Codes & Lattices: Computational Complexity and Constructions

Thesis Defense

May 27, 2025

Alexandra Veliche Hostetler

Outline

0. Introduction

I. Computational Complexity

- Fine-Grained Hardness of Learning With Errors
- Reductions Between Code Equivalence Problems

II. Constructions and Algorithms

List-Decoding Reed-Solomon Codes over General Norms

Bob

Alice

Meow (friendly hello)

Bob

Bob

Alice

Meow (friendly hello)

Bob

Cryptography: Secure Communication

■

Two objects frequently used in both areas:

linear codes and lattices

Linear Code:

A linear subspace over a finite field \mathbb{F}_q

$$\mathbf{C} = \{a_1 \mathbf{g_1} + \dots + a_k \mathbf{g_k} : a_i \in \mathbb{F}_q\} \subseteq \mathbb{F}_q^n$$

of generator vectors $g_1, \dots, g_k \in \mathbb{F}_q^k$.

Linear Code:

A linear subspace over a finite field \mathbb{F}_q

$$\mathbf{C} = \{\mathbf{G} \times \mathbf{X} \in \mathbb{F}_q^k\} \subseteq \mathbb{F}_q^n$$
.

There are many possible generators
$$\mathbf{G} = \begin{bmatrix} g_1 \\ \vdots \\ g_k \end{bmatrix} \in \mathbb{F}_q^{k \times n}$$
.

Linear Code:

A linear subspace over a finite field \mathbb{F}_q

$$\mathbf{C} = \{\mathbf{G} \times \mathbf{X} \in \mathbb{F}_q^k\} \subseteq \mathbb{F}_q^n$$
.

There are many possible generators $\mathbf{G} = \begin{bmatrix} g_1 \\ \vdots \\ g_k \end{bmatrix} \in \mathbb{F}_q^{k \times n}$.

n is the *blocklength* and k is the *dimension*.

Linear Code:

Lattices

Lattice:

An infinite discrete set of vectors in \mathbb{R}^n

consisting of all integer linear combinations

$$\mathcal{L} = \{a_1 \mathbf{b}_1 + \dots + a_k \mathbf{b}_k : a_1, \dots, a_k \in \mathbb{Z}\} \subset \mathbb{R}^n$$

of linearly independent *basis* vectors $\mathbf{b}_1, \dots, \mathbf{b}_k \in \mathbb{R}^n$.

Lattices

Lattice:

An infinite discrete set of vectors in \mathbb{R}^n

consisting of all integer linear combinations

$$\mathcal{L} = \{ \mathbf{B} \mathbf{x} : \mathbf{x} \in \mathbb{Z}^n \} \subset \mathbb{R}^n$$

of linearly independent *basis* vectors $\mathbf{b}_1, \dots, \mathbf{b}_k \in \mathbb{R}^n$.

There are many possible bases $\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_k]$.

Lattices

Lattice:

An infinite discrete set of vectors in \mathbb{R}^n

consisting of all integer linear combinations

$$\mathcal{L} = \{ \mathbf{B} \mathbf{x} : \mathbf{x} \in \mathbb{Z}^n \} \subset \mathbb{R}^n$$

of linearly independent *basis* vectors $\mathbf{b}_1, \dots, \mathbf{b}_k \in \mathbb{R}^n$.

The shortest distance between two lattice points is $\lambda_1(\mathcal{L})$.

Lattice Problems:

SVP

find the shortest lattice vector

CVP

BDD

find the closest lattice vector

GapSVP

decide how large is the shortest distance LIP

decide if two lattices are isomorphic

Code Problems:

LWE

Unique-Decode

List-Decode

PCE

SPCE

LCE

decode a random linear code

find the closest codeword(s)

decide if two codes are equivalent

VS.

Constructions and Algorithms

SVP

CVP

BDD

GapSVP

LIP

How can these problems be solved?

How can we construct efficient algorithms to solve these?

LWE

Unique-Decode

List-Decode

PCE

SPCE

LCE

Computational Complexity

VS.

How are these problems related?

GapSVP --- BDD --- LWE

Constructions and Algorithms

How can these problems be solved?

Unique-Decode

List-Decode

I. Computational Complexity

Fine-Grained Hardness of LWE

Based on joint work with Divesh Aggarwal and Leong Jin Ming

Cryptography from LWE

Cryptographic Significance

Cryptographic Significance

Cryptographic Significance

Learning With Errors

(search)

 $|\mathbf{LWE}_{m{n},m{p},m{\phi}}|: n$ dimension, p modulus, $m{\phi} \sim \mathbb{R}/\mathbb{Z}$ error distribution

Given noisy samples $(a, \langle a, s \rangle + e)$, where

 $\mathbf{a} \leftarrow \mathbb{Z}_p^n$ uniformly random, $\mathbf{s} \in \mathbb{Z}_p^n$ unknown, $\mathbf{e} \leftarrow \phi$ small error,

output s.

random s matrix v

secret vector small error vector

Learning With Errors

(decision)

 $|\mathbf{LWE}_{n,p,oldsymbol{\phi}}|: n$ dimension, p modulus, $\phi \sim \mathbb{R}/\mathbb{Z}$ error distribution

Given noisy samples (a, b), where

 $\mathbf{a} \leftarrow \mathbb{Z}_p^n$ uniformly random, $b \in \mathbb{Z}_p$,

output

- YES if samples are from the LWE distribution for ${f s}$ and ${f \phi}$,
- NO if samples are uniformly random.

random samples

Shortest Vector Problem

SVP |

Given a basis \mathcal{B} for lattice $\mathcal{L} \subset \mathbb{R}^n$,

find a shortest non-zero lattice vector \boldsymbol{x} ,

i.e. $x \in \mathcal{L} \setminus \{0\}$, such that $||x|| = \lambda_1(\mathcal{L})$.

Shortest Vector Problem

SVP |

Given a basis \mathcal{B} for lattice $\mathcal{L} \subset \mathbb{R}^n$,

find a shortest non-zero lattice vector \boldsymbol{x} ,

i.e. $x \in \mathcal{L} \setminus \{0\}$, such that $||x|| = \lambda_1(\mathcal{L})$.

 $GapSVP_{\gamma}$ is an approximate decision variant.

Approximate Shortest Vector Problem

GapSVP $_{\gamma}$: $\gamma \geq 1$ approximation factor

Given a basis ${\bf B}$ for a full-rank lattice ${\bf \mathcal{L}} \subset \mathbb{R}^n$

and a distance parameter d>0,

output

- YES if $\lambda_1(\mathcal{L}) \leq d$
- NO if $\lambda_1(\mathcal{L}) \geq \gamma \cdot d$.

Closest Vector Problem

CVP

Given a basis $\boldsymbol{\mathcal{B}}$ for lattice $\boldsymbol{\mathcal{L}} \subset \mathbb{R}^n$,

and a target vector $t \in \mathbb{R}^n$,

find a lattice vector \mathbf{x} closest to \mathbf{t} ,

i.e. $x \in \mathcal{L}$, such that $||x - t|| = \text{dist}(t, \mathcal{L})$.

Closest Vector Problem

CVP

Given a basis $\boldsymbol{\mathcal{B}}$ for lattice $\boldsymbol{\mathcal{L}} \subset \mathbb{R}^n$,

and a target vector $t \in \mathbb{R}^n$,

find a lattice vector x closest to t,

i.e. $x \in \mathcal{L}$, such that $||x - t|| = \text{dist}(t, \mathcal{L})$.

 $\overline{\mathbf{BDD}_{\alpha}}$ is an approximate variant.

Bounded Distance Decoding

 BDD_{α}

lpha > 0 distance approximation factor

Given a basis \mathcal{B} for a full-rank lattice $\mathcal{L} \subset \mathbb{R}^n$

and a target vector $t \in \mathbb{R}^n$ close to the lattice,

find a lattice vector $x \in \mathcal{L}$ closest to t,

i.e. $x \in \mathcal{L}$, such that $||x - t|| < \alpha \cdot \lambda_1(\mathcal{L})$.

Bounded Distance Decoding

 $|\mathbf{BDD}_{\alpha}|: \quad \alpha < \frac{1}{2} \text{ distance approximation factor}$

Given a basis \mathcal{B} for a full-rank lattice $\mathcal{L} \subset \mathbb{R}^n$

and a target vector $t \in \mathbb{R}^n$ close to the lattice,

find the unique lattice vector $x \in \mathcal{L}$ closest to t,

i.e. $x \in \mathcal{L}$, such that $||x - t|| < \alpha \cdot \lambda_1(\mathcal{L})$.

[Regev, 2009] — quantum reduction from worst-case lattice problems to decision-LWE

[Peikert, 2009] — classical reduction, but modulus becomes exponential

[Brakerski, Peikert, Langlois, Regev, Stehle, 2013] — classical reduction with polynomial modulus

$$\boxed{ \text{GapSVP}_{\gamma} \longrightarrow \boxed{ \text{BDD}_{\alpha} } \longrightarrow \boxed{ \text{LWE}_{n,p,\phi} } \longrightarrow \boxed{ \text{binary-LWE}_{n^2,p,\phi} } \longrightarrow \boxed{ \text{LWE}_{n^2,p,\phi} }$$

$$p = \exp(n)$$

$$p = \operatorname{poly}(n)$$

Algorithms for Lattice Problems

Fastest algorithms for these problems run in $2^{\Theta(n)}$ time (for polynomial approximation factor).

are the best possible

[Blum-Kalai-Wasserman, 2000] — Best known algorithm for $LWE_{n,p,\phi}$ runs in $2^{O(\frac{n}{\log n} \cdot \log p)}$ time.

[Blum-Kalai-Wasserman, 2000] — Best known algorithm for $LWE_{n,p,\phi}$ runs in $2^{O(\frac{n}{\log n} \cdot \log p)}$ time. binary-LWE $_{n^2,p,d}$ $LWE_{n^2,p,\phi}$ GapSVP_v Big Gap! solving LWE requires Conjecture: known algorithms at least $2^{\Omega(\sqrt{n})}$ time are the best possible

Our Contribution

We close this gap by changing our perspective!

Security in Practice

What does it mean for a cryptosystem to be 256-bit secure?

Security in Practice

What does it mean for a cryptosystem to be 256-bit secure?

- (a) The fastest algorithm for breaking the cryptosystem runs in 2^{256} time.
- (b) No reasonably efficient algorithm can break the cryptosystem with probability $> 2^{-256}$.

뻭

Security in Practice

What does it mean for a cryptosystem to be 256-bit secure?

- (a) The fastest algorithm for breaking the cryptosystem runs in 2^{256} time.
- (b) No reasonably efficient algorithm can break the cryptosystem with probability $> 2^{-256}$.

This is what we usually want for cryptographic security

An Alternative Perspective

An alternative measure of computational hardness:

The maximum success probability of any probabilistic polynomial-time algorithm that finds a solution.

An Alternative Perspective

An alternative measure of computational hardness:

The maximum success probability of any probabilistic polynomial-time algorithm that finds a solution.

We study worst-case to average-case hardness of LWE under this framework.

Success Probability of Solving LWE

Trivial algorithm (guess the error): Success probability for solving LWE_{n,p,ϕ} is $p^{-\Omega(n)}$.

Success Probability of Solving LWE

Trivial algorithm (guess the error): Success probability for solving $\mathrm{LWE}_{n,p,\phi}$ is $p^{-\Omega(n)}$.

Success Probability of Solving LWE

Trivial algorithm (guess the error): Success probability for solving LWE_{n,p,ϕ} is $p^{-\Omega(n)}$.

All other algorithms are not efficient, so it is unlikely that we can achieve better than this.

Success Probability of Solving Lattice Problems

LLL / Slide Reduction + guess coefficients: Success probability of solving $GapSVP_{\gamma}$ is $2^{-\Theta(n^2/\log n)}$.

Success Probability of Solving Lattice Problems

LLL / Slide Reduction + guess coefficients: Success probability of solving $GapSVP_{\gamma}$ is $2^{-\Theta(n^2/\log n)}$.

Known techniques do not seem to improve this when restricted to efficient algorithms, so it is unlikely that we can achieve much better than this.

Success Probability of Solving Lattice Problems

LLL / Slide Reduction + guess coefficients: Success probability of solving $GapSVP_{\gamma}$ is $2^{-\Theta(n^2/\log n)}$.

When restricted to efficient algorithms, known techniques do not seem to improve this, so it is unlikely that we can achieve much better than this.

 BDD_{α} is closely related to GapSVP_{γ} for $\gamma = \mathrm{poly}(n) = 1/\alpha$, so it is unlikely we can achieve better than known algorithms.

A Natural Conjecture

Conjecture: (informal) No algorithm can solve BDD_{α} on an arbitrary n-rank lattice for $\alpha = 1/\text{poly}(n)$

in polynomial time with success probability better than $2^{-n^2/\log n}$.

What We Show

Trivial algorithm: Success probability for efficiently solving LWE_{n,p, ϕ} is $p^{-\Omega(n)}$.

Conjecture \longrightarrow Maximum success probability for efficiently solving LWE_{n,p, ϕ} is $p^{-\Omega(n/\log^2 n)}$.

What We Show

Trivial algorithm: Success probability for efficiently solving LWE $_{n,p,\phi}$ is $p^{-\Omega(n)}$.

Tight!

Conjecture \Longrightarrow Maximum success probability for efficiently solving LWE_{n,p, ϕ} is $p^{-\Omega(n/\log^2 n)}$.

\equiv

Limitations of the Original Reduction

Reduction algorithm for $\mathcal{P} \to Q$ makes k calls to oracle for Q.

Success probability of solving Q is $\geq \epsilon \implies$ success probability of solving P is $\geq \epsilon^k$.

Reduction algorithm for $\mathcal{P} o \mathcal{Q}$ makes k calls to oracle for \mathcal{Q} .

Success probability of solving Q is $\geq \epsilon \implies$ success probability of solving \mathcal{P} is $\geq \epsilon^k$.

Success probability of solving \mathcal{P} is $\leq \delta \implies$ success probability of solving \mathcal{Q} is $\leq \delta^{1/k}$.

Reduction algorithm for $\mathcal{P} \to \mathcal{Q}$ makes k calls to oracle for \mathcal{Q} .

Success probability of solving Q is $\geq \epsilon \implies$ success probability of solving \mathcal{P} is $\geq \epsilon^k$.

Success probability of solving $\mathcal P$ is $\leq \delta \implies$ success probability of solving $\mathcal Q$ is $\leq \delta^{1/k}$.

We want just O(1) oracle calls to get a meaningful conclusion.

Our Reduction

Our Reduction

We use the same techniques as [Regev, 2005] and [Brakerski+, 2013], but with great care to the *explicit loss in success probability* and *number of oracle calls*.

Our Main Result

Theorem 1: (informal) If no efficient algorithm can solve BDD_{α} for $\alpha < \frac{1}{2}$

with success probability greater than $2^{-\Omega(n^2/\log n)}$,

then no efficient algorithm can solve search-LWE $_{n,p,\phi}$ (even for binary secret)

for dimension n, and modulus p = poly(n) with success probability $2^{-n/\log n}$.

=

Our Reduction

Our Proof Techniques

Our Proof Techniques

Our Proof Techniques

Our Proof Techniques

Our Second Result

Theorem 2: (informal) If no algorithm can solve search-LWE $_{n,p}$ for polynomial modulus

with success probability lpha in expected polynomial time,

then no efficient algorithm can "solve" decision-LWE $_{n,p}$

with success probability $\approx \alpha$.

Open Directions

- Reductions BDD → search-LWE and search-LWE → decision-LWE are disconnected, because expected polynomial-time is a fundamental part of the second reduction.
 Is a workaround possible?
- Establish a similar result for GapSVP → BDD (or prove impossibility).
- Use this alternative framework to study the complexity of other computational problems relevant to cryptography or learning.

Reductions Between Code Equivalence Problems

Based on joint work with Mahdi Cheraghchi and Nikhil Shagrithaya

Cryptographic Significance

Code Equivalence Problem

CE: Given two codes ${\cal C}_1, {\cal C}_2 \subseteq {\mathbb F}_q^n$, decide whether ${\cal C}_1$ and ${\cal C}_2$ are equivalent.

Code Equivalence Problem

| CE | : Given two codes $\mathcal{C}_1, \mathcal{C}_2 \subseteq \mathbb{F}_q^n$, decide whether \mathcal{C}_1 and \mathcal{C}_2 are equivalent.

ex: **PCE** Permutation CE

SPCE Signed Permutation CE

LCE Linear CE

Permutation Code Equivalence

| PCE | : Given generator matrices G_1 , $G_2 \in \mathbb{F}_q^{k \times n}$ for codes C_1 , $C_2 \subseteq \mathbb{F}_q^n$,

decide if \mathcal{C}_1 and \mathcal{C}_2 are the same up to permutation of coordinates.

Permutation Code Equivalence

PCE : Given generator matrices $G_1,G_2\in\mathbb{F}_q^{k\times n}$ for codes $\mathcal{C}_1,\mathcal{C}_2\subseteq\mathbb{F}_q^n$, output

- YES if there exists invertible $\mathbf{S} \in GL_k$ and permutation $\mathbf{P} \in \mathcal{P}_n$ such that $\mathbf{SG_1P} = \mathbf{G_2}$
- NO if otherwise.

Biasse-Micheli, 2023] Efficient search-to-decision reduction for PCE.

Signed Permutation Code Equivalence

SPCE : Given generator matrices $G_1, G_2 \in \mathbb{F}_q^{k \times n}$ for codes $\mathcal{C}_1, \mathcal{C}_2 \subseteq \mathbb{F}_q^n$, output

- YES if there exists invertible $S \in GL_k$ and signed permutation $P \in SP_n$ such that $SG_1P = G_2$
- NO if otherwise.

Linear Code Equivalence

LCE : Given generator matrices $G_1,G_2\in\mathbb{F}_q^{k\times n}$ for codes $\mathcal{C}_1,\mathcal{C}_2\subseteq\mathbb{F}_q^n$, output

- YES if there exists invertible $\mathbf{S} \in GL_k$ and monomial $\mathbf{M} \in \mathcal{M}_n$ such that $\mathbf{SG_1M} = \mathbf{G_2}$
- NO if otherwise.

 G_1 = G_2

Biasse-Micheli, 2023] Efficient search-to-decision reduction for PCE.

Code Equivalence

Code Equivalence

Lattice Isomorphism

Lattice Isomorphism Problem

LIP: Given basis matrices $B_1, B_2 \in \mathbb{R}^{k \times n}$ for lattices $\mathcal{L}_1, \mathcal{L}_2 \subset \mathbb{R}^n$,

decide if \mathcal{L}_1 and \mathcal{L}_2 are the same lattice under some orthogonal transformation.

ex: $(for \mathbb{R}^2)$

Lattice Isomorphism Problem

LIP : Given basis matrices $B_1, B_2 \in \mathbb{R}^{k \times n}$ for lattices $\mathcal{L}_1, \mathcal{L}_2 \subset \mathbb{R}^n$, output

- YES if there exists invertible $S \in GL_k$ and orthogonal $O \in \mathcal{O}_n$ such that $SB_1O = B_2$
- NO if otherwise.

$$\begin{bmatrix} S & B_1 \\ O & \end{bmatrix} = \begin{bmatrix} B_2 \\ \end{bmatrix}$$

Lattice Isomorphism Problem

LIP : Given basis matrices $B_1, B_2 \in \mathbb{R}^{k \times n}$ for lattices $\mathcal{L}_1, \mathcal{L}_2 \subset \mathbb{R}^n$, output

- YES if there exists invertible $S \in GL_k$ and orthogonal $O \in \mathcal{O}_n$ such that $SB_1O = B_2$
- NO if otherwise.

Known Reductions

Our Reductions

Our Results

Theorem 1: There is a Karp reduction from PCE to LCE that runs in poly(n, log q) time, where the input pair of codes have blocklength n and field size q.

Theorem 2: There is a Karp reduction from PCE to SPCE that runs in poly(n, log q) time, where the input pair of codes have blocklength n and field size q.

Our Results

Theorem 1: There is a Karp reduction from PCE to LCE that runs in poly(n, log q) time, where the input pair of codes have blocklength n and field size q.

Theorem 2: There is a Karp reduction from PCE to SPCE that runs in poly(n, log q) time, where the input pair of codes have blocklength n and field size q.

We construct a map that transforms

$$\mathbf{G_1}, \mathbf{G_2} \in \mathbb{F}_q^{k \times n} \to \mathbf{G_1'}, \mathbf{G_2'} \in \mathbb{F}_q^{k' \times n'}$$

such that $(\mathbf{G_1}, \mathbf{G_2}) \in \mathrm{PCE} \Leftrightarrow (\mathbf{G_1'}, \mathbf{G_2'}) \in \mathrm{LCE}$ (or SPCE).

Given generator matrix $G \in \mathbb{F}_q^{k \times n}$, where $m_G =$ maximum number of times a column appears in G.

Given generator matrix $\mathbf{G} \in \mathbb{F}_q^{k \times n}$, define $m = m_G + 1$.

Construct $\widehat{\mathbf{G}} \in \mathbb{F}_q^{k \times nm}$:

Given generator matrix $\mathbf{G} \in \mathbb{F}_q^{k \times n}$, define $m = m_G + 1$.

Append $\widehat{\textbf{\textit{G}}}$ to $\textbf{\textit{G}}$:

Given generator matrix $\mathbf{G} \in \mathbb{F}_q^{k \times n}$, define $m = m_G + 1$.

Append zero columns:

Given generator matrix $\mathbf{G} \in \mathbb{F}_q^{k \times n}$, define $m = m_G + 1$.

Append the last row:

Given generator matrix $\mathbf{G} \in \mathbb{F}_q^{k \times n}$, define $m = m_G + 1$.

Final matrix is $G' \in \mathbb{F}_q^{(k+1) \times (2nm+n+1)}$:

Our Results

Theorem 1: There is a Karp reduction from PCE to LCE that runs in poly(n, log q) time, where the input pair of codes have blocklength n and field size q.

Theorem 2: There is a Karp reduction from PCE to SPCE that runs in poly(n, log q) time, where the input pair of codes have blocklength n and field size q.

Our map transforms

$$\mathbf{G_1}, \mathbf{G_2} \in \mathbb{F}_q^{k \times n} \to \mathbf{G_1'}, \mathbf{G_2'} \in \mathbb{F}_q^{k' \times n'}$$

such that $(\mathbf{G_1}, \mathbf{G_2}) \in \mathrm{PCE} \iff (\mathbf{G_1'}, \mathbf{G_2'}) \in \mathrm{LCE}$ (or SPCE).

 \mathbf{S}' is a change of basis matrix that defines a bijection over \mathbb{F}_q^n .

It maps identical columns in $\mathbf{G_1}'$ to identical columns in $\mathbf{G_2}'$.

We analyze the structure of the permutation \mathbf{P}' and how it permutes the columns of $\mathbf{G_1}'$.

Without loss of generality, we assume that G_1 does not contain an all-zero column.

Without loss of generality, we assume that G_1 does not contain an all-zero column.

Every column of G_1 appears < m times.

But every column of $\widehat{G_1}$ appears $\geq m$ times.

 $G_1' =$

Every column of G_1 appears < m times.

But every column of $\widehat{G_1}$ appears $\geq m$ times.

This last row prevents \mathbf{P}' from swapping columns from different blocks.

Proof Idea

All together, the distribution of columns, zero columns, and last row forces any permutation \mathbf{P}' to respect boundaries and have a block diagonal structure.

Future Directions

Future Directions

II. Constructions and Algorithms

List-Decoding GRS Codes over General Norms

Based on joint work with Chris Peikert

Codes

Linear Code:

A linear subspace over a finite field \mathbb{F}_q

$$\mathcal{C} = \{ \mathbf{x} \mathbf{G} : \mathbf{x} \in \mathbb{F}_q^k \} \subseteq \mathbb{F}_q^n$$

generated by $G \in \mathbb{F}_q^{k \times n}$.

 $m{n}$ is the blocklength and k is the dimension.

$$\pmb{\alpha}=(\alpha_1,...,\alpha_n)\in \mathbb{F}_q^n$$
 evaluation points, $\pmb{t}=(t_1,...,t_n)\in \mathbb{F}_q^n$ non-zero twist factors

$$GRS_{q,k}(\boldsymbol{\alpha}, \boldsymbol{t}) \coloneqq \{(t_1 \cdot f(\alpha_1), \dots, t_n \cdot f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\} \subseteq \mathbb{F}_q^n.$$

$$\pmb{\alpha}=(\alpha_1,...,\alpha_n)\in \mathbb{F}_q^n$$
 evaluation points, $\pmb{t}=(t_1,...,t_n)\in \mathbb{F}_q^n$ non-zero twist factors

$$GRS_{q,k}(\boldsymbol{\alpha}, \boldsymbol{t}) \coloneqq \{(t_1 \cdot f(\alpha_1), \dots, t_n \cdot f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\} \subseteq \mathbb{F}_q^n.$$

$$f(x) = c_0 + c_1 x + \dots + c_{k-1} x^{k-1}$$

$$\boldsymbol{\alpha}=(\alpha_1,...,\alpha_n)\in\mathbb{F}_q^n$$
 evaluation points, $\boldsymbol{t}=(t_1,...,t_n)\in\mathbb{F}_q^n$ non-zero twist factors

$$GRS_{q,k}(\boldsymbol{\alpha}, \boldsymbol{t}) \coloneqq \{(t_1 \cdot f(\alpha_1), \dots, t_n \cdot f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\} \subseteq \mathbb{F}_q^n.$$

$$\pmb{\alpha}=(\alpha_1,...,\alpha_n)\in \mathbb{F}_q^n$$
 evaluation points, $\pmb{t}=(t_1,...,t_n)\in \mathbb{F}_q^n$ non-zero twist factors

$$GRS_{q,k}(\boldsymbol{\alpha}, \boldsymbol{t}) \coloneqq \{ (t_1 \cdot f(\alpha_1), \dots, t_n \cdot f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg(f) < k \} \subseteq \mathbb{F}_q^n.$$

$$\pmb{\alpha}=(\alpha_1,...,\alpha_n)\in \mathbb{F}_q^n$$
 evaluation points, $\pmb{t}=(t_1,...,t_n)\in \mathbb{F}_q^n$ non-zero twist factors

$$GRS_{q,k}(\boldsymbol{\alpha}, \boldsymbol{t}) \coloneqq \{(t_1 \cdot f(\alpha_1), \dots, t_n \cdot f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\} \subseteq \mathbb{F}_q^n.$$

$$\pmb{\alpha}=(\alpha_1,...,\alpha_n)\in \mathbb{F}_q^n$$
 evaluation points, $\pmb{t}=(t_1,...,t_n)\in \mathbb{F}_q^n$ non-zero twist factors

$$GRS_{q,k}(\boldsymbol{\alpha}, \boldsymbol{t}) \coloneqq \{(t_1 \cdot f(\alpha_1), \dots, t_n \cdot f(\alpha_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\} \subseteq \mathbb{F}_q^n.$$

List-Decoding Problem

List-Decoding Problem

List-Decoding Problem

find all codewords within distance δ of y

 $\mathcal{C} \subseteq \mathbb{F}_q^n$

k dimension

 $\mathcal{C} \subseteq \mathbb{F}_q^n$

k dimension

"density" of a code

$$R^* = \frac{k-1}{n}$$

(adjusted) rate

How is distance measured?

$$\mathbb{R}_q^n = (\mathbb{R}/q\mathbb{Z})^n$$

 ℓ_2 norm (Euclidean distance)

 ℓ_1 norm (Manhattan distance)

三

General (Quasi)Norms

 $\ell_p(Quasi)Norm: p > 0$

For any vector $\mathbf{x}=(x_1,...,x_n)\in\mathbb{R}^n$, its length in the ℓ_p (quasi)norm is

$$||x||_p := (x_1^p + \dots + x_n^p)^{1/p}.$$

Our Results

<u>Theorem:</u> (informal) There is an efficient algorithm that list-decodes GRS codes

from both worst-case and average-case errors in the ℓ_p (quasi)norm for any 0 .

Our Results

<u>Theorem:</u> (informal) There is an efficient algorithm that list-decodes GRS codes

from both worst-case and average-case errors in the ℓ_p (quasi)norm for any 0 .

Prior algorithms: Hamming metric (many works),

 ℓ_2 norm [Mook-Peikert, 2022],

 ℓ_1 norm [Roth-Siegel, 1994]

List-decoding Algorithm

Soft-decision Decoding Algorithm

Soft-decision Decoding Algorithm

Guruswami-Sudan Algorithm

[Guruswami-Sudan, 1998], [Koetter-Vardy, 2003], [Guruswami, 2001]

There is a deterministic *soft-decoding* algorithm for (Generalized) Reed-Solomon codes

 $\mathcal{C} \subseteq \mathbb{F}_q^n$ with prime field size q, dimension k, adjusted rate $R^* = \frac{k-1}{n}$, with

Input: weight vector $W = (\overrightarrow{w_1}, ..., \overrightarrow{w_n}) \in [0,1]^{qn}$,

tolerance parameter au>0

Output: list of all codewords $c \in C$ that are "closely correlated" with W

$$\operatorname{corr}(\mathbf{W}, \boldsymbol{c}) \gtrsim \sqrt{R^*}$$
.

Guruswami-Sudan Algorithm

[Guruswami-Sudan, 1998], [Koetter-Vardy, 2003], [Guruswami, 2001]

There is a deterministic *soft-decoding* algorithm for (Generalized) Reed-Solomon codes

 $\mathcal{C} \subseteq \mathbb{F}_q^n$ with prime field size q, dimension k, adjusted rate $R^* = \frac{k-1}{n}$, with

Input: weight vector $\mathbf{W} = (\overrightarrow{\mathbf{w}_1}, ..., \overrightarrow{\mathbf{w}_n}) \in [0,1]^{qn}$, tolerance parameter $\boldsymbol{\tau} > 0$

Output: list of all codewords $c \in C$ that are "closely correlated" with W

$$\operatorname{corr}(W, c) \ge \sqrt{R^*} + \tau$$
.

running in poly $\left(n, q, \frac{1}{\tau ||W||}\right)$ time.

Our List-decoding Algorithm

Transforming into Weights

received word $y = \left| y_1 \right| y_2 \left| \dots \right| y_n \left| \in \mathbb{R}_q^n \right|$

Transforming into Weights

received word
$$y = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

Transforming into Weights

received word
$$y = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

received word
$$y = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

received word
$$y = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

received word
$$y = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

[Mook-Peikert, 2022]:

i-th weight vector

$$\overrightarrow{\mathbf{w}_i} = egin{bmatrix} 0 & 0 & w_i & w_i' & 0 & 0 & 0 \end{bmatrix}$$

received word
$$y = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

[Mook-Peikert, 2022]:

weight vector

received word
$$y = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

Our weight vector:

received word
$$y = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

Our weight vector:

received word
$$y = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix} \in \mathbb{R}_q^n$$

Our weight vector:

i-th weight vector

determined by the distance between y_i and symbol x

Choosing the Weight Function

We can choose any nicely behaved function f that satisfies certain properties.

But some functions are more natural for specific norms...

Choosing the Weight Function

For distances measured in the ℓ_p norm:

$$f_s^{(p)}(x) \coloneqq \exp(-(c_p \cdot |x/s|)^p)$$

normalizing constant

Choosing the Weight Function

For distances measured in the ℓ_2 norm:

$$f_s^{(2)}(x) \coloneqq \exp(-(\pi \cdot |x/s|)^2)$$

For distances measured in the ℓ_1 norm:

$$f_s^{(1)}(x) \coloneqq \exp(-(2 \cdot |x/s|)^1)$$

<u>Theorem:</u> For any 0 , prime <math>q, and $\delta > 0$, the GS soft-decision algorithm using weight vectors defined by $f_s^{(p)}$ for any s > 0, list-decodes up to ℓ_p distance $d = \delta \cdot n^{1/p}$ any GRS code $\mathcal{C} \subseteq \mathbb{F}_q^n$ with adjusted rate

$$R^* < \frac{f_{\scriptscriptstyle S}(\delta)^2}{f_{\scriptscriptstyle S}(\mathcal{L}_{\scriptscriptstyle {\boldsymbol{q}}})}.$$

<u>Theorem:</u> For any 0 , prime <math>q, and $\delta > 0$, the GS soft-decision algorithm using weight vectors defined by $f_s^{(p)}$ for any s > 0, list-decodes up to ℓ_p distance $d = \delta \cdot n^{1/p}$ any GRS code $\mathcal{C} \subseteq \mathbb{F}_q^n$ with adjusted rate

Theorem: For any 0 , prime <math>q, and $\delta > 0$, the GS soft-decision algorithm using weight vectors defined by $f_s^{(p)}$ for any s > 0, list-decodes up to ℓ_p distance $d = \delta \cdot n^{1/p}$ any GRS code $\mathcal{C} \subseteq \mathbb{F}_q^n$ with adjusted rate

$$R^* < \frac{f_{\scriptscriptstyle S}(\delta)^2}{f_{\scriptscriptstyle S}(\mathcal{L}_{\boldsymbol{q}})} =: B_{\boldsymbol{q}, \scriptscriptstyle S}^{(p)}$$

in time poly $(n, \mathbf{q}, \exp(1/s^p)/(B_{\mathbf{q},s,\delta}^{(p)} - \sqrt{R^*}))$.

Theorem: For any 0 , prime <math>q, and $\delta > 0$, the GS soft-decision algorithm using weight vectors defined by $f_s^{(p)}$ for any s > 0, list-decodes up to ℓ_p distance $d = \delta \cdot n^{1/p}$ any GRS code $\mathcal{C} \subseteq \mathbb{F}_q^n$ with adjusted rate

$$R^* < \frac{f_S(\delta)^2}{f_S(\mathcal{L}_q)} =: B_{q,S,\delta}^{(p)} \xrightarrow{s,q/s \to \infty} \frac{1}{\delta (c_p(e \cdot p)^{1/p})}$$

in time poly $(n, \mathbf{q}, \exp(1/s^p)/(B_{\mathbf{q},s,\delta}^{(p)} - \sqrt{R^*}))$.

This is the (dimension-normalized) volume of the n-dim. ℓ_p ball of radius $n^{1/p}$!

Comparison to Prior Algorithms

distance δ

Rate-distance trade-off for ℓ_2

Comparison to Prior Algorithms

distance δ

Rate-distance trade-off for ℓ_1

Open Directions

- Determine the optimal choice of weights for the GS algorithm for $\delta>1/2$ for ℓ_2 norm. For $\delta<1/2$, [Mook-Peikert, 2022] proved their weight vector is optimal.
- The product of the rate R^* and distance δ for which our algorithm works approaches

 $R^* \cdot \delta \to 1$ / volume of the n-dim. ℓ_p ball of radius $n^{1/p}$ (dim.-normalized).

Why should this be the case?

• What is the list-decoding capacity for decoding over general ℓ_p norms? How do our algorithmic bounds compare?

Thank you to my collaborators!

Questions?