Codes & Lattices:

Computational Complexity and Constructions

Thesis Defense
May 27, 2025

Alexandra Veliche Hostetler

Outline

0. Introduction

I. Computational Complexity

¢+ Fine-Grained Hardness of Learning With Errors

+ Reductions Between Code Equivalence Problems

II. Constructions and Algorithms

+ List-Decoding Reed-Solomon Codes over General Norms

Meow
(friendly hello)

v

Meow
(friendly hello)

Meow Mrrreoww
(friendly hello) > (scared threat)

Alice

Meow
(friendly hello)

v

Alice

Meow Mrreeow
(friendly hello) (mean threat)

v

Alice 4

Coding Theory:
Reliable Communication

Cryptography:
Secure Communication

Two objects frequently used in both areas:

linear codes and lattices

Presenter Notes
Presentation Notes
In our work we assume that all lattices are full rank (so n=k)

Codes

Linear Code:

A linear subspace over a finite field IF,
C={a;g9,+ +argy: a; €F,} S FI

of generator vectors g, ..., g € Fg.

Linear Code:

A linear subspace over a finite field IF,

Codes

C={Gx:x E]F’Cj}E]FC?.

There are many possible generators G =

91
A k
¢ E]Fq Xn.
Ik

Codes

Linear Code:

A linear subspace over a finite field IF,

C={Gx:x EIF’é};[FC}".

91

Ik

There are many possible generators G = S IFC;‘X”.

n is the blocklength and k is the dimension.

Linear Code:

ex: (over FF3)

000

Codes

101

110

011

Lattices

Lattice:
An infinite discrete set of vectors in R™

consisting of all integer linear combinations
L={ab, +--+a;b,: aq,..,a, €EZ} c R"

of linearly independent basis vectors b, ..., b, € R".

Presenter Notes
Presentation Notes
In our work we assume that all lattices are full rank (so n=k)

Lattices

Lattice: o o o
An infinite discrete set of vectors in R™

consisting of all integer linear combinations

L={Bx:x€Z"}cR"

of linearly independent basis vectors b, ..., b, € R". o

There are many possible bases B = |b,, ..., b} |.

Presenter Notes
Presentation Notes
In our work we assume that all lattices are full rank (so n=k)

Lattices

Lattice: o o o
An infinite discrete set of vectors in R™

consisting of all integer linear combinations

L={Bx:x€Z"}c R"

of linearly independent basis vectors b, ..., b, € R". o

The shortest distance between two lattice points is 4, (£). °

Presenter Notes
Presentation Notes
In our work we assume that all lattices are full rank (so n=k)

SVP

find the shortest
lattice vector

LWE

Lattice Problems:

CVP BDD

find the closest
lattice vector

GapSVP

decide how large is
the shortest distance

Code Problems:

decode a random
linear code

Unique-Decode

List-Decode

find the closest
codeword(s)

LIP

decide if two lattices
are isomorphic

PCE

SPCE

LCE

decide if two codes

are equivalent

Computational Complexity

How are these problems related?

SVP

LWE

CVP

BDD

A

GapSVP

Unique-Decode

L1s

it-Decode

LIP

PCE

SPCE

LCE

SVP

LWE

CVP

BDD

How can these prc

How can we construct efficie

Unique-Decode

L1s

GapSVP LIP
blems be solved?
nt algorithms to solve these?
t-Decode PCE SPCE

Constructions and Algorithms

LCE

Computational Complexity

How are these problems related?

GapSVP

i

BDD

LIP

LWE

N\

PCE

SPCE

LCE

Constructions and Algorithms

How can these problems be solved?

Unique-Decode

List-Decode

. Computational Complexity

Fine-Grained Hardness of LWE

Based on joint work with Divesh Aggarwal and Leong Jin Ming

Cryptography from LWE

LWE

IND-CPA-secure

Public-Key Encryption
[Regev, 2005]

CCA-secure
Encryption

\ [Peikert, 2009]

Key Exchange Scheme
[Ding-Xie-Lin, 2012],
[Peikert, 2014]

Presenter Notes
Presentation Notes
LWE is a versatile, robust problem that is the basis of many cryptosystems.
(Robust means it remains hard even if some information is leaked).

worst-case
problems

Cryptographic Significance

dverage-case

problem

> LWE

IND-CPA-secure

Public-Key Encryption
[Regev, 2005]

CCA-secure

Encryption
[Peikert, 2009]

/

Key Exchange Scheme
[Ding-Xie-Lin, 2012],
[Peikert, 2014]

Presenter Notes
Presentation Notes
Because there are worst-case problems that reduce to LWE, the random (average-case) distributions used for practical cryptographic applications are just as hard to solve as the hardest (worst-case) instances we can come up with.
This makes LWE a strong basis for cryptography.

Cryptographic Significance

worst-case

hardness

GapSVP

BDD

average-case
hardness

LWE

—

cryptosystems

Cryptographic Significance

worst-case
hardness

GapSVP

BDD

>

average-case
hardness

LWE

\/

no known efficient quantum

algorithms for these problems

Post-quantum
cryptosystems

Learning With Errors

(search)

LWE, 4 : ndimension, p modulus, ¢ ~ R/Z error distribution

Given noisy samples (a, (a,s) + e), where

a « Zy uniformly random, s € Zy; unknown, e < ¢ small error, n
A
s N
output s. 4
+
n¥ _< A S
"

random secret small error
matrix vector vector

Presenter Notes
Presentation Notes
LWE is equivalent to the problem of decoding a random linear code where the channel noise distribution is \phi.

Learning With Errors

(decision)

LWE, 4 : ndimension, p modulus, ¢ ~ R/Z error distribution

Given noisy samples (@, b), where
S +
a « Zz uniformly random, b € Z,, A
output
LWE samples
YES if samples are from the LWE distribution for s and ¢,
NO if samples are uniformly random.
r

random samples

Presenter Notes
Presentation Notes
LWE is equivalent to the problem of decoding a random linear code where the channel noise distribution is \phi.

Shortest Vector Problem

SVP | :

Given a basis B for lattice £ c R",

find a shortest non-zero lattice vector x, L

i.e.x € L\ {0}, such that [|x]|| = 4, (£). o o

Presenter Notes
Presentation Notes
GapSVP is an approximate decision variant of SVP.

Shortest Vector Problem

SVP | :

Given a basis B for lattice £ c R",

find a shortest non-zero lattice vector x, L

i.e.x € L\ {0}, such that [|x]|| = 4, (£). o o

GapSVP,, | is an approximate decision variant.

Presenter Notes
Presentation Notes
GapSVP is an approximate decision variant of SVP.

Approximate Shortest Vector Problem

GapSVP,|: y = 1 approximation factor

Given a basis B for a full-rank lattice £L c R"

and a distance parameterd > 0, ,

output \

YESif A, (L) < d

NO if 1, (L) =y - d.

Presenter Notes
Presentation Notes
We are guaranteed that there is a gap, i.e. no lattice points exist between the inner and outer balls.

Closest Vector Problem

CVP :
o o

Given a basis B for lattice £L ¢ R",

n X
and a target vector t € R", ° L

@
. . t
find a lattice vector x closest to ¢,
o o

i.e. x € L, such that ||[x — t|| = dist(t, £). . .

Presenter Notes
Presentation Notes
GapSVP is an approximate decision variant of SVP.

Closest Vector Problem

CVP :
o o

Given a basis B for lattice £L ¢ R",

n X
and a target vector t € R", ° L

t\'
find a lattice vector x closest to ¢,
o o
i.e. x € L, such that ||[x — t|| = dist(t, £). . .
o o

BDD, | is an approximate variant.

Presenter Notes
Presentation Notes
GapSVP is an approximate decision variant of SVP.

Bounded Distance Decoding

BDD, : «a > 0 distance approximation factor
))) o o o
Given a basis B for a full-rank lattice £ ¢ R"
and a target vector t € R" close to the lattice, o o
| o M)
|\ t ,'
find a lattice vector x € L closest to f, ® ° e

i.e.x € L, suchthat ||x — t|| < a - 1, (£).

Presenter Notes
Presentation Notes
LWE can be seen as a version of BDD in which the lattice vector (x=s) is shifted by some small error vector (b = a s + e).

Bounded Distance Decoding

1, . .
BDD,|: a< > distance approximation factor

Given a basis B for a full-rank lattice £L ¢ R"

and a target vector t € R" close to the lattice,

find the unique lattice vector x € L closestto t,

i.e.x € L, suchthat ||x — t|| < a - 1, (£).

unique!

-
e
/7
/
/
)
|

X
a -

t

N
N\

\
\
Al\
o—

Presenter Notes
Presentation Notes
LWE can be seen as a version of BDD in which the lattice vector (x=s) is shifted by some small error vector (b = a s + e).

Hardness of LWE

[Regev, 2009] — quantum reduction from worst-case lattice problems to decision-LWE

quantum classical

GapSVP, > |BDD,, > | LWEn,¢

Presenter Notes
Presentation Notes
Turing reductions!

Hardness of LWE

[Peikert, 2009] — classical reduction, but modulus becomes exponential

GapSVP,

classical

g
»

BDD,,

classical

))

LWE 5,6

p = exp(n)

Hardness of LWE

[Brakerski, Peikert, Langlois, Regev, Stehle, 2013] — classical reduction with polynomial modulus

classical classical

GapSVP, > BDD, > | LWE, 5

l classical

binary-LWE, 2 , 4

l classical

p = poly(n) | LWE,2, 4

GapSVP,

BDD,,

Hardness of LWE

— | LWE; ;¢

binary-LWE, 2 , 4

p = exp(n)

LWE, 2 , 4

p = poly(n)

Algorithms for Lattice Problems

GapSVP, | — BDD, | —— | LWE;, 4 | — binary-LWE, 2, 4 | ——— LWE, 2 , 4

R

Fastest algorithms for these

oroblems run in 29 time
(for polynomial approximation factor).

Presenter Notes
Presentation Notes
LLL algorithm for lattice basis reduction is the best known polynomial-time algorithm.

What the Reduction says about LWE Algorithms

GapSVP, | — |BDD, — LWE, pp | — binary-LWEnz’p’d) — LWEnzp¢

Conjecture: known algorithms
are the best possible

What the Reduction says about LWE Algorithms

GapSVP,| —— BDD, | —

Conjecture: known algorithms
are the best possible

LWE,,

binary-LWE, 2, 4

—

solving LWE requires
at least 220V1) time

LWEnZ D, ¢

What the Reduction says about LWE Algorithms

[Blum-Kalai-Wasserman, 2000] — Best known algorithm for LWE,, ,, runs in 20(

GapSVP,| —— BDD, —

Conjecture: known algorithms
are the best possible

-log p)

LWE;, .6

binary-LWE, 2, 4

time.

—

solving LWE requires
at least 22V1) time

LWE, 2 , 4

What the Reduction says about LWE Algorithms

[Blum-Kalai-Wasserman, 2000] — Best known algorithm for LWE,, ,, runs in Zo(logn logp) time.
GapSVP,| —— BDD, | — LWE,pp | — binary-LWEnz’p’d, ‘ LWEnZ,p,¢
Big Gap!

Conjecture: known algorithms solving LWE requires
are the best possible : = [eeen D) fimne

Our Contribution

We close this gap by changing our perspective!

Presenter Notes
Presentation Notes
We close this gap by changing our perspective – this is a new approach!

Security 1n Practice

What does it mean for a cryptosystem to be 256-bit secure?

Security 1n Practice

What does it mean for a cryptosystem to be 256-bit secure?
(a) The fastest algorithm for breaking the cryptosystem runs in 22° time.

(b) No reasonably efficient algorithm can break the cryptosystem with probability > 272°°.

Presenter Notes
Presentation Notes
There are differing notions of this, but there is no conventional universal definition. Here are two main contenders.

Security 1n Practice

What does it mean for a cryptosystem to be 256-bit secure?

(a) The fastest algorithm for breaking the cryptosystem runs in 22° time.

(b) No reasonably efficient algorithm can break the cryptosystem with probability > 272°°.

This is what we usually want
for cryptographic security

Presenter Notes
Presentation Notes
In practice we care about time 2^60, but 2^256 is longer than the believed age of the universe, so (a) is usually irrelevant in practice.
(b) is what we usually want because security models rely on limited computational power.�

An Alternative Perspective

An alternative measure of computational hardness:

The maximum success probability of any probabilistic polynomial-time algorithm

that finds a solution.

Presenter Notes
Presentation Notes
This gives us a natural, practical alternative way to measure hardness.
This is a well-studied notion in complexity theory.

An Alternative Perspective

An alternative measure of computational hardness:

The maximum success probability of any probabilistic polynomial-time algorithm

that finds a solution.

We study worst-case to average-case hardness of LWE under this framework.

Presenter Notes
Presentation Notes
Given that LWE is the basis for many post-quantum cryptosystems, this is right framework to consider.

Success Probability of Solving LWE

Trivial algorithm (guess the error): Success probability for solving LWE,, , 4 is)

Success Probability of Solving LWE

Trivial algorithm (guess the error): Success probability for solving LWE;, , ¢ is p‘Q(").

random secret small error
matrix vector vector

Success Probability of Solving LWE

Trivial algorithm (guess the error): Success probability for solving LWE,, , 4 is)

All other algorithms are not efficient, so it is unlikely that we can achieve better than this.

Success Probability of Solving Lattice Problems

LLL / Slide Reduction + guess coefficients: Success probability of solving GapSVP,, is 2~-0(n*/logn)

Success Probability of Solving Lattice Problems

LLL / Slide Reduction + guess coefficients: Success probability of solving GapSVP,, is 2~-0(n*/logn)

Known techniques do not seem to improve this when restricted to efficient algorithms,

so it is unlikely that we can achieve much better than this.

Success Probability of Solving Lattice Problems

LLL / Slide Reduction + guess coefficients: Success probability of solving GapSVP,, is 2~-0(n*/logn)

When restricted to efficient algorithms, known technigues do not seem to improve this,

so it is unlikely that we can achieve much better than this.

BDDy,, is closely related to GapSVP, for y = poly(n) = 1/a,

so it is unlikely we can achieve better than known algorithms.

A Natural Conjecture

Conjecture: (informal) No algorithm can solve BDD, on an arbitrary n-rank lattice for « = 1/poly(n)

in polynomial time with success probability better than p—n*/logn

Presenter Notes
Presentation Notes
Proving this conjecture is an open problem.

What We Show

Trivial algorithm: Success probability for efficiently solving LWE,, ,, 4 is DR

Conjecture = Maximum success probability for efficiently solving LWE,, ,, is p~ "/ o)

What We Show

Trivial algorithm: Success probability for efficiently solving LWE,, ,, 4 is DR

Tight!

Conjecture = Maximum success probability for efficiently solving LWE,, ,, is p~ "/ log® n),

Limitations of the Original Reduction

BDD,,

poly calls

mod-BDD,, ,,

1 call

LWE

1 call

n,p,o

poly calls

gen-LWE,, , p

binary-LWE, 2, 4

1 call

LWE, 2 , 5

Limitations of the Original Reduction

1 call 1 call

BDD,, LWE, , 4 — binary-LWE, 2, 4 | —— LWE, 2 ,
poly calls poly calls Making polynomially many oracle calls
causes an exponential loss in success probability!

mod-BDD, ,, | — | gen-LWE, ,, 1

1 call

Presenter Notes
Presentation Notes
CHECK WHICH REDUCTION HAVE POLY # CALLS

Limitations of the Original Reduction

Reduction algorithm for P — Q makes k calls to oracle for Q.

Success probability of solving Q is = € = success probability of solving P is = el

Limitations of the Original Reduction

Reduction algorithm for P — Q makes k calls to oracle for Q.
Success probability of solving Q is = € = success probability of solving P is = =5

Success probability of solving P is < & = success probability of solving Q is < o1/k,

Limitations of the Original Reduction

Reduction algorithm for P — Q makes k calls to oracle for Q.
Success probability of solving Q is = € = success probability of solving P is = &3

Success probability of solving P is < & = success probability of solving Q is < o1/k,

We want just O(1) oracle calls to get a meaningful conclusion.

BDD,,

1 call

\ 4

mod-BDD, ,,

1 call

Our Reduction

LWEn » 1 call

))

1 call

gen -LWEn,p’D

binary-LWE, 2, 4 —=, LWE2) 4

We make a single oracle call in each step
and suffer at most a polynomial loss
in success probability.

Presenter Notes
Presentation Notes
Limiting the number of oracle calls is essential to maximizing the success probability of reduction algorithms.

BDD,,

1 call

A 4

mod-BDD, ,,

1 call

Our Reduction

LWEn’p’(p 1 call
1 call
gen-LWE;, ,, p

binary-LWE, 2 , 4

1 call

LWE,; 2 , 4

We use the same techniques as [Regev, 2005] and [Brakerski+, 2013],
but with great care to the explicit loss in success probability and number of oracle calls.

Our Main Result

Theorem 1: (informal) If no efficient algorithm can solve BDD,, for a < %

with success probability greater than 2~ Q(n?/logn)

then no efficient algorithm can solve search-LWE,, ,, , (even for binary secret)

for dimension n, and modulus p = poly(n) with success probability 2= /1087,

BDD,,

mod-BDD, ,,

Our Reduction

LWE, pop | —

binary-LWE, 2 , 4

— | gen -LWEn,p,@

LWE, 2 , 4

Presenter Notes
Presentation Notes
Not as straightforward as it looks, there is a detour

success prob. g

Trivial: blow up

modulus top = 2™

BDD,,

\ 4

success prob. g

mod-BDD, ,,

Our Proof Techniques

Our Proof Techniques

mod-BDD, ,, | — | gen-LWE,, ,,

success prob. _/ success prob.

q—¢€ q
Generate discrete Gaussian

samples and use them to
generate LWE samples

Our Proof Techniques

success prob. g

LWE

a

n,p,o

Carefully sample Gaussian
noise that guarantees
optimal success probability

gen-LWEn,p,D

success prob.
q

(1+¢€)3

Our Proof Techniques

success prob. g success prob. g success prob. g

LWE — | binary-LWE, 2, o | ——— |LWE, 2 ,, 4

n,p,o

These reductions preserve success probability

Our Second Result

Theorem 2: (informal) If no algorithm can solve search-LWE,, ,, for polynomial modulus

with success probability & in expected polynomial time,
then no efficient algorithm can “solve” decision-LWE,, ,,

with success probability = a.

Presenter Notes
Presentation Notes
“Solve” is defined formally in the paper, but we do not cover this in the talk.�In particular, we must define carefully what success probability means for probabilistic decision problems (we use a slight relaxation of OPP algorithms for this to make sense for probabilistic problems).

Open Directions

Reductions BDD — search-LWE and search-LWE — decision-LWE are disconnected,
because expected polynomial-time is a fundamental part of the second reduction.

|s a workaround possible?

Establish a similar result for GapSVP — BDD (or prove impossibility).

Use this alternative framework to study the complexity of other computational problems

relevant to cryptography or learning.

Reductions Between Code Equivalence Problems

Based on joint work with Mahdi Cheraghchi and Nikhil Shagrithaya

Cryptographic Significance

CE

Public-Key Encryption
[McEliece, 1978]

/ Classic McEliece:

T CCA-secure
Public-Key Encryption
[ABC+, 2022]
LESS:

|dentification Scheme
[BBPS, 2021], [BBPS, 2022]

CE

Code Equivalence Problem

: Given two codes €4, C, E [y, decide whether €4 and €, are equivalent.

CE

: Given two codes C1,C, < FZ, decide whether €4 and G, are equivalent.

ex.:

Code Equivalence Problem

PCE

SPCE

LCE

Permutation CE
Signed Permutation CE

Linear CE

PCE

Permutation Code Equivalence

. Given generator matrices G, G, € [F’;X" for codes C4,C, S [F,

decide if €4 and C, are the same up to permutation of coordinates.

ex:(forF3) o1l \ 101

101 110

110 011

000 000

Permutation Code Equivalence

PCE |: Given generator matrices G1,G, € [F’C;x" for codes €4,C, E Iy,

output

YES if there exists invertible S € GL; and permutation P € P, such that SG1P = G,

.- P =-

NO if otherwise.

Signed Permutation Code Equivalence

SPCE |: Given generator matrices G4, G, € Ingn for codes C4,C, S 7,

output

YES if there exists invertible S € GL; and signed permutation P € SP,, such that SG4P = G,

.- P =-

NO if otherwise.

LCE

Linear Code Equivalence

. Given generator matrices G, G, € [F’;X" for codes €4,C, S [,

output

YES if there exists invertible S € GL; and monomial M € M,, such that SGiM = G,

.- M =-

NO if otherwise.

Code Equivalence

011
Cy
101
110
000 I
c, 101

110

011

000

Code Equivalence

011

101

110

000

c, 101

110

011

000

Lattice Isomorphism

Z

L,

Lattice Isomorphism Problem

LIP | : Given basis matrices By, B, € R¥*™ for lattices £, L, < R",

decide if L1 and £, are the same lattice under some orthogonal transformation.

ex: (for R?)
o o o ™ ¢ = Q o °
o
® ° o o ° / \ o 5 .
O @ @ @ @ o
& o
@ @ o @ ® ©
Ll [’2 - G

Lattice Isomorphism Problem

LIP | : Given basis matrices By, B, € R¥*™ for lattices £, L, < R",

output

YES if there exists invertible S € GL; and orthogonal O € O,, such that S B;O = B,

.- 0 =-

NO if otherwise.

Lattice Isomorphism Problem

LIP | : Given basis matrices By, B, € R¥*™ for lattices £, L, < R",

output

YES if there exists invertible S € GL; and orthogonal O € O,, such that S B;O = B,

.- 0 =-

NO if otherwise.

GI

Known Reductions

search — PCE

LCE

[Bennett-Win '24]

=
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

» | SPCE

[Biasse-Micheli '23]

[Sendrier-Simons "13] PCE
[Ducas-Gibbons ‘23]

LIP

[Bennett-Win ‘'24]

Presenter Notes
Presentation Notes
These are Karp reductions (except for the search- to decision-PCE reduction, which makes several oracle calls).�Reduction from GI  LCE is polynomial time. For graphs with n vertices and m edges, codes have dimension n + O(1) and blocklength m + O(n)

GI

Our Reductions

search — PCE

LCE

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

» | SPCE

|

PCE ‘~-_
/ --~--~
A ~~~~
] N

LIP

Presenter Notes
Presentation Notes
Reduction from GI  LCE is polynomial time. For graphs with n vertices and m edges, codes have dimension n + O(1) and blocklength m + O(n)

Our Results

Theorem 1: There is a Karp reduction from PCE to LCE that runs in poly(n,log q) time, where the

input pair of codes have blocklength n and field size q.

Theorem 2: There is a Karp reduction from PCE to SPCE that runs in poly(n, log q) time, where

the input pair of codes have blocklength n and field size q.

Our Results

Theorem 1: There is a Karp reduction from PCE to LCE that runs in poly(n,log q) time, where the

input pair of codes have blocklength n and field size q.

Theorem 2: There is a Karp reduction from PCE to SPCE that runs in poly(n, log q) time, where

the input pair of codes have blocklength n and field size q.

We construct a map that transforms
Gy, Gy € FE™ > G, G € F™

such that (G4, G;) € PCE & (G7, G;) € LCE (or SPCE).

Presenter Notes
Presentation Notes
Our construction was inspired by the techniques used in the search-to-decision reduction for PCE.

Our Construction

Given generator matrix G € IF’gx", where m; = maximum number of times a column appearsin G.

Our Construction

Given generator matrix G €]F’gx", definem = m¢; + 1.

G =

Construct G € FExnm: /%/N\\

)
Il

Our Construction

Given generator matrix G €]F’gx", definem = m¢; + 1.

Append G to G :

{
{

Our Construction

Given generator matrix G € Ing", definem = m¢; + 1.

Append zero columns:

nm nm+ 1

=

Our Construction

Given generator matrix G € Ing", definem = m¢; + 1.

Append the last row:

G

11111

00000000000C0O0O0QO

1111111111111 111

(.

J -

J |\ J

—
n

Y

nm

Y

nm+ 1

Our Construction

Given generator matrix G € IF’gxn, definem = m¢; + 1.

Final matrix is G’

= IFq(k+1)><(2nm+n+1):

G :

11111]1000000000000000

1111111111111 1711

Our Results

Theorem 1: There is a Karp reduction from PCE to LCE that runs in poly(n,log q) time, where the

input pair of codes have blocklength n and field size q.

Theorem 2: There is a Karp reduction from PCE to SPCE that runs in poly(n, log q) time, where

the input pair of codes have blocklength n and field size q.

Our map transforms
Gy, Gy € FE™ > G, G € F™

such that (G4, G;) € PCE & (G7, G;) € LCE (or SPCE).

Proof Idea

Presenter Notes
Presentation Notes
Idea is for reduction from PCE to SPCE. The one to LCE is very similar.

Proof Idea
e

S’ is a change of basis matrix that defines a bijection over Iz

It maps identical columns in G4’ to identical columns in G

Proof Idea

We analyze the structure of the permutation P’ and how it permutes the columns of G{'.

Proof Idea

11111

00000000000C00O0QO

1111111111111 111

Proof Idea

11111

00000000000C00O0QO

1111111111111 111

Without loss of generality, we assume that G; does not contain an all-zero column.

Proof Idea

Under any P’, this block is
mapped to itself.

11111

00000000000000%

1111111111111 111

Without loss of generality, we assume that G; does not contain an all-zero column.

Proof Idea

11111

000000000000GOOCOJ1TTT1TT1TT111111111

Every column of G4 appears < m times.

But every column of G appears = m times.

Proof Idea

Under any P’, columns in this block
are mapped back into this block.

11111

0000000000O0OGOOON1ITITITTIITI1I1T1ITITITITITI1

Every column of G4 appears < m times.

But every column of G appears = m times.

Proof Idea

11111

000000000000006O

1111111111111111||

This last row prevents P’ from swapping columns from different blocks.

Proof Idea

I I1 III

11111|000000000000000||1111111111111111

All together, the distribution of columns, zero columns, and last row

forces any permutation P’ to respect boundaries and have a block diagonal structure.

Future Directions

search — PCE

This runs in poly(n, q) time.
Can it be improved to poly(n,log q)?

PCE | ~o
pOlY(Tl, q) ~\§~
poly(n,log q) T

LCE LIP

» | SPCE

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

GI

Presenter Notes
Presentation Notes
Reduction from GI  LCE is polynomial time. For graphs with n vertices and m edges, codes have dimension n + O(1) and blocklength m + O(n)

GI

Future Directions

search — PCE

LCE

s there a Karp reduction from
LIP to any variant of CE?

LIP

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

» | SPCE

Presenter Notes
Presentation Notes
Reduction from GI  LCE is polynomial time. For graphs with n vertices and m edges, codes have dimension n + O(1) and blocklength m + O(n)

II. Constructions and Algorithms

List-Decoding GRS Codes over General Norms

Based on joint work with Chris Peikert

Codes

Linear Code:

A linear subspace over a finite field IF,
C={xG: x€eF}cF}

generated by G € F, %",

n is the blocklength and k is the dimension.

Generalized Reed-Solomon Codes

GRS Code: n blocklength, [, finite field of size ¢ = n, k dimension,

a = (ay, ..., ay) € Fy evaluation points, t = (ty, ..., t,,) € F non-zero twist factors

GRS, k(a, t) = {(t1- flay), o, ty - fan)): f € Fglx], deg(f) < k} < Iy

Generalized Reed-Solomon Codes

GRS Code: n blocklength, [, finite field of size ¢ = n, k dimension,

a = (ay, ..., ay) € Fy evaluation points, t = (ty, ..., t,,) € F non-zero twist factors

GRS, k(a, t) = {(t1- flay), o, ty - fan)): f € Fglx], deg(f) < k} < Iy

f(x) =coy+cyx+ -+ cpqxk?t

Generalized Reed-Solomon Codes

GRS Code: n blocklength, [Fg finite field of size g = n, k dimension,

a = (ay, ..., ay) € Fy evaluation points, t = (ty, ..., t,) € [non-zero twist factors

GRS,k (a,t) = {(tl - f(aq), e, by - f(an)) : f € Fglx], deg(f) < k} c 7.

f(ay)

f(a3z)

f(x) =coy+cyx+ -+ cpqxk?t

f(an)

Generalized Reed-Solomon Codes

GRS Code: n blocklength, [Fg finite field of size g = n, k dimension,

a=(ag..,a,) € [Fg evaluation points, & = (ty, .., t,) € [Fg non-zero twist factors

GRS,k (a,t) = {(t1 - f(ay), ..., ty, -f(an)) : f € Fglx], deg(f) < k} c 7.

f(ay) tq

f(a3z) ty

f(x) =coy+cyx+ -+ cpqxk?t

flan) | | tn

Generalized Reed-Solomon Codes

GRS Code: n blocklength, [Fg finite field of size g = n, k dimension,

a = (ay, ..., ay) € Fy evaluation points, t = (ty, ..., t,,) € F non-zero twist factors

GRS,k (a,t) = {(t1 - f(ag), ..., ty ~f(o:n)) : f € Fglx], deg(f) < k} c 7.

f(ay) t; | ——> | t1 - f(ay)

fx) =co+cix+ -+ cpoqx? f(C.KZ) L | —| b 'f.(sz)
: _—> .

f(an) ty | ———>| tn f(an)

Generalized Reed-Solomon Codes

GRS Code: n blocklength, [Fg finite field of size g = n, k dimension,

a = (ay, ..., ay) € Fy evaluation points, t = (ty, ..., t,,) € F non-zero twist factors

GRS,k (a,t) = {(t1 - f(ag), ..., t, ~f(o:n)) : f € Fglx], deg(f) < k} c 7.

f(ay) b | — = | a
f(a3) by | —> |

f(x) =coy+cyx+ -+ cpqxk?t E € GRS
f(an) tn . Cn

List-Decoding Problem

Fq

C code

List-Decoding Problem

C code

y received word

List-Decoding Problem

C code

find all codewords within distance § of y

Rate-Distance Trade-off

CcFr

k dimension

Rate-Distance Trade-off

How much space

n

C <]FCI does this code
® ° ® o / occupy’?

k dimension /

Rate-Distance Trade-off

“density” of a code

n
C CF;
° °] ° /
k di | k—1
Imension / o

(adjusted) rate

Rate-Distance Trade-off

CcFr

low rate
° ° ° ° /
k dimension /

- -
- - o

([] e ,” { ([]
,/
/
)
l—. '
! !
° . e o, :
\ S TT—— decoding ball
/, \

’ contains few
o o e . codewords

Rate-Distance Trade-off

ccrr |

® ® / h|gh rate
k dimension | ¢/

® o ____o ® 0
-~
® ® ® ® ° () ® ®
/
® ® ® I’ ®) ®)
I}
® ® ® foe——w® ® P) ®

, .

. . e e . Jo T decoding ball
\\ ,/ \ 0

° ® ® o ~_ ° e ° ® contains many

. . . ., . . codewords

Measuring Distance

How is distance measured?

Measuring Distance

Rq = (R/qZ)"

Measuring Distance

£, norm (Euclidean distance)

Measuring Distance

£1 norm (Manhattan distance)

General (Quasi)Norms

{p(Quasi)Norm: p >0

For any vector x = (x4, ..., X,,) € R™, its length in the fp (quasi)norm is

lxll, = (P + -+ x2) 7.

Presenter Notes
Presentation Notes
A quasinorm (for p<1) relaxes the triangle inequality to ||x+y|| <= K (||x|| + ||y||) for a fixed K. We don’t use the triangle inequality at all.

Our Results

Theorem: (informal) There is an efficient algorithm that list-decodes GRS codes

from both worst-case and average-case errors in the £, (quasi)norm forany 0 < p < 2.

Our Results

Theorem: (informal) There is an efficient algorithm that list-decodes GRS codes

from both worst-case and average-case errors in the £, (quasi)norm forany 0 < p < 2.

Prior algorithms: Hamming metric (many works),
£, norm [Mook-Peikert, 2022],

£, norm [Roth-Siegel, 1994]

List-decoding Algorithm

received word
n
y €ERy

> list of close codewords
C1,C2, ..., C €EC

Soft-decision Decoding Algorithm

weight vector >

= (Wll ey Wi, ---;Wn) S [O’l]qn

> |ist of close codewords
1,62, ..., Ct EC

Soft-decision Decoding Algorithm

weight vector

W = (Wl) ey Wi, ---;Wn) S [O’l]qn

AN

wi(x) | wi()| o [wi(xg)

w; (x) specifies the “likelihood” that

x was the i-th transmitted symbol

> |ist of close codewords
1,62, ..., Ct EC

Guruswami-Sudan Algorithm

[Guruswami-Sudan, 1998], [Koetter-Vardy, 2003], [Guruswami, 2001]
There is a deterministic soft-decoding algorithm for (Generalized) Reed-Solomon codes
C < [Fg with prime field size g, dimension k, adjusted rate R™ = %, with

Input: weight vector W = (wy, ...,w,) € [0,1]9",

Output: list of all codewords ¢ € C that are “closely correlated” with W

corr(W, ¢) = VR*.

Guruswami-Sudan Algorithm

[Guruswami-Sudan, 1998], [Koetter-Vardy, 2003], [Guruswami, 2001]
There is a deterministic soft-decoding algorithm for (Generalized) Reed-Solomon codes
C < [Fg with prime field size g, dimension k, adjusted rate R™ = %, with

Input: weight vector W = (wy, ...,w,) € [0,1]9",

tolerance parametert > 0

Output: list of all codewords ¢ € C that are “closely correlated” with W
corr(W,c) = VR* + 1.

running in poly (n, q,m) time.

Our List-decoding Algorithm

received word
n
y € Ry

list of close codewords
C1,Cp, ..., Cp €EC

Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY

Transforming into Weights

received word y = | ¥;

VYo | o

Yn

R, = R/qZ

Vi

€ Ry

Transforming into Weights

received word y =

V1

VYo | o

Yn

Vi

€ Ry

Transforming into Weights

received word y =

V1

VYo | o

Yn

Vi

€ Ry

Transforming into Weights

receivedword y = | Y1 |¥Y2| - | Yn | ERY

Transforming into Weights

received word y =

[Mook-Peikert, 2022] :

R

q

V1

Y2

Yn

Vi

€ Ry

i-th weight vector

=0

0

Wi

0

0

Transforming into Weights

received word y =

[Mook-Peikert, 2022] :

R

q

V1

Y2

Yn

Vi

€ Ry

weight vector

0

0

0

0

Transforming into Weights

received word y = |1

VYo | o

Yn

Our weight vector : R

€ Ry

Transforming into Weights

Our weight vector :

received word y =

V1

Y2

Yn

€ Ry

i-th weight vector

Wyl- (xl)

wy, (x4)

weights given by a
function f; of widths > 0

Transforming into Weights

Our weight vector :

received word y =

V1

Y2

Yn

€ Ry

i-th weight vector

W; = Ws,yi (xl)

Vs (xq)

N4

Wsy, (X) = fs(vi — x + qZ)

determined by the distance
between y; and symbol x

Choosing the Weight Function

We can choose any nicely behaved function f that satisfies certain properties.

But some functions are more natural for specific norms...

Choosing the Weight Function

For distances measured in the fp norm:

P (%) = exp(—(c, - [x/s])P)

l

normalizing constant

Choosing the Weight Function

Gaussian function

For distances measured in the £, norm:

£ (%) = exp(—(7 - |x/s])?)

For distances measured in the £1 norm: Laplacian function

() = exp(=(2 - |x/s)") /\

Our Main Result

Theorem: Forany 0 < p < 2, prime g, and § > 0, the GS soft-decision algorithm using weight

vectors defined by fs(p) for any s > 0, list-decodes up to £, distanced = ¢ - n!/P any GRS code

C € F;' with adjusted rate

fs(8)*
fs(Lq)

R* <

Our Main Result

Theorem: Forany 0 < p < 2, prime g, and § > 0, the GS soft-decision algorithm using weight

vectors defined by fg(p) for any s > 0, list-decodes up to £, distanced = ¢ - n'/P any GRS code

C € F;' with adjusted rate

Our Main Result

Theorem: Forany 0 < p < 2, prime g, and § > 0, the GS soft-decision algorithm using weight

vectors defined by fs(p) for any s > 0, list-decodes up to £, distanced = ¢ - n!/P any GRS code

C € F;' with adjusted rate

* < f:g(S)z ::B(p)

R
ACH I

in time poly(n, g, exp(l/sp)/(BCg?5 —+/R*)).

Our Main Result

Theorem: Forany 0 < p < 2, prime g, and § > 0, the GS soft-decision algorithm using weight

vectors defined by fg(p) for any s > 0, list-decodes up to £, distanced = ¢ - n'/P any GRS code

C € F;' with adjusted rate

e BOP _ y sasme 1
Rl e SCeple - P
" p ® _ o This is the (dimension-normalized) volume
intime poly(n, ¢, exp(1/s)/(BCI,Sﬁ R*))- of the n-dim. £,, ball of radius nt/p |

Comparison to Prior Algorithms

rate R*

distance §

Rate-distance trade-off for £,

Comparison to Prior Algorithms

rate R*

distance 8

Rate-distance trade-off for ¢4

Open Directions

Determine the optimal choice of weights for the GS algorithm for 6 > 1/2 for £, norm.

For § < 1/2, [Mook-Peikert, 2022] proved their weight vector is optimal.

The product of the rate R* and distance é for which our algorithm works approaches
R* -6 — 1/ volume of the n-dim. £,, ball of radius n1/P (dim.-normalized).

Why should this be the case?

What is the list-decoding capacity for decoding over general £, norms?

How do our algorithmic bounds compare?

Thank you to my collaborators!

Questions?

	Codes & Lattices:�Computational Complexity and Constructions
	Outline
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Codes
	Codes
	Codes
	Codes
	Lattices
	Lattices
	Lattices
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	I. Computational Complexity
	�Fine-Grained Hardness of LWE
	Cryptography from LWE
	Cryptographic Significance
	Cryptographic Significance
	Cryptographic Significance
	Learning With Errors
	Learning With Errors
	Shortest Vector Problem
	Shortest Vector Problem
	Approximate Shortest Vector Problem
	Closest Vector Problem
	Closest Vector Problem
	Bounded Distance Decoding
	Bounded Distance Decoding
	Hardness of LWE
	Hardness of LWE
	Hardness of LWE
	Hardness of LWE
	Algorithms for Lattice Problems
	What the Reduction says about LWE Algorithms
	What the Reduction says about LWE Algorithms
	What the Reduction says about LWE Algorithms
	What the Reduction says about LWE Algorithms
	Our Contribution
	Security in Practice
	Security in Practice
	Security in Practice
	An Alternative Perspective
	An Alternative Perspective
	Success Probability of Solving LWE
	Success Probability of Solving LWE
	Success Probability of Solving LWE
	Success Probability of Solving Lattice Problems
	Success Probability of Solving Lattice Problems
	Success Probability of Solving Lattice Problems
	A Natural Conjecture
	What We Show
	What We Show
	Limitations of the Original Reduction
	Limitations of the Original Reduction
	Limitations of the Original Reduction
	Limitations of the Original Reduction
	Limitations of the Original Reduction
	Our Reduction
	Our Reduction
	Our Main Result
	Our Reduction
	Our Proof Techniques
	Our Proof Techniques
	Our Proof Techniques
	Our Proof Techniques
	Our Second Result
	Open Directions
	Reductions Between Code Equivalence Problems
	Cryptographic Significance
	Code Equivalence Problem
	Code Equivalence Problem
	Permutation Code Equivalence
	Permutation Code Equivalence
	Signed Permutation Code Equivalence
	Linear Code Equivalence
	Code Equivalence
	Code Equivalence
	Lattice Isomorphism Problem
	Lattice Isomorphism Problem
	Lattice Isomorphism Problem
	Slide Number 89
	Slide Number 90
	Our Results
	Our Results
	Our Construction
	Our Construction
	Our Construction
	Our Construction
	Our Construction
	Our Construction
	Our Results
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Slide Number 110
	Slide Number 111
	II. Constructions and Algorithms
	List-Decoding GRS Codes over General Norms
	Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	List-Decoding Problem
	List-Decoding Problem
	List-Decoding Problem
	Rate-Distance Trade-off
	Rate-Distance Trade-off
	Rate-Distance Trade-off
	Rate-Distance Trade-off
	Rate-Distance Trade-off
	Measuring Distance
	Measuring Distance
	Measuring Distance
	Measuring Distance
	General (Quasi)Norms
	Our Results
	Our Results
	List-decoding Algorithm
	Soft-decision Decoding Algorithm
	Soft-decision Decoding Algorithm
	Guruswami-Sudan Algorithm
	Guruswami-Sudan Algorithm
	Our List-decoding Algorithm
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Choosing the Weight Function
	Choosing the Weight Function
	Choosing the Weight Function
	Our Main Result
	Our Main Result
	Our Main Result
	Our Main Result
	Comparison to Prior Algorithms
	Comparison to Prior Algorithms
	Open Directions
	Slide Number 162
	Slide Number 163

