectively mitigate attacks.

Fortunately, despite years of incomplete and blackbox mit-

igations from DRAM vendors, CPU vendors can still provide

hardware assistance for defenses. We argue that CPU ven-

dors should add a new set of Rowhammer management prim-

itives to the CPU’s integrated memory controller. Compared

to DRAM vendors, CPU vendors have shown a willingness

to expose a relatively-high number of memory management

features to programmers, including a variety of performance

counters [23] and BIOS configuration parameters [24].

We motivate our proposed memory controller primitives

with key insights about Rowhammer attacks and existing

defenses, producing a novel taxonomy of mitigation ap-

proaches: isolation-centric, frequency-centric, and refresh-cen-
tric. We show that system admins (e.g., cloud providers)

can use our primitives to produce scalable and adaptable

software defenses according to this taxonomy. Finally, we

conclude with a long-term outlook on how major consumers

of DRAM can drive the changes in hardware-software co-

design needed for a comprehensive solution to Rowhammer.

2 BACKGROUND
In this section, we provide background on DRAM and a novel

taxonomy of Rowhammer defenses to understand our new

hardware primitives and software defenses.

DRAM BANK
C0 C1 C2 C3

Subarray A
R0 - - - -
R1 1 1 0 1

Subarray B
R2 1 0 1 1
R3 0 1 0 0

CACHES
CORES

MC
ACT

Row Buffer (R0)
0 1 1 0

RD/WR

Figure 1: A simplified memory system. Memory con-
troller 𝑀𝐶 activates row 𝑅0 in subarray 𝐴, connecting
it to the bank’s row buffer for read/write commands.

2.1 DRAM+Rowhammer: A Crash Course
DRAM modules (e.g., SO-DIMMs in laptops and DIMMs

in servers) consist of numerous banks, where each bank

is a set of row-column subarrays of cells. A cell’s charge

distinguishes a particular bit as either 0 or 1.

Modules are programmed via a memory controller. For

instance, the memory controller converts requests targeting

CPU physical addresses into commands targeting DDR logi-
cal addresses (e.g., bank, row, column) according to a fixed

mapping determined by BIOS settings [11].

To actually read/write the cells within a particular row,

the memory controller must first issue an activate (ACT)

command to the row containing the cells, thereby connecting

this row to its encompassing bank’s row buffer for processing.
Such an ACT is shown in Fig. 1, where a module is depicted

as a single bank with two 2 × 4 subarrays for simplicity. We

note that each bank has its own row buffer, and a bank may

contain hundreds of subarrays that share its row buffer.

At this point, the memory controller can issue read (RD)

or write (WR) commands to cache line-sized column offsets

within the activated row, until the row is precharged (i.e., de-

activated); precharge (PRE) commands are typically issued

so that another row in the same bank may occupy the row

buffer for RDs/WRs. In line with processor cache behavior,

RDs/WRs that hit in the row buffer are faster than those that

necessitate an ACT before the data access can proceed.

Because DRAM cells leak their charges over time, themem-

ory controller periodically issues refresh (REF) commands

such that each row’s cells are recharged (i.e., repaired) be-

fore losing their bit values. Typically, each 8 KB row must be

refreshed within 64 milliseconds of its last refresh, where the

module cycles through its rows during this refresh interval.
We note that an ACT of a row also repairs the row as a side

effect; thus, an ACT can essentially be used for row refresh.

Unfortunately, Rowhammer attacks [32] show that fre-

quent ACTs of the same row(s)—induced by certain memory

access patterns—can corrupt data in physically-proximate
rows. In particular, alternating RDs or WRs to a set of aggres-
sor rows within a single bank necessitate alternating ACTs

89



Stop! Hammer Time: Rethinking Our Approach to Rowhammer Mitigations HotOS ’21, June 1–3, 2021, Ann Arbor, MI, USA

of these aggressors due to bank conflicts (i.e., row buffer con-

tention). In turn, because of the electromagnetic interference

among physically-proximate rows, these frequent ACTs may

disturb the charges in nearby victim rows.

More precisely, each row can safelywithstand a per-module

maximum activation count (MAC) of ACTs within a refresh

interval. However, if one or more aggressors surpass their

MACs before a (potential) victim row is refreshed, the vic-

tim’s data may be corrupted. Victim rows are those found up

to 𝑏 rows away from an aggressor, where 𝑏 defines an aggres-

sor’s blast radius (which varies across DRAM technologies).

Notably, attackers with knowledge of DRAM address map-

pings can target specific data for corruption. While DRAM

occasionally remaps two logically-adjacent rows to differ-

ent internal locations [11], these remaps (and thus, internal

adjacency) can be revealed via established methods. In partic-

ular, prior work [11, 15, 30, 34] uses the success or failure of

Rowhammer attacks themselves—which require physically-

proximate rows—to infer row adjacency.

2.2 Rowhammer Mitigations: A Taxonomy
At a high level, mounting a Rowhammer attack requires

three conditions. First, at least one victim row must be lo-

cated within the blast radius of at least one aggressor row.

Second, one or more of the aggressor rows must be activated

greater than MAC times within a refresh interval. Third, the

victim row(s) must not themselves be refreshed before the

aggressor(s) surpass the MAC.

Thus, Rowhammer defenses should eliminate one of these

conditions, yielding our novel taxonomy of viable mitiga-

tions: isolation-centric, frequency-centric, and refresh-centric.
We note that concurrent work [59] offers a similar taxonomy.

Isolation-Centric. Isolation-centric mitigations (e.g., [7,

8, 34, 57]) aim to physically isolate the rows from two dif-

ferent trust domains such that no cross-domain aggressor-

victim relationships exist (e.g., a process cannot hammer

another). For instance, ZebRAM [34] places 𝑏 restricted-use

“guard” rows between each potential aggressor-victim pair

(where 𝑏 is equal to the blast radius). Notably, isolation-

centric mitigations typically do not prevent intra-domain

DRAM disturbances (i.e., where an aggressor-victim relation-

ship exists within a single domain, potentially inadvertently).

Frequency-Centric. Frequency-centric mitigations (e.g.,

[55, 59]) try to prevent the dangerously-frequent ACTs of

aggressor rows needed to disturb nearby victim rows. For

instance, BlockHammer [59] throttles (i.e., rate-limits) ACTs

of aggressor rows according to a set of proposed memory

controller counters, ensuring the number of ACTs to any

row during a refresh interval stays below the MAC.

Refresh-Centric. Finally, refresh-centricmitigations (e.g.,

[4, 15, 32, 37, 48, 60, 62]) seek to refresh potential victim rows

before they experience bit flips. More specifically, these de-

fenses use a set of hardware and—in some cases—software

mechanisms to identify potential victim rows. The defense

systems then proactively refresh these victims before the

corresponding aggressor row(s) reach their MACs.

3 D(R)AMIT, I CAN’T DO IT BY MYSELF!
Concerningly, recent work [30] demonstrates that the Row-

hammer problem is worsening in successive DRAM gener-

ations. Specifically, as emerging DRAM technology nodes

become denser, the electromagnetic interference among rows

worsens, resulting in greater blast radii and orders-of-magni-

tude fewer ACTs (i.e., lower MACs) needed to induce charge

leakages. Furthermore, lower MACs imply that a greater

number of rows can act as aggressors (i.e., bypass the MACs).

Thus, while various hardware defenses have been pro-

posed [15–17, 21, 29–32, 37, 38, 42, 44, 48, 53–55, 59, 60], re-

cent work has concluded that even the state of the art among

them either (a) cannot provide comprehensive protection or

(b) require significant overheads to scale to denser DRAM

technology [30]. Ultimately, DRAM experts have identi-
fied hardware-software cooperative mitigations as a
key avenue for addressing the scalability challenges
of Rowhammer defenses going forward [30].
Unfortunately, sufficient hardware support for Rowham-

mer defenses is unlikely to come from DRAM vendors in the

immediate future. First, DRAM vendors continue to expose

little information about their Rowhammer mitigations and

potential limitations, possibly due to a desire to maintain

trade secrets about their DRAM design.

Second, even today’s DRAM modules (let alone tomor-

row’s) are still vulnerable to Rowhammer [14, 15], despite

vendors originally claiming the opposite [38, 42]. Prior work

[14, 15] has shown that in-DRAM blackbox defenses (Target

Row Refresh, or TRR) mitigate attacks by tracking a small

number 𝑛 of aggressor rows (where 𝑛 varies by module and

vendor), but can be bypassed with > 𝑛 aggressors. Given

increasing numbers of aggressors, this a bleak observation.

4 CHANGING THE GAMEWITH NEW
PRIMITIVES

In contrast to hardware defenses, software defenses tend to

require less invasive—if any—changes to memory system

hardware, with the added benefit that software implemen-

tations allow for adapting to yet-unknown exploit patterns.

Unfortunately, as we will show, software defenses presently

lack sufficient support from hardware to provide comprehen-

sive and practical protection against Rowhammer attacks.

However, while a solution to the Rowhammer problem

would ideally include changes to DRAM, we argue that the

90



HotOS ’21, June 1–3, 2021, Ann Arbor, MI, USA Loughlin et al.

Class MC Primitive Corresponding Software Defense(s) Optional DRAM Assistance

Isolation Subarray-isolated interleaving Subarray-aware memory allocation Internal subarray mappings

Frequency Precise ACT interrupt event Aggressor remapping, cache line locking -

Refresh CPU refresh instruction Efficient software refresh of victim rows REF_NEIGHBORS command

Table 1: Summary of proposed memory controller (MC) primitives, corresponding software defense(s), and op-
tional assistance from DRAM by mitigation class.

current limitations of software defenses can still be over-

come via minor changes to the CPU’s integrated memory

controller. Compared to DRAM vendors, CPU vendors have

demonstrated a willingness to expose a plethora of informa-

tion and configuration parameters, including various mem-

ory controller performance counters [23] and memory con-

figuration settings in the BIOS [24].

We therefore discuss three key limitations in the context

of implementing isolation-, frequency-, and refresh-centric

software mitigations on existing CPUs. We then describe

how to address each of these limitations with simple ex-

tensions to the memory controller (summarized in Table 1),

thereby forming the primitives necessary to produce effi-

cient and practical isolation-, frequency-, and refresh-centric

defenses in software. We plan to precisely evaluate the bene-

fits/drawbacks of these defenses in future work (e.g., using

the gem5 [6, 41] microarchitectural simulator); the RISC-V

[3] ecosystem offers a viable alternate evaluation platform.

Notably, we largely assume that the host OS (e.g., the

hypervisor) is trusted to implement and enforce these miti-

gations. We provide considerations for enclave memory (e.g.,

Intel SGX [13]) at the end of this section.

4.1 Isolation-Centric: Interleave It To Me
Problem: InterleavingMixesTrustDomains. Implement-

ing isolation-centric defenses in software—wherein aggres-

sor rows from one trust domain 𝑑1 (e.g., a process) cannot

disturb victim rows from another domain 𝑑2—requires that

the host OS’s page-level memory allocator can ensure data

from 𝑑1 is outside the blast radius 𝑏 of data from 𝑑2 in DRAM.

Such isolation has been achieved by placing 𝑏 “guard” rows

between trust domains [34], or using a bank-aware memory

allocator [7, 8, 61] to place 𝑑1 and 𝑑2 on different banks.

However, prior work [7, 8, 34, 61] fails to sufficiently ac-

count for the complexity and performance benefits of mem-
ory interleaving on modern systems. Because a bank can

only process one command at a time, the memory system

interleaves (i.e., spreads) consecutive cache lines from the

CPU’s physical address space across the system’s numerous

banks [63]. Such interleaving achieves bank-level parallelism

when accessing physically-consecutive cache lines (i.e., con-

secutive lines can be accessed simultaneously for efficiency).

Unfortunately, such interleaving also distributes lines from

different pages (i.e., potentially different trust domains) into

the same bank. While interleaving can be disabled in the

BIOS (allowing the memory allocator to isolate pages from

different domains to specific banks), this eliminates the per-

formance benefits of bank-level parallelism [10, 33, 36, 49, 63]

(i.e., parallelism measured to reduce execution time for cer-

tain applications by over 18% [49]) and is thus an undesirable

solution for production environments.

Primitive: Subarray-Isolated Interleaving. We argue

that there is a middle ground, where existing interleaving

(and its performance benefits) can remain fully-enabled, while

pages from different trust domains can be isolated. Namely,

rather than BIOS support for bank-aware memory allocation,

we propose support for subarray-aware memory allocation.

Recall from Fig. 1 that a DRAM bank consists of a set of

row-column subarrays. Notably, each subarray within a bank

is electromagnetically-isolated from the others (i.e., they do

not share bit lines) [10, 33], meaning data from different trust

domains can be placed on different subarrays to prevent

inter-domain aggressor-victim relationships. For instance,

in a cloud environment, subarray isolation can be used to

prevent inter-VM Rowhammer attacks.

Therefore, we posit that CPU vendors should provide a

BIOS configuration option to enable subarray-isolated in-
terleaving in each memory controller, as shown in Fig. 2.

This option provides the host OS with two key features.

First, cache lines from the same page will map to the same

subarray group (i.e., set of specific subarrays across banks).

Second, the host OS will be able to specify—either directly

or indirectly—the trust domain of each page, such that the

memory controller enforces that pages from the same trust

domain map to the same subarray group.

From a software convenience standpoint, a direct specifi-

cation would allow the host OS and memory controller to

coordinate trust domains via an address space ID (ASID) tag

per domain, akin to those already used in the TLB. However,

if CPU vendors are unwilling to add hardware to track the

mappings for a set of ASIDs, the memory controller already

provides indirect support via its known set of CPU physical

to DDR logical address mappings [11]; knowledge of these

mappings has been used to allocate specific physical pages

on specific banks [7, 8, 34, 61] and can similarly be used to

map specific physical pages to specific subarray groups.

In an ideal world, DRAM vendors would also facilitate

subarray-isolated interleaving by exposing DRAM-internal

91



Stop! Hammer Time: Rethinking Our Approach to Rowhammer Mitigations HotOS ’21, June 1–3, 2021, Ann Arbor, MI, USA

VM y
VM x

VM z

SubArr Bank0Bank1Bank2
CL0 CL1 CL2
CL3 CL4 CL5
CL0 CL1 CL2
CL3 CL4 CL5
CL0 CL1 CL2
CL3 CL4 CL5

A

B

C

Domains

Host
Allocator

Memory
Controller

Figure 2: An example of subarray-isolated interleav-
ing. The host memory allocator and memory con-
troller cooperate to ensure that different trust do-
mains (VMs 𝑥 , 𝑦, and 𝑧) can reap the performance
benefits of interleaving their consecutive cache lines
CL0-CL5 across banks 0, 1 and 2. For security, the
lines from each domain are restricted to per-domain,
Rowhammer-isolated subarray(s): in this case, single
subarray mappings of 𝑥 → 𝐴, 𝑦 → 𝐵, and 𝑧 → 𝐶.

subarray mappings in the DDR logical address space, akin

to what is already done with bank mappings. However, even

without this information, internal subarray mappings can

be inferred via the same methods used to infer internal row

adjacency/remappings (§2.1); that is, the success or failure

of Rowhammer attacks within a bank can be used to infer

subarray boundaries from software.

Notably, DRAM could still remap a row from its logical

subarray to a different internal subarray, posing a threat to

subarray isolation. Thankfully, the host OS can use the in-

ferred DRAM subarray mappings—coupled with knowledge

of CPU to DDR logical address mappings—to ensure that all

rows are allocated with their internal subarrays.

4.2 Frequency-Centric: Context Welcome
Problem: ACT Interrupts Lack Context. Implementing

frequency-centric defenses in software necessitates the abil-

ity to identify potential aggressor rows (i.e., rows experienc-

ing frequent ACTs). While modern Intel memory controllers

can count ACTs per channel [22]—as well as interrupt system

software after a host OS-configurable number of ACTs—they

do not provide any information about the specific row be-

ing activated, nor the specific RD/WR command causing the

ACT. Thus, system software is powerless to determine which

address(es) to take action on in response to an ACT interrupt.

Primitive: Precise ACT Interrupt Events. To support

identifying potential aggressors, CPU vendors should aug-

ment the existingACT_COUNT overflow event [22] to report

the physical address causing the latest ACT. Doing so would

allow the host OS to probabilistically identify and react to

potential aggressor rows/hot cache lines within. We note

that this address information would be consistent with that

already reported by various cache events on Intel [23].

More precisely, recall from §2.1 that ACT commands are

issued when the cache line needed for a RD/WR is not in

a row buffer. Thus, we propose that upon overflow, the

ACT_COUNT interrupt event should report the physical

(cache line) address of the most recent RD/WR to have trig-

gered an ACT of the row. The host OS can then reset the

counter to an arbitrary value, probabilistically identifying

aggressors according to specific MACs. By also including a

degree of randomness in counter reset values, the host OS

can prevent attackers from avoiding detection.

The host OS can use the address information provided

by the interrupt to limit near-future ACTs of the encom-

passing row (i.e., within the refresh interval) in a variety of

ways. For instance, software could implement a form of ACT

wear-leveling by remapping and moving the row’s data to

a new physical location, either in DRAM or another stor-

age device. To improve the efficiency of this data transfer,

the CPU could support an uncore (i.e., off-core but on the

CPU chip) move instruction using buffers in the memory

controller, thereby avoiding the need to transfer data to and

from on-core registers to relocate a line.

Alternatively, with the addition of cache line locking sup-

port (i.e., instructions or other mechanisms that temporarily

pin a line to the processor cache, already available on many

ARM processors [2, 18]), system software could use cache

line locking for the duration of a refresh interval as a first

line of defense. In particular, one or more ways in the LLC

could be used for locked lines; data remapping and move-

ment would then only be used as a fallback if the way(s)

become full. Ultimately, such locking could improve access

time for the line in question, prevent its continued use in

ACT generation, and avoid a potentially costly data transfer.

4.3 Refresh-Centric: A Refreshing Take
Problem: SWCan’t Directly Refresh Rows. Refresh-cen-
tric defenses must proactively refresh potential victim rows

(i.e., rows that are near aggressor rows). Given methods for

determining aggressors (§4.2) and row adjacency (§2.1), we

focus on how to refresh potential victims.

Unfortunately, software has at best inefficient and poten-

tially unreliable mechanisms to refresh rows. In particular,

the REF command does not include a row address argument,

meaning the memory controller/software cannot use it to

refresh specific rows; instead, the ACT command (which

takes a row address argument) must be used (§2.1). How-

ever, software still lacks the ability to directly issue ACTs to

DRAM, with this decision left up to the memory controller.

Thus, software defenses cannot directly refresh rows.

In fact, software can only potentially refresh a specific

row via a series of convoluted memory instructions (e.g.,

loads/stores). To reach the memory controller, the load/store

92



HotOS ’21, June 1–3, 2021, Ann Arbor, MI, USA Loughlin et al.

must first miss in the cache, generally requiring software

cache manipulation (e.g., a preceding flush instruction, if

available) and strict ordering (e.g., memory fences) to reliably

occur. At this point, the memory controller then converts the

load/store into a set of RD/WR, ACT, and PRE commands; the

specific set of commands issued depends on the state of the

row buffers—information which is not directly exposed to

software. Ultimately, this indirection introduces inefficiency

and imprecision to defenses, especially in the presence of

noise (e.g., memory operations from other cores/devices).

Primitive: ARefresh Instruction.To address software’s
lack of control over which rows are refreshed, we propose

that the CPU should expose an instruction refresh whose

effect is to refresh a specific row of DRAM. We liken this

to Intel’s patented mechanism for targeted refreshes via the

memory controller [5]. However, in our case, the refresh

instruction would be exposed in the ISA and—crucially—not

require additional support from DRAM. Because the ACT

side effect of the refresh instruction could be abused to

carry out a Rowhammer attack, refresh should be a host-

privileged instruction (i.e., only executable by the host OS).

The refresh instruction will take as an argument a virtual

address va—which maps to a particular DRAM row—and a

bit ap indicating whether to auto-precharge the row after

activation to prevent bank conflicts. The instruction will be

implemented as follows. First, the TLB will translate va to

its corresponding physical address, which the memory con-

troller will convert to a row address. Second, the memory

controller will issue a PRE command to the row’s encompass-

ing bank to clear its row buffer. Third, the memory controller

will issue an ACT command to the desired row, thereby ef-

fectively performing the refresh. Fourth, if the ap bit is set,

the memory controller will issue another PRE command to

the bank to clear the row buffer for subsequent accesses.

Finally, in an ideal world with support from DRAM, the

DDR standard would include a REF_NEIGHBORS command,

similar to that proposed in prior work [37, 44]. However,

in addition to taking an aggressor row address as an argu-

ment, we propose that the command should also accept a

blast radius 𝑏 for adaptability to emerging threats. DRAM

would then automatically refresh the potential victims of the

provided aggressor row up to 𝑏 rows away.

4.4 What About Enclave Memory?
The preceding discussion assumes that the host OS is trusted

to implement and enforce the described mitigations. Notably,

in certain enclave execution contexts (e.g., Intel SGX [13],

Intel TDX [25], and AMD SEV [1]), only the enclave itself

and hardware are trusted. Thus, these scenarios require ad-

ditional considerations for software Rowhammer defenses.

Strictly-speaking, if enclave memory is checked for in-

tegrity upon access, then Rowhammer attacks can only cause

system-wide denial-of-service (as opposed to arbitrary be-

havior changes stemming from data corruption). More specif-

ically, upon a failed integrity check, the system will lock up

and require a reset [27]. Because the host OS is untrusted

and can already tamper with the integrity of enclave pages

(i.e., without Rowhammer), such denial-of-service attacks

are typically not considered in enclave threat models.

However, if enclave memory is not integrity-checked upon
access, then the system must prevent (or at least, detect and

gracefully shutdown upon) bit flips to ensure security. For

isolation-centric defenses, the CPU could report the subar-

ray(s) upon which the enclave resides in terms of physical

addresses, such that the enclave may simply verify its vir-

tual to physical address mappings (as is already done [13]).

For frequency-centric defenses, the CPU could report ACT

interrupts directly to enclaves, such that they might infer

they are under attack and either (a) require a remap to a new

location or (b) peacefully exit where permissible. Finally, for

refresh-centric defenses, we posit that in the presence of

subarray-isolated memory, an enclave could be permitted to

issue refresh instructions to addresses mapped within its

address space. We leave the exploration of these solutions to

future work.

5 OUTLOOK: OPTIMAL FIXES
In this paper, we have described the limitations of and discon-

nect between existing hardware and software Rowhammer

mitigations. To address these issues, we have proposed a vari-

ety of CPU-based primitives that would enable effective and

practical hardware-software co-design defenses. Nonethe-

less, while a combination of CPU and software mitigations

may prove more immediately-viable than in-DRAM support

(e.g., in terms of scalability, adaptability, and economics), the

root of the Rowhammer problem lies in DRAM.

Thus, in the long-term, we argue that optimal implemen-

tations of our defenses would include collaboration with

both CPU and DRAM vendors. To achieve cooperation from

DRAM vendors, cloud providers, CPU manufacturers, and

other major consumers of DRAM must convince DRAM

vendors to expose the details—and limitations—of their miti-

gations. Doing so would allow software, CPU, and in-DRAM

mitigations to work in tandem to efficiently and scalably

solve the Rowhammer problem once and for all.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive

feedback, as well as Lucian Cojocar, Ishwar Agarwal, Daniel

Berger, Tanj Bennett, Tim Cowles, Brett Dodds, Todd Farrell,

Terry Grunzke, and Todd Merritt for many helpful discus-

sions. Kevin Loughlin has been supported by an NSF Gradu-

ate Research Fellowship (award DGE 1256260).

93



Stop! Hammer Time: Rethinking Our Approach to Rowhammer Mitigations HotOS ’21, June 1–3, 2021, Ann Arbor, MI, USA

REFERENCES
[1] AMD. 2020. AMD Secure Encrypted Virtualization (SEV). https:

//developer.amd.com/sev/.

[2] ARM. 2018. CP15 c9, cache lockdown support. https://

developer.arm.com/documentation/ddi0406/cb/Appendixes/ARMv4-

and-ARMv5-Differences/System-Control-coprocessor--CP15-

support/CP15-c9--cache-lockdown-support.

[3] Krste Asanović and David A Patterson. 2014. Instruction sets should be

free: The case for RISC-V. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2014-146 (2014).

[4] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-

parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. 2016. ANVIL:

Software-Based Protection Against Next-Generation Rowhammer At-

tacks. In ASPLOS.
[5] Kuljit Bains, John Halbert, Christopher Mozak, Theodore Schoenborn,

and Zvika Greenfield. 2015. Row hammer refresh command. US

Patent 9,117,544.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-

hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar

Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM
SIGARCH CAN (2011).

[7] Carsten Bock, Ferdinand Brasser, David Gens, Christopher Liebchen,

and Ahamd-Reza Sadeghi. 2019. RIP-RH: Preventing Rowhammer-

Based Inter-Process Attacks. In Asia CCS.
[8] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen,

and Ahmad-Reza Sadeghi. 2017. CAn’t Touch This: Software-only

Mitigation against Rowhammer Attacks targeting Kernel Memory. In

USENIX Security.
[9] A. Chakraborty, M. Alam, and D. Mukhopadhyay. 2019. Deep Learning

Based Diagnostics for Rowhammer Protection of DRAMChips. InATS.
[10] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu.

2016. Low-Cost Inter-Linked Subarrays (LISA): Enabling fast inter-

subarray data movement in DRAM. In HPCA. https://doi.org/10.1109/

HPCA.2016.7446095

[11] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu,

Alec Wolman, and Onur Mutlu. 2020. Are We Susceptible to Rowham-

mer? An End-to-End Methodology for Cloud Providers. In S & P.
[12] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos.

2019. Exploiting correcting codes: On the effectiveness of ECCmemory

against Rowhammer attacks. In S & P.
[13] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR

Cryptol. ePrint Arch. (2016).
[14] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cris-

tiano Giuffrida, and Kaveh Razavi. 2021. SMASH: Synchronized Many-

sided Rowhammer Attacks from JavaScript. In USENIX Security.
[15] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen,

Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020.

TRRespass: Exploiting the Many Sides of Target Row Refresh. In S &
P.

[16] Mohsen Ghasempour, Mikel Lujan, and Jim Garside. 2015. Armor: A

run-time memory hot-row detector.

[17] Hector Gomez, Andres Amaya, and Elkim Roa. 2016. DRAM row-

hammer attack reduction using dummy cells. In NORCAS.
[18] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui,

Johann Heyszl, and Thomas Eisenbarth. 2017. AutoLock: Why Cache

Attacks on ARM Are Harder Than You Think. In USENIX Security.
[19] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas

Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. 2018.

Another flip in the wall of Rowhammer defenses. In S & P.
[20] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016.

Rowhammer.js: A remote software-induced fault attack in javascript.

In DIMVA.

[21] Hasan Hassan, Minesh Patel, Jeremie S Kim, A Giray Yaglikci, Nandita

Vijaykumar, Nika Mansouri Ghiasi, Saugata Ghose, and Onur Mutlu.

2019. CROW: A low-cost substrate for improving DRAM performance,

energy efficiency, and reliability. In ISCA.
[22] Intel. 2014. Intel Xeon Processor E5 v2 and E7 v2 Product

Families Uncore Performance Monitoring Unit Reference Man-

ual. https://www.intel.com/content/dam/www/public/us/en/

documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf.

[23] Intel. 2017. Intel 64 and IA32 Architectures Performance Monitoring

Events. https://software.intel.com/sites/default/files/managed/8b/6e/

335279_performance_monitoring_events_guide.pdf.

[24] Intel. 2019. Intel Server Board S2600 Family BIOS Setup User Guide.

https://www.intel.com/content/dam/support/us/en/documents/

server-products/Intel_Xeon_Processor_Scalable_Family_BIOS_

User_Guide.pdf.

[25] Intel. 2020. Intel Trust Domain Extensions (Intel TDX). https:

//software.intel.com/content/www/us/en/develop/articles/intel-

trust-domain-extensions.html.

[26] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2018. MAS-

CAT: Preventing Microarchitectural Attacks Before Distribution. In

CODASPY.
[27] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-

Bomb: Locking down the processor via Rowhammer attack. In SysTEX.
[28] Sangwoo Ji, Youngjoo Ko, Saeyoung Oh, and Jong Kim. 2019. Pinpoint

Rowhammer: Suppressing Unwanted Bit Flips on Rowhammer Attacks.

In Asia CCS.
[29] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi. 2014. Ar-

chitectural support for mitigating row hammering in DRAMmemories.

CAL (2014).

[30] Jeremie S Kim, Minesh Patel, A Giray Yaglikci, Hasan Hassan, Roknod-

din Azizi, Lois Orosa, and Onur Mutlu. 2020. Revisiting RowHammer:

An Experimental Analysis of Modern DRAM Devices and Mitigation

Techniques. In ISCA.
[31] M. Kim, J. Choi, H. Kim, and H. Lee. 2019. An Effective DRAM Address

Remapping for Mitigating Rowhammer Errors. IEEE Trans. Comput.
(2019).

[32] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,

Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014.

Flipping Bits in Memory without Accessing Them: An Experimental

Study of DRAM Disturbance Errors. In ISCA.
[33] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur

Mutlu. 2012. A Case for Exploiting Subarray-Level Parallelism (SALP)

in DRAM. In ISCA.
[34] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis An-

driesse, Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi. 2018. Ze-

bRAM: Comprehensive and Compatible Software Protection Against

Rowhammer Attacks. In OSDI.
[35] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020.

RAMBleed: Reading bits in memory without accessing them. In S & P.
[36] Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N Patt. 2009.

Improving memory bank-level parallelism in the presence of prefetch-

ing. In MICRO.
[37] Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh, and Jung Ho Ahn.

2019. TWiCe: preventing row-hammering by exploiting time window

counters. In ISCA.
[38] Jung-Bae Lee. 2014. Green Memory Solution. In Samsung Electronics,

Investor’s Forum.

[39] C. Li and J. Gaudiot. 2019. Detecting Malicious Attacks Exploiting

Hardware Vulnerabilities Using Performance Counters. In COMPSAC.
[40] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster,

Misiker Tadesse Aga, Clémentine Maurice, and Daniel Gruss. 2020.

Nethammer: Inducing Rowhammer faults through network requests.

94

https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://developer.arm.com/documentation/ddi0406/cb/Appendixes/ARMv4-and-ARMv5-Differences/System-Control-coprocessor--CP15-support/CP15-c9--cache-lockdown-support
https://developer.arm.com/documentation/ddi0406/cb/Appendixes/ARMv4-and-ARMv5-Differences/System-Control-coprocessor--CP15-support/CP15-c9--cache-lockdown-support
https://developer.arm.com/documentation/ddi0406/cb/Appendixes/ARMv4-and-ARMv5-Differences/System-Control-coprocessor--CP15-support/CP15-c9--cache-lockdown-support
https://developer.arm.com/documentation/ddi0406/cb/Appendixes/ARMv4-and-ARMv5-Differences/System-Control-coprocessor--CP15-support/CP15-c9--cache-lockdown-support
https://doi.org/10.1109/HPCA.2016.7446095
https://doi.org/10.1109/HPCA.2016.7446095
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf
https://software.intel.com/sites/default/files/managed/8b/6e/335279_performance_monitoring_events_guide.pdf
https://software.intel.com/sites/default/files/managed/8b/6e/335279_performance_monitoring_events_guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/Intel_Xeon_Processor_Scalable_Family_BIOS_User_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/Intel_Xeon_Processor_Scalable_Family_BIOS_User_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/Intel_Xeon_Processor_Scalable_Family_BIOS_User_Guide.pdf
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html


HotOS ’21, June 1–3, 2021, Ann Arbor, MI, USA Loughlin et al.

In Euro S & P Workshop.
[41] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad

Alian, Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils As-

mussen, Brad Beckmann, Srikant Bharadwaj, et al. 2020. The gem5

simulator: Version 20.0+. arXiv preprint arXiv:2007.03152 (2020).
[42] Micron. 2014. DDR4 SDRAM EDY4016A - 256Mb x 16. https:

//www.micron.com/-/media/client/global/documents/products/data-

sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf.

[43] Onur Mutlu. 2017. The RowHammer problem and other issues we

may face as memory becomes denser. In DATE.
[44] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho Ahn,

and Jae W Lee. 2020. Graphene: Strong yet Lightweight Row Hammer

Protection. In MICRO.
[45] Rui Qiao and Mark Seaborn. 2016. A new approach for Rowhammer

attacks. In HOST.
[46] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida,

and Herbert Bos. 2016. Flip feng shui: Hammering a needle in the

software stack. In USENIX Security.
[47] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM

Rowhammer bug to gain kernel privileges. Black Hat (2015). See

also http://googleprojectzero.blogspot.co/2015/03/exploiting-dram-

rowhammer-bug-to-gain.html.

[48] Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo. 2017.

Making DRAM stronger against row hammering. In DAC.
[49] Xulong Tang, Mahmut Kandemir, Praveen Yedlapalli, and Jagadish Ko-

tra. 2016. Improving bank-level parallelism for irregular applications.

In MICRO.
[50] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.

2018. Defeating software mitigations against Rowhammer: a surgical

precision hammer. In RAID.
[51] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel

Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh

Razavi, and Cristiano Giuffrida. 2016. Drammer: Deterministic

Rowhammer attacks on mobile platforms. In CCS.
[52] Victor van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikrish-

nan Padmanabha Pillai, Giovanni Vigna, Christopher Kruegel, Herbert

Bos, and Kaveh Razavi. 2018. GuardION: Practical mitigation of DMA-

based Rowhammer attacks on ARM. In DIMVA.

[53] Yicheng Wang, Yang Liu, Peiyun Wu, and Zhao Zhang. 2019. Detect

DRAM disturbance error by using disturbance bin counters. CAL
(2019).

[54] YichengWang, Yang Liu, PeiyunWu, and Zhao Zhang. 2019. Reinforce

Memory Error Protection by Breaking DRAM Disturbance Correlation

Within ECC Words. In ICCD.
[55] Y. Wang, L. Orosa, X. Peng, Y. Guo, S. Ghose, M. Patel, J. S. Kim,

J. G. Luna, M. Sadrosadati, N. M. Ghiasi, and O. Mutlu. 2020. FI-

GARO: Improving System Performance via Fine-Grained In-DRAM

Data Relocation and Caching. In MICRO. https://doi.org/10.1109/

MICRO50266.2020.00036

[56] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custodio,

Thomas Eisenbarth, and Berk Sunar. 2019. JackHammer: Efficient

Rowhammer on Heterogeneous FPGA-CPU Platforms. arXiv preprint
arXiv:1912.11523 (2019).

[57] Xin-Chuan Wu, Timothy Sherwood, Frederic T Chong, and Yanjing Li.

2019. Protecting page tables from Rowhammer attacks using mono-

tonic pointers in DRAM true-cells. In ASPLOS.
[58] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.

2016. One bit flips, one cloud flops: Cross-VM row hammer attacks

and privilege escalation. In USENIX Security.
[59] A. Giray Yağlikçi, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi,

Ataberk Olgun, Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos

Kanellopoulos, Taha Shahroodi, Saugata Ghose, and Onur Mutlu. 2021.

BlockHammer: Preventing RowHammer at Low Cost by Blacklisting

Rapidly-Accessed DRAM Rows. In HPCA 2021.
[60] Jung Min You and Joon-Sung Yang. 2019. MRLoc: Mitigating Row-

hammering based on memory Locality. In DAC.
[61] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. 2014. PALLOC: DRAM

bank-aware memory allocator for performance isolation on multicore

platforms. In RTAS.
[62] Zhi Zhang, Yueqiang Cheng, Minghua Wang, Wei He, Wenhao Wang,

Nepal Surya, Yansong Gao, Kang Li, Zhe Wang, and Chenggang Wu.

2021. SoftTRR: Protect Page Tables Against RowHammer Attacks using

Software-only Target Row Refresh. arXiv preprint arXiv:2102.10269
(2021).

[63] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. 2000. A permutation-

based page interleaving scheme to reduce row-buffer conflicts and

exploit data locality. In MICRO.

95

https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
http://googleprojectzero.blogspot.co/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.co/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1109/MICRO50266.2020.00036
https://doi.org/10.1109/MICRO50266.2020.00036

	Abstract
	1 Introduction
	2 Background
	2.1 DRAM+Rowhammer: A Crash Course
	2.2 Rowhammer Mitigations: A Taxonomy

	3 D(R)AMit, I Can't Do It by Myself!
	4 Changing the Game with New Primitives
	4.1 Isolation-Centric: Interleave It To Me
	4.2 Frequency-Centric: Context Welcome
	4.3 Refresh-Centric: A Refreshing Take
	4.4 What About Enclave Memory?

	5 Outlook: Optimal Fixes
	References

