DMon: Efficient Detection and Correction of Data Locality Problems Using Selective Profiling

Tanvir Ahmed Khan
University of Michigan

Ian Neal
University of Michigan

Gilles Pokam
Intel Corporation

Barzan Mozafari
University of Michigan

Baris Kasikci
University of Michigan

Abstract

Poor data locality hurts an application’s performance. While compiler-based techniques have been proposed to improve data locality, they depend on heuristics, which can sometimes hurt performance. Therefore, developers typically find data locality issues via dynamic profiling and repair them manually. Alas, existing profiling techniques incur high overhead when used to identify data locality problems and cannot be deployed in production, where programs may exhibit previously-unseen performance problems.

We present selective profiling, a technique that locates data locality problems with low-enough overhead that is suitable for production use. To achieve low overhead, selective profiling gathers runtime execution information selectively and incrementally. Using selective profiling, we build DMon, a system that can automatically locate data locality problems in production, identify access patterns that hurt locality, and repair such patterns using targeted optimizations.

Thanks to selective profiling, DMon’s profiling overhead is 1.36% on average, making it feasible for production use. DMon’s targeted optimizations provide 16.83% speedup on average (up to 53.14%), compared to a baseline that uses the highest level of compiler optimization. DMon speeds up PostgreSQL, one of the most popular database systems, by 6.64% on average (up to 17.48%).

1 Introduction

Poor data locality is the root cause of many performance problems [6, 34, 48]. Rapidly increasing data footprints of modern applications due to heavily data-driven use cases (e.g., analytics [109], machine learning [1], etc.) make matters worse, precipitating data locality problems further [6]. Recent work shows that up to 64% of all CPU cycles are lost due to poor data locality for widely used data center applications [90].

Although many compiler optimizations aim to eliminate data locality problems statically [3, 22, 23, 70, 71], such optimizations rely on compile-time heuristics, which may not accurately identify and repair problems that manifest dynamically at run time. In fact, as we (§6.2) and others [2, 15, 20, 27] demonstrate, compiler-based techniques can sometimes even hurt performance when the assumptions made by those heuristics do not hold in practice.

To overcome the limitations of static optimizations, the systems community has invested substantial effort in developing dynamic profiling tools [28, 38, 57, 97, 102]. Dynamic profilers are capable of gathering detailed and more accurate execution information, which a developer can use to identify and resolve data locality problems.

Traditionally, existing dynamic profiling tools have been used offline, namely during testing and development, where test cases are designed to adequately represent real-world program behavior. However, due to the proliferation of cloud computing and mobile devices, programs exhibit vast variations in terms of how they execute and consume data in production [48, 84]. Consequently, it has become increasingly difficult for offline profiling to be representative of how programs behave in production settings.

Unfortunately, existing dynamic profilers incur considerable overheads when used to detect data locality issues, and therefore they are not suitable for production environments [13, 57, 60–62, 77, 78].

In this paper, we present selective profiling, a data locality profiling technique that not only accurately detects data locality problems, but also incurs low overhead, making it suitable for production deployment. Using selective profiling, we design DMon, a system that can automatically detect and eliminate data locality problems in production systems.

Selective profiling is a lightweight technique to continuously monitor production executions for symptoms of poor data locality (e.g., frequent memory stalls, increased cache misses, etc.). As these high-level indicators of data locality problems are identified, selective profiling automatically transitions to incrementally monitoring more precise information about the source location and exact cause of the data locality problem—this is done by traversing a hierarchical abstraction we introduce, called the data locality tree (§3), which allows
DMon to monitor hardware events in a selective way to create an accurate profile at low run-time overhead.

After gathering the profile, DMon performs an offline analysis to identify common patterns of memory accesses. DMon then matches these patterns to a set of existing data locality optimizations (§4.1), which it primarily applies automatically, in a targeted manner (unlike static techniques). For cases where DMon cannot automatically apply an optimization, it provides detailed information about the locality problem to the developer, who can fix the problem manually; in our evaluation, this case occurs only once and the developer can apply DMon-suggested optimization with minimal effort (<10 LOC). We provide four optimization passes (§4.2) which DMon can use to automatically fix data locality problems and are sufficient for DMon to fix major data locality problems we identify across the systems we test in our evaluation (§6).

Selective profiling incurs 1.36% monitoring overhead on average, making it an ideal profiling technique for detecting data locality issues in production. The run-time overhead of selective profiling is significantly (i.e., 9×) lower than that of the state-of-the-art data locality profiler [17, 68]. Overall, targeted optimizations performed by DMon for 13 applications deliver on average 16.83% (up to 53.14%) speedup. To show the effectiveness of DMon for large real-world systems, we applied DMon in PostgreSQL [92], a popular open-source database system, where DMon-guided optimizations provided on average 6.64% and up to 17.48% speedup across all 22 TPC-H [26] queries. Furthermore, the optimizations enabled by DMon provides 20% more speedup, on average, than optimizations provided by the same state-of-the-art profiler.

Overall, we make the following contributions:

- Selective profiling, a data locality profiling technique that automatically and incrementally monitors fine-grained execution information to accurately detect data locality problems with low overhead.
- DMon, a system that implements selective profiling to detect data locality problems in production systems. DMon automatically selects specific optimizations based on memory access patterns, and applies these well-known optimization techniques automatically in most cases.
- By evaluating DMon in the context of widely-used applications, we show that selective profiling can detect data locality issues in production with low overhead (1.36% on average). Moreover, we show that selective profile-guided targeted data locality optimizations provide significant performance speedup (16.83% on average, up to 53.14%).

We explain the key design challenge for accurately and efficiently detecting data locality problems in §2. We describe selective profiling in §3, DMon’s design in §4, and DMon’s implementation in §5. We evaluate DMon in §6, compare DMon to related work in §7, and conclude in §8.

2 Challenges

It is challenging to accurately pinpoint data locality problems, while incurring low run-time performance overhead.

Compiler-based static data locality optimizations [14, 70, 71, 82, 91] are appealing because they incur no run-time overhead. However, static techniques apply optimizations based on compile-time heuristics, which may not accurately identify program locations that suffer from poor locality at run time. In fact, compiler-based techniques can sometimes even hurt performance when the assumptions made by those heuristics do not hold in practice [2, 15, 20, 27].

To demonstrate how compile-time heuristics can hurt performance, we use a compiler-based data prefetching technique [71] to improve data locality in two matrix decomposition benchmarks [104], lu_cb and lu_ncb from the PARSEC suite [12]. This optimization combines loop splitting and explicit data prefetching to increase data locality. Using the benchmarks’ standard inputs, we determine that 50% of all the cache misses in lu_cb and lu_ncb stem from a single function, which we optimized using compiler-guided data prefetching [71]. The optimization provides a 19.4% speedup for lu_ncb, but yields a 19.85% slowdown for lu_cb. This occurs because, for lu_nccb, prefetching reduces all cache misses; however, for lu_nccb, there was a dramatic increase in L2 cache misses despite a reduction in L1 and L3 cache misses.

Dynamic profilers can accurately pinpoint data locality problems [13, 57, 60–62, 77, 78], however, they impose considerable overhead (i.e., >10% on average), as they track too much information: memory accesses, timestamps, cache events, etc. Consequently, existing data locality profilers are not deployed in production.

A potential remedy to the high overhead of existing profilers is statistical sampling, which can collect information with reasonable overhead [9]. For instance, the state-of-the-art Intel VTune profiler [85] samples information such as hardware and software performance counters, timestamps, program locations, and accessed memory addresses to gather the necessary information for detecting data locality issues.

Alas, even sampling is not enough to reduce the overhead incurred by popularly available profilers (e.g., Intel VTune) to detect data locality problems to levels acceptable for production use. To assess the impact of sampling, we use the state-of-the-art profiler VTune to detect the data locality issues in our evaluation targets. Despite sampling-based data collection, VTune still incurs 26% overhead on average (and up to 60%), which is unacceptable for production settings.

We argue that not only the monitored execution information must be deliberately chosen to only pertain to data locality problems, but monitoring must occur incrementally, only when there are increasingly clear signs of poor data locality. Next, we explain how selective profiling achieves this.
3 Selective Profiling

Selective profiling is a monitoring technique that incrementally monitors more detailed, yet more targeted, run-time information to identify data locality problems. Next, we discuss the three key components of selective profiling: (1) Targeted Monitoring, (2) Incremental Monitoring, and (3) Sampling.

3.1 Targeted Monitoring

Unlike existing offline profilers [57, 97, 98, 102, 106] that monitor many hardware events and information such as program locations, selective profiling needs to carefully choose which information to monitor in order to accurately and efficiently detect data locality problems. A straw-man approach is to only monitor events such as data cache misses, which are directly related to data locality problems. However, simply monitoring data cache misses in isolation can be misleading. For instance, a seemingly large number of data cache misses may have no impact on the performance of an application that spends a lot of time fetching instructions to execute (a common theme in modern Web services [8, 48]).

Selective profiling monitors a select group of hardware events that allow it to determine if the execution of a program is bounded by a subset of those events that we call the data locality tree. As shown in Fig. 1, the data locality tree is a hierarchical abstraction of data locality-related performance events from Intel’s Top-Down methodology [106]. The Top-Down methodology provides a breakdown of performance events in Intel CPUs, which a developer can use as a guideline to navigate their manual profiling efforts. However, unlike Top-Down, selective profiling automatically transitions from one layer to another, incrementally monitoring more events at each layer of the tree, as increasing evidence of data locality issues is observed at run time.

At layer 1, selective profiling determines whether the execution is back-end bound—i.e., spends a large portion of the time either in CPU execution (CPU bound) or accessing memory (memory bound). At layer 1, a program can also be front-end bound (i.e., fetching instructions), incurring mis-speculations, or retiring instructions. For executions that are back-end bound, selective profiling determines whether they are processor-core bound or memory bound in layer 2.

If an execution is memory bound in layer 2, selective profiling monitors events that provide a breakdown of the execution into 4 categories in layer 3. Of those 4 categories, only 3 are related to data locality problems: L2 bound and L3 bound represent the time spent accessing the L2 and the L3 cache, respectively; “DRAM bound” represents the time spent accessing the DRAM. If a program is L1 bound, the data or instructions that the program uses are already as close to the processor as possible and it is hard to improve data locality further. In such cases, the program may have other performance problems, such as false sharing [93] or lock contention [87].

Selective profiling also tracks information to map performance problems back to code. In layer 4, selective profiling records program location information along with hardware events. For example, if a program is L2 bound, selective profiling records L1 cache misses and the location of the instruction causing the miss. By locating and reducing L1 cache misses, the execution time will potentially not be L2 bound, and the locality problem will likely be fixed. Similarly, if a program is L3 or DRAM bound, selective profiling records L2 and L3 cache misses and associated program locations, respectively.

3.2 Incremental Monitoring

Unfortunately, merely restricting the scope of monitored performance events to the data locality tree is not sufficient for low overhead monitoring of data locality issues. Thus, selective profiling instead adopts an incremental monitoring approach. This approach increases the amount of information gathered at run time to efficiently identify program locations that may have a locality problem.

Fig. 2 shows the details of incremental monitoring. By default, selective profiling monitors the hardware events that provide the layer 1 breakdown. Selective profiling only transitions to monitoring layer 2 events if the execution is back-end bound for at least 10% of a time-slice p (100ms by default).
We use 10% as the default threshold, which we empirically determine to be a reasonable threshold (§6.4). We also choose 100ms as a reasonable time-slice for our programs, since the shortest execution across our benchmarks was 1 second and the longest was 2867 seconds. Nonetheless, the percentage and monitoring periods are both configurable. We explore the sensitivity of our results to all these parameters in §6.4.

If selective profiling determines that the execution is also memory bound for at least 10% of the same interval \(p \), it starts monitoring layer 3 events. If selective profiling determines that the execution is L2, L3, or DRAM bound for at least 10% of the same interval \(p \), it transitions to layer 4. Selective profiling then gathers L1, L2, and L3 cache miss events and program locations where the misses occur.

Incremental monitoring is key to ensuring selective profiling’s low performance overhead. Successive layers are more costly to monitor as they must count more events—for example, layer 2 requires counting \(3 \times \) more hardware performance events than layer 1. However, unless selective profiling determines that an execution is back-end bound, it only needs to monitor events at layer 1. As shown in §6.1, only monitoring layer 1 events incurs a negligible overhead (0.7% on average).

Programs can go through phases of different locality issues (e.g., L2 cache misses in one phase and L3 cache misses in another phase). Selective profiling can pinpoint the root cause of the locality problem for each phase, provided the duration of a given phase is at least \(4p \) (where \(p \) is the duration of selective profiling’s time-slice, per layer). If this time-slice is too long, selective profiling may miss some short-running phases. The time slice is configurable. We empirically determine that a time slice of 100ms is effective in practice (§6.4).

3.3 Sampling

In addition to targeted and incremental monitoring, selective profiling also employs sampling at layer 4 for recording L1, L2, and L3 cache misses to further reduce the overhead. Although sampling can reduce run-time overhead, it can also reduce the coverage of data locality issues that selective profiling detects if the sampling period is too high. We define coverage as the ratio of the number of locality issues detected with a given sampling rate to the number of locality issues detected with the highest possible sampling rate.

By default, selective profiling uses a conservative sampling period of 1000 (1 sample per 1000 events), which we have empirically found to yield high coverage (97%, discussed in §6.4) in detecting locality problems across the 13 benchmarks we evaluated. The developer, however, can use a lower sampling period (up to 1 sample per 100 events, as allowed per Linux’s `perf` interface). We analyze the coverage versus overhead trade-off of different sampling periods in §6.4.

Selective profiling does not apply sampling in layers 1–3 since sampling reduces coverage. Moreover, in layers 1–3, selective profiling’s incremental monitoring reduces the overhead to a negligible amount in all tested applications (on average 1.36%). Therefore, selective profiling does not need to apply sampling at those layers. However, if the overhead of the first three layers is high, selective profiling can optionally enable sampling at those layers as well.

Now, we describe how data locality information collected via selective profiling can be used to guide automated and manual profile-guided optimizations using DMon.

4 DMon

Selective profiling detects program locations with poor data locality in production. DMon analyzes these locations offline to identify the data access patterns causing data locality issues. Based on the recognized access patterns, DMon applies existing compiler optimizations only to these program locations in a targeted manner to improve data locality. We offer four such optimizations which we describe in §4.2. These optimizations can be automatically applied in most cases for C/C++ applications; for applications written in other programming languages, selective profiling results can still enable manual optimizations (§6.3).

Fig. 3 shows how DMon employs selective profiling to identify and eliminate data locality issues. In step (1), DMon monitors programs in production to determine whether they suffer from poor locality using selective profiling.

Steps (2)–(3) happen offline, during recompilation. In step (2), DMon determines the memory access patterns that are causing poor data locality (§4.1). In step (3), based on the identified access patterns, either profile-guided automatic optimizations or manual optimizations can be performed to improve data locality (§4.2). The optimized program is then rebuilt and redeployed in production.

4.1 Static Memory Access Pattern Analysis

Once selective profiling identifies memory access instructions that suffer from poor locality in production, DMon analyzes the corresponding program locations offline to determine the cause of the problems. DMon only analyzes memory access instructions that incur more than 10% of the total cache miss events sampled in layer 4 of selective profiling.
Table 1: Four common memory access patterns that cause data locality problems in many applications. Here, we show their examples from the PARSEC [12] benchmark suite.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Code snippet</th>
<th>Access pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>lu_nsb</td>
<td>a[i] += alpha*b[i];</td>
<td>Direct Addressing</td>
</tr>
<tr>
<td>radix</td>
<td>this_key = key_from[i] & bb; this_key = this_key >> shiftnum; tnp = rank_ffyymn[tn_key];</td>
<td>Indirect Addressing</td>
</tr>
<tr>
<td>radiosity</td>
<td>while(int_list) { if(int_list->dst->int->next) return(1); int_list = int_list->next ; }</td>
<td>Unbalanced Access</td>
</tr>
<tr>
<td>dedup</td>
<td>if(ListElmnt->seq.l2num > H->Elmnts[Child]->seq.l2num)</td>
<td>Pointer Chasing</td>
</tr>
</tbody>
</table>

To determine the patterns of data locality issues, we initially analyze the results of selective profiling manually for the benchmarks from the popular PARSEC [12] benchmark suite. Based on our manual analysis of program statements causing data locality issues, we identify four key memory access patterns that can lead to poor data locality. Table 1 shows one example of each of these memory access patterns that cause poor data locality. Perhaps unsurprisingly, all the accesses that contribute significantly to poor data locality are in loops that execute many times and access a relatively large amount of data compared to other memory access operations in the application. These four memory access patterns also cause data locality problems in a diverse set of real-world applications (as we show in §6.3).

For lu_nsb, most cache misses that hurt program performance happen while accessing arrays in a loop. Since the loop induction variable (i) is directly used to index those arrays, we call this pattern direct addressing. For radix, the loop induction variable (i) is used to index an auxiliary array to load an intermediate value (this_key). The loaded intermediate value is used as index while accessing another array, and the last access suffers from poor data locality. We categorize this pattern as indirect addressing.

For radiosity, most cache misses occur in a while loop, where two member variables (dst and next) of a structure (int_list) are accessed repeatedly. We determine that this structure also contains four other member variables not accessed in this loop. Since only accessing a subset of all member variables causes cache misses, we call this access pattern as unbalanced access. Finally, for dedup, locality suffers while accessing a chain of structure pointers (pointers ii, Elmnts[Child], and seq, and finally a member variable 12num) in a loop. We denote this pattern as pointer chasing.

Based on findings of these manual observations, we design the static memory access pattern analysis component of DMon, as shown in Fig. 4. Although DMon’s pattern detection is inspired by the manual analysis of locality issues in PARSEC, we show in our evaluation that the patterns DMon identifies generalize to a broad set of systems (§6.2 and §6.3). In particular, the four patterns of poor locality constitute the root causes of all the data locality problems we discover in nine other benchmarks that we had not studied previously.

As shown in Fig. 4, DMon determines the addressing mode of the memory instruction (i.e., direct or indirect addressing). If the access is made to a structure instance, DMon also determines the type of the access (i.e., unbalanced access and pointer chasing). We discuss each analysis next.

Addressing mode. DMon’s static analysis checks if the instruction uses direct or indirect addressing. Here, direct addressing occurs if the computation of the accessed location does not involve another memory address (e.g., for(i=... a[i])). Conversely, indirect memory addressing occurs if the computation of the accessed location involves computing another memory address (e.g., for(i=... a[b[i]]).

Structure access pattern. In addition to determining the addressing mode, DMon’s static analysis checks to see if the instruction accesses a member of a structure. DMon does this by mapping the instruction to the compiler intermediate representation and checking if it accesses a structure field. DMon searches for two patterns when a structure member is accessed, namely unbalanced access and pointer chasing.

DMon concludes that there is an unbalanced access pattern, when accesses to only a subset of member variables incur a large fraction of cache misses. Pointer chasing occurs when the accessed memory location belongs to a hierarchy of nested structures (e.g., A->B->C).

4.2 Optimizations Implemented in DMon

To show the usefulness of selective profiling, we implement four profile-guided data locality optimization passes using LLVM [56] for C/C++ programs. Our passes optimize the four patterns of poor data locality that DMon identifies. For applications written in other languages, selective profiling results can be used to apply manual optimizations (§6.3).

As shown in Fig. 4, DMon recommends applying a specific optimization technique based on the addressing mode and the structure access patterns of the memory access instruction. While these optimizations are well-known and usually applied statically, selective profiling information enables the targeted
shows an example of structure splitting. Here, before
shows an example of indirect prefetching. Here, the
where DMon identifies that direct addressing access pattern
work in a reactive manner, i.e.,
that direct addressing access pattern (§
the hardware prefetcher), and (2) cause cache pollution by
(1) have an array boundary check, and (2) also prefetch the
original loop increments elements in an array, b. However, the
index of the array b is computed using another array, a. The
loop on the right side prefetches the cache line containing the
elements of b that will be accessed in the near future (prefetch (2)).
Prefetching the elements of b requires accessing the
Thus, to prefetch the elements of b, we need to
Structure splitting. The third optimization, structure splitting,
moves infrequently-accessed members of a structure
with a pointer to a new structure that only contains those
members. Structure splitting is beneficial only when the total
size of infrequently-accessed member(s) is larger than the
pointer size. Thus, the size of the original structure is reduced,
fitting into fewer cache lines. During memory access pattern
analysis, if DMon detects that an unbalanced access pattern
(i.e., a subset of structure members are accessed more frequently
than others) to members of a structure is causing poor
locality, structure splitting is an appropriate optimization.

Fig. 7 shows an example of structure splitting. Here, before
structure splitting, the structure S has three members (a, b, c) of types A, B, C, respectively. In the original program, an
instance of S spans two cache lines. Both cache lines need to
be accessed each time the program accesses an instance of S.
For example, if neither of these cache lines is present in the
L1 cache, the program will incur two L1 cache misses.

After structure splitting, the new structure S' fits in a single
cache line (Cache Line 1) because the infrequently-accessed member b is moved into a new structure S_2, residing in its
own cache line (Cache Line 2). Consequently, when the
program accesses an instance of S, it will usually only need to
access the cache line (Cache Line 1) containing the frequently-accessed members (a, c), which would incur a single L1 cache
miss (rather than two).

Structure splitting has been previously explored [22] in
type-safe languages (e.g., Java). However, implementing struc-
ture splitting in a type-unsafe language (we target C/C++) is
more challenging. This is because structure splitting needs to
ensure that the program continues operating correctly when the layout of the structure is modified. More specifically, all the instructions that used to refer to the old layout need to be updated to refer to the new layout.

In our optimization pass, we address this challenge using a complete, interprocedural, inclusion-based pointer analysis [5] that can determine all instructions that could possibly access the split structures. As shown in §6.2, this optimization can automatically be applied in all but one of the benchmarks.

Structure merging. The final optimization, structure merging, is the inverse of structure splitting as it replaces a frequently-accessed pointer member of a structure with the data that the pointer references. The key idea is to eliminate the pointer chasing pattern that DMon identifies by removing a level of indirection for frequently-accessed elements.

Fig. 8 shows an example of structure merging. Before merging, the structure S has three members (a, b, p) of types A, B, $S2^*$, respectively. The instance of S resides in the first cache line, and the pointer p points to an instance of structure S' that resides in the second cache line. The size of a, b, and c is such that they can all fit in one cache line. If c is accessed as frequently as a and b, then data locality can be improved by merging these two structures into one. This structure merge will also bypass one memory access ($S'\rightarrow C$ instead of $S\rightarrow S2\rightarrow C$). Structure merging only combines member variables across different structure types and hence does not perform exhaustive data structure conversions (e.g., transforming a linked list into an array) [22, 23].

DMon employs structure merging conservatively so that it will only be applied if soundness can be guaranteed. In other words, DMon applies this optimization only if all updates via the structure pointer can be safely redirected (e.g., in Fig. 8, all changes to $S\rightarrow S2\rightarrow C$ could be replaced by $S'\rightarrow C$). To ensure this, structure merging also uses the same pointer analysis [5] that structure splitting uses.

Other optimizations. DMon can be easily extended to accommodate additional optimizations if needed to fix different patterns of memory accesses which cause data locality problems. For example, DMon can work as a framework to apply optimizations like loop reordering, blocking, tiling, and strip mining in a profile-guided manner. However, many of these optimizations require expensive memory access trace collection which cannot be deployed in production due to high overheads [64]. In the future, we intend to explore how these optimizations can be applied based on more efficient profiling.

5 Implementation

DMon’s selective profiling prototype is implemented for Intel processors. In particular, selective profiling relies on the Linux `perf` [97] interface for profiling hardware events in layers 1–4 (§3). We initially build the benchmarks using debug information and the highest level of compiler optimization (-O3), and then use the `strip` utility [101] to remove the debug information. During in-production monitoring, selective profiling records the program counter for each sampled cache miss event in layer 4. To efficiently deal with multi-threaded applications, selective profiling maintains a per-thread buffer (2MB per thread) to record the program counters. When the buffer gets full, the previous samples get overwritten. Offline, DMon uses the program counter, the stripped debug information, and the program binary to find the source code location where a cache miss occurred in production.

We implement DMon’s optimizations in the LLVM [56] compiler framework. We use `clang` [99] to generate the LLVM intermediate representation (IR) that the optimization passes of DMon can operate on. The optimizations rely on the program’s debug information to map the source code location to LLVM IR, because a 1-to-1 mapping between machine code and LLVM IR does not exist.

Similar to other state-of-the-art profile-guided optimization techniques [17, 68], DMon’s use of debug information for mapping machine code to LLVM and locating code locations to optimize can introduce inaccuracies. This happens due to optimizations such as inlining. Although it is possible to improve the accuracy of such mapping using more invasive instrumentation and tracing [7], this would be prohibitively costly for production usage [48]. In our evaluation (§6), we show that the accuracy provided by debug information can lead to substantial speedup.

The optimizations for structure splitting and structure merging use a whole-program pointer analyzer [19].

6 Evaluation

In this section, we first evaluate the efficiency of selective profiling by measuring its run-time monitoring overhead. Then, we evaluate the effectiveness of DMon by showing the extent to which fixing the locality problems detected by
DMon improves selective profiling’s generality by applying it to widely-used real-world applications. Finally, we perform sensitivity studies to evaluate how DMon’s overhead and detection results vary in response to changes of the different system parameters of DMon.

Software. All experiments are conducted in Ubuntu 18.04 (kernel version 4.15.0-46-generic). The static compiler analyses are implemented in LLVM (7.0.0) on bytecode emitted by clang. Therefore, we use clang 7 as the baseline compiler.

Hardware. We use a 20-core 2.2 GHz Intel Xeon NUMA (with 2 sockets) machine, with 64 KB of L1-cache (32 KB instruction and 32 KB data), 1024 KB of L2-cache, 14 MB of L3-cache (shared across the same NUMA node), and 96 GB of RAM. Like most Intel processors, each core in the machine uses two hardware prefetchers (next-line and sequential load history driven prefetchers) in the L1 data cache and two hardware prefetchers (adjacent cache line and streaming prefetchers) in the L2 cache [42, 94]. We configure multi-threaded applications and benchmarks to run with 8 threads.

Benchmarks. We use a combination of benchmarks and real-world programs that have been widely used in prior performance profiling and optimization work. In particular, we use all 12 benchmarks from the PARSEC [12] suite, all 11 benchmarks from the SPLASH-2X [103] suite, and all 3 benchmarks written in C from the NPB [10] suite, as well as HashJoin, RandomAccess, kcstashtest, and D1S, which are programs with poor data locality from other popular benchmark suites [11, 24, 63, 73]. We also study one of the most popular and heavily-optimized open-source databases, PostgreSQL [81], running the TPC-H analytical workload [26]. Finally, we study real-world applications from the Renaissance benchmark suite [83].

Metrics. In all our plots, we report speedup numbers as the ratio between the execution time of the original application compiled with the highest level of optimization (–O3) and its run time after applying DMon-guided optimizations. Negative speedup denotes slow-down. Similarly, we report selective profiling overhead as the percentage increase in benchmark execution time while enabling selective profiling. We report performance data as the average of 25 runs in all experiments.

6.1 Selective Profiling Efficiency

We evaluate the selective profiling efficiency by studying the overhead selective profiling incurs during dynamic detection of locality problems. Fig. 9 shows this overhead. We present results for all the benchmarks we evaluated, including the ones for which selective profiling did not find locality optimization opportunities. For each benchmark, we present the overhead of each layer of monitoring (1–4) that selective profiling employs. Since, selective profiling monitors only one layer at a time, the effective overhead for a given program is less than the maximum overhead across four layers.

Across all layers and benchmarks, selective profiling incurs up to 4.92% overhead, and on average only 1.36% overhead. On average, selective profiling incurs an overhead of 0.7% in layer 1, an overhead of 1.5% in layer 2, an overhead of 2.5% in layer 3, and an overhead of 2% in layer 4. For benchmarks that do not have locality problems, layers 2–4 are never triggered.

In only 3 out of all 28 benchmarks, selective profiling incurs more than 3% overhead: IS (4.6%), kcstashtest (4.2%), and HashJoin (4.9%). However, as we detail in §6.2, optimizations suggested by DMon also provide greater speedups for these benchmarks than for others (IS 30.3%, kcstashtest 32.4%, and HashJoin 53.1%—compared to 16.83% average speedup enabled by DMon). These benchmarks suffer the most from poor locality, and consequently, selective profiling incurs more overhead to pinpoint the root cause of those problems.

6.2 Effectiveness

We evaluate the effectiveness of DMon by studying (1) data locality problems detected by DMon, (2) speedups provided by DMon-guided optimizations, (3) comparison of the speedups provided by DMon-guided optimizations to the speedups provided by Google’s AutoFDO [17]—the state-of-the-art profile-guided locality optimization approach, (4) whether DMon-guided optimizations generalize across different program inputs, and (5) the overhead on compilation times due to DMon-guided optimizations.

Locality issues detected by DMon. Table 2 summarizes the data locality problems that DMon detects. For brevity, Table 2 omits benchmarks where less than 10% of the execution time is bounded by locality problems, as these benchmarks could not benefit from eliminating locality improvements. We also omit these benchmarks in our average performance numbers.

Additionally, Table 2 shows the most prominent level of the memory hierarchy for the locality issues detected by selective profiling. Note that, in many cases, DRAM accesses constitute the locality bottlenecks. This is expected, since the highest-latency memory access instructions are served from DRAM.

Finally, Table 2 also reports the program locations (as “file”: “line number”) that suffer the most from poor locality, along with the optimizations DMon recommends in each case.

As shown, DMon successfully identifies locality problems and suggests appropriate optimizations in each case. In all cases but one (fmm), DMon applies optimizations automatically. For fmm, while the direct prefetching is applied automatically, structure splitting cannot be applied automatically. This is because, due to excessive type casts, the compile-time optimization cannot exactly determine which program statements may access the modified structure, and therefore cannot automatically update such statements. Nonetheless, since DMon points the developer to the exact source of the locality issue in fmm, the fix can easily be applied manually with an 8 LOC update. Moreover, structure splitting and merging can be applied automatically for other applications (dedup and radiosity).
where the automatic transformation can identify and update all statements pointing to the split and merged structures.

Speedup. Table 3 compares the speedup provided by the DMon-guided optimizations. Optimizations guided by DMon provide up to 53.14% and on average 16.83% (8% median) speedup. To study the impact of the targeted optimizations guided by selective profiling results, we also report the speedup achieved by the same optimizations if they are applied indiscriminately *(i.e., in a non-targeted way)*, through purely-static compiler passes [3, 71].

As shown in Table 3, DMon-guided optimizations outperform compile-time optimizations in 10/13 benchmarks. Crucially, static optimizations hurt performance in 5/13 cases due to being applied too broadly (with no runtime information), and therefore causing outcomes such as cache pollution and code bloat. DMon-guided optimizations always improve the performance. In 3/13 benchmarks where static optimizations outperform DMon-guided optimizations, the margin is ≤ 5% which can be reduced by reducing the incremental monitoring threshold (default, 10%) of selective profiling.

Comparison against Google AutoFDO. We compare the speedup provided by DMon-guided optimizations to that of Google’s AutoFDO [17], the state-of-the-art profile guided optimization technique. AutoFDO has limited data locality optimization capabilities [68]; our comparison is thus limited to five benchmarks for which AutoFDO can optimize locality.

We compare the speedup provided by DMon-guided optimizations to the speedup provided by AutoFDO in Fig. 10. As shown, DMon-guided optimizations provide better speedup than AutoFDO for all five benchmarks. This is because AutoFDO could only identify data locality problems that can be solved by performing direct prefetching optimizations. By contrast, DMon can identify other data locality issues that can be addressed by additional locality optimizations *(i.e., indirect prefetching, structure splitting, and structure merging)*.

For example, AutoFDO’s direct prefetching slows down the execution of **IS** by 15%, while DMon-guided indirect prefetching provides a 30% speedup. Even for cases where both DMon
and AutoFDO suggest direct prefetching \((e.g., \text{ocean_cp})\), DMon-guided optimizations outperform AutoFDO, because, unlike AutoFDO, DMon provides hints as to where \((e.g., \text{L1}, \text{L2}, \text{or L3})\) the cache line should be prefetched.

We compare selective profiling overhead against AutoFDO’s profiling overheads in Fig. 11. For the 5 benchmarks in this study, selective profiling incurs 3.3% mean overhead, whereas AutoFDO incurs 978% mean overhead, making the latter unsuitable for production use.

Generalization across program inputs. Profile-guided optimizations perform best when the application is optimized with a profile that is representative of the application’s common behavior \([17, 79, 95]\). DMon-guided fixes also generalize if the program shows similar data locality behavior across different inputs. Therefore, we evaluate DMon’s generality across different program inputs for 9 benchmarks. These program inputs vary widely both in terms of input size (from megabytes to gigabytes) as well as execution times needed to process the input (from seconds to minutes).

We report a detailed case study using the \text{radiosity} benchmark to determine how well the locality optimizations suggested by DMon generalize to different inputs. We choose this benchmark because the fix suggested by DMon is structure splitting—an optimization that modifies the data layout, and hence has the potential to be affected by changing program inputs. Fig. 12 shows the speedup provided by DMon-guided optimizations for \text{radiosity} for various input sizes.

Here, for brevity, we refer to different input sizes using “\#1” through “\#6”. DMon only observes the execution for the randomly selected input \#4. After observing input \#4, DMon-guided optimizations are applied. Then, all inputs are rerun with the newly-optimized program, with the results of this run reported in Fig. 12. As shown, the optimization suggested by DMon generalizes well to other inputs, providing considerable speedups in each case. Longer executions that use larger inputs benefit more from optimizations.

Fig. 13 shows how DMon-guided optimizations improve data locality for unobserved inputs of several other benchmarks. Here, we include all benchmarks with at least 3 inputs. Across all evaluation targets, we find that data locality behavior follows a similar trend for different inputs. Hence, DMon’s fixes generalize to different inputs for these benchmarks.

Recompilation overhead. We evaluate the offline recompilation overhead while applying DMon-guided optimizations, though this does not impact the production overhead. We perform this experiment, because automated structure splitting and merging require pointer analysis, which is known to be expensive \([55]\). However, the specific pointer analysis we employ is flow- and context-insensitive and scales well \([40]\).

Fig. 14 shows the offline compilation overhead incurred by our DMon-guided optimizations on top of the baseline compilation overhead \((\text{clang})\). On average, DMon-guided optimizations incur 72% more overhead. However, the optimization takes on average less than 7 seconds and is no longer than 26 seconds. Even for large applications \((e.g., \text{PostgreSQL})\) code base has over 1M LOC, the analysis takes 307 seconds.

For an offline process, we believe these durations are reasonable and on par with standard compiler transformations that use whole-program pointer analysis. Moreover, this is a one-time compile-time overhead and will be amortized for long-running applications \((e.g., \text{data-center applications})\) that are compiled once but run on thousands of servers for days). Finally, structure splitting and merging can be applied manually if the cost of pointer analysis is deemed prohibitive.
6.3 Real-World Case Studies

We evaluate the applicability of selective profiling and DMon to large systems by studying (1) speedups provided by DMon-guided optimizations on PostgreSQL [81]—one of the most popular database systems, and (2) speedups achieved after manual repair of data locality problems detected by selective profiling for just-in-time (JIT) compiled real-world applications from the Renaissance benchmark suite [83].

PostgreSQL case study. We evaluate DMon’s ability to improve the locality (and thereby performance) of PostgreSQL v11.2 [81], one of the most popular open-source database management systems. For this study, we run the popular TPC-H [26] queries on a 1GB database stored in PostgreSQL. We intentionally select the database size to fit in memory to ensure a memory-bound workload (instead of disk-bound one), as the vast majority of real-world databases fit in memory [67, 80].

To evaluate DMon, we profile PostgreSQL with DMon while serving all 22 TPC-H queries. For these queries, selective profiling incurs 1.2% average and 2.7% maximum overhead. For PostgreSQL, DMon identifies a locality problem in a function (ExecParallelHashNextTuple) that accesses the members area and parallel_state of structure hashtable [39]. DMon identifies that this memory access is the primary reason for poor data locality in 6 out of 22 TPC-H queries. Moreover, this memory access causes L2 and L3 cache misses for all 22 TPC-H queries. The cause of the locality problem in this case is pointer chasing. Structure merging automatically repairs this problem and speeds up all 22 TPC-H queries, as shown in Fig. 15. The L3 cache misses in PostgreSQL are reduced by up to 22.11% (3.05% on average) and the latency of the 22 TPC-H queries are improved by up to 17.48% (6.64% on average). We also test optimized PostgreSQL based on DMon-profile on larger databases (10 and 100GB), where DMon improves the latency of the 22 TPC-H queries by 4.68% on average. For larger databases (10 and 100GB), the overall performance gain due to DMon’s optimizations are comparatively less than (2% on average) that of smaller databases (1GB). That is because the performance of PostgreSQL for larger databases is primarily bottlenecked by storage I/O costs.

These results are particularly encouraging, considering that PostgreSQL is one of the most heavily-optimized codebases, having been improved by developers over the past 20 years.

Most database developers hand-tune their code using the TPC benchmarks as regression tests (i.e., their performance is best on TPC). This fact makes it even more promising that DMon-guided optimizations are able to improve the performance of these benchmark queries on a mature database system. We reported this data locality issue to the developers of PostgreSQL (for the version 11.2), which they have fixed since then.

Renaissance case study. A key advantage of just-in-time (JIT) compilation over ahead-of-time compilation (e.g., Java vs. C++) is that JIT can apply dynamic optimizations—including limited data locality optimizations—using tiered compilation [65]. We compare selective profile-guided data locality optimizations to tiered compilation from OpenJDK [100] on real-world applications from the Renaissance suite [83]. For these applications, selective profiling incurs 2.2% average and 2.6% maximum overhead.

We use selective profiling to detect data locality issues in three Renaissance applications (jdk-concurrent fj-kmeans, apache-spark page-rank, and Scala stm-bench7). We omit other Renaissance benchmarks for which selective profiling does not find any data locality problems. Most of the data locality issues found here correspond to Java/Scala source code (we map binary instruction information back to Java code using perf-map-agent [45]) of Renaissance applications. Since currently DMon’s optimizations only support C/C++ applications, we manually apply data locality optimizations to these applications. In all cases, we modify <10 LOC.

As shown in Fig. 16, selective profile-guided optimizations provide on average 26% and up to 47% more speedup than tiered compilation. This demonstrates that selective profiling is effective even for JIT-compiled applications.

Apart from these real-world case studies, we have also tested DMon on Memcached [35] and RocksDB [33] with YCSB benchmarks [25]. For these two applications, the individual pieces that make up the locality issues are relatively minor. Compiler-based data locality optimizations typically add extra instructions and logic in the code, which only helps when there are many cache misses causing slowdowns. For program statements responsible for a relatively small percentage of all cache misses (less than 5%), applying these optimizations do not provide any speedup, as the extra code and logic outweighs the benefits.
6.4 Sensitivity Analysis

We evaluate the impact of selective profiling’s different parameters on effectiveness (coverage) and efficiency.

In-Production Monitoring Time-Slice. The granularity of the monitoring time-slice is a key design decision for selective profiling’s incremental monitoring scheme (§3). Small time-slices allow selective profiling to identify locality problems for shorter-running applications, but also trigger frequent transitions during incremental monitoring and result in higher monitoring overhead. On the other hand, larger time-slices lower overhead but may fail to detect locality problems for shorter-running programs.

As shown in Fig. 17, selective profiling has lower coverage and higher overhead for smaller time-slices. As the time-slice granularity increases, selective profiling achieves greater coverage with lower overhead. Selective profiling’s coverage is lower for smaller time-slices because selective profiling cannot monitor sufficient performance events in a small time slice. Beyond 100ms, both the coverage (99.07% on average with standard deviation of 3%) and the overhead (2.04% on average with standard deviation of 0.6%) lines flatten. Ergo, we set selective profiling’s default time-slice as 100ms.

Incremental Monitoring Threshold. We vary the threshold of incremental monitoring (§3) from 1% to 50% and measure the coverage of data locality issues selective profiling detects for all 13 benchmarks in Table 2. 100% coverage is achieved when there is no incremental monitoring (i.e., DMon continuously monitors events at the all levels of the locality tree). As shown in Fig. 18, selective profiling achieves greater than 80% coverage if the incremental monitoring scheme uses a threshold of <29%. Nevertheless, we set the default-threshold as 10%, as this threshold achieves 100% coverage.

In-Production Sampling Period. As described in §3, sampling period is a key design decision for selective profiling. Fig. 19 shows the impact of the sampling period on the coverage of locality issues selective profiling detects and its runtime overhead. We compute coverage with respect to the baseline coverage of 100%, achievable via the lowest possible sampling period offered by Linux perf (sampling every 100th event). A sampling period k on the x-axis means selective profiling will record one out of each k events. The left y-axis represents the runtime overhead and the right y-axis represents the coverage of locality issues selective profiling detects.

The overhead and coverage reported in Fig. 19 are arithmetic averages over all benchmarks. A smaller sampling period increases the overhead of selective profiling, but also increases coverage. In our experiments, we chose a sampling period of 1000, which yields a high coverage of 97% with 2.6% overhead on average in layer 4 of selective profiling.

7 Related Work

DMon finds data locality problems with low overhead using selective profiling, identifies the root cause behind the problem, and guides optimizations to eliminate the problem. Existing profilers are not able to determine the root causes of data locality problems without incurring a high overhead.

Profilers. General-purpose profilers [57, 97, 102] report program hotspots without identifying the root cause behind performance problem. Consequently, recent studies propose specialized profilers to locate root cause for specific performance issues. Parallel profilers [36, 41, 44, 46] focus on critical path profiling to estimate potential performance gain [28, 107]. Synchronization profilers [4, 30, 108, 110] identify lock contention. Similarly, we design selective profiling as a special-
ized profiling technique for data locality. Selective profiling uses the APIs of a state-of-the-art profiler, Linux perf, and targets a subset of the events explored as part of the Top-Down [106]. Our main contributions over perf and Top-Down are: (1) full automation in profiling, (2) low-enough overhead for production deployment, (3) ability to automatically identify targeted optimizations based on the underlying performance problem.

Profile-guided data locality optimizations. Profile-guided approaches collect execution traces to identify where optimizations can be applied [21, 49, 51, 52, 59, 60, 69, 78]. State-of-the-art techniques [17, 37, 74–76] primarily address instruction locality. While prior work [50, 53, 86] also optimizes data locality, these solutions incur >10% profiling overhead. Selective profiling, however, incurs only 1.36% overhead on average (§6.1).

Static locality optimizations. Static approaches use complex analysis techniques to find opportunities to apply locality-improving transformations [14, 16, 18, 31, 47, 58, 66, 88, 105]. Alas, these techniques use compile-time heuristics to apply transformations, which can lead to sub-optimal speedups or even reductions in performance. To avoid these issues, we use application profiles collected by selective profiling to apply optimizations in a targeted manner, leading to better speedups and avoiding transformations which hurt performance.

Dynamic locality optimizations. There are several proposals for monitoring program execution and modifying program binaries to improve locality on the fly [32, 72, 89, 96]. These techniques require non-existent hardware support and incur high overhead (up to 6 × [96]). Just-in-time (JIT) compilation techniques [21, 43] provide limited data locality optimizations. On the other hand, DMon works with existing hardware, incurs negligible overhead, and guides optimizations that provide better speedup (16.83% on average).

8 Conclusion

Poor data locality is a major performance problem that hurt applications in production. Unfortunately, existing data locality profilers are not efficient enough to be deployed in production. This is limiting, since production profiles are difficult to replicate offline. We address this problem by selective profiling, a technique capable of discovering data locality problems with negligible overhead (on average 1.36%) in production. We also design DMon, which guides automatic and manual data locality optimizations based on profiles generated using selective profiling. For an extensive set of real-world applications and widely-used benchmarks, DMon provides up to 53.14% and on average 16.83% speedup for the cases where DMon applies targeted optimizations after detecting significant data locality problems.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Michael Stumm, for their insightful feedback and suggestions. This work was supported by the Intel Corporation, the NSF grants #1553169, #1629397, #2010810, and the Applications Driving Architectures (ADA) Research Center, a JUMP Center co-sponsored by SRC and DARPA. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies. We thank Yifan Zhao for running several PostgreSQL experiments. We also thank Xiaohao Cheng, Zhiqi Chen, and Shariq Hafeez for testing DMon on various applications. Finally, we thank Kevin Loughlin for his feedback on this paper’s earlier versions.

A Artifact Appendix

Abstract

We provide the open-source public repository as an artifact for DMon.

Scope

This artifact allows to validate the effectiveness and efficiency of the selective profiling technique.

Contents

This artifact includes one end-to-end example of how to apply selective profiling to monitor in-production data locality issues and one example of data locality optimization applied in a targeted manner based on the output of selective profiling.

Hosting

We host the artifact on Github. Our open-source artifact repository can be obtained from https://github.com/efeslab/DMon-AE. The branch name for the artifact is main. The commit hash for the artifact is d9a0f31.

Requirements

Intel processor, Linux perf, pmu-tools [54] that implement the Top-Down methodology [106], and LLVM [56].

References

