




Alice Bob



Alice Bob

Meow 
(friendly hello)



Alice Bob

Meow 
(friendly hello)



Alice Bob

Meow 
(friendly hello)

Mrrreoww 
(scared threat)



Alice Bob

Meow 
(friendly hello)

Eve



Alice Bob

Meow 
(friendly hello)

Eve

Mrreeow 
(mean threat)



Coding Theory:
Reliable Communication

Cryptography:
Secure Communication



Presenter Notes
Presentation Notes
In our work we assume that all lattices are full rank (so n=k)



𝟎𝟎 𝒈𝒈1

𝒈𝒈2



𝟎𝟎
𝒈𝒈1

𝒈𝒈2



𝟎𝟎
𝒈𝒈1

𝒈𝒈2



000

101

011

110



𝐛𝐛1

𝐛𝐛2

𝟎𝟎

Presenter Notes
Presentation Notes
In our work we assume that all lattices are full rank (so n=k)



𝟎𝟎

𝐛𝐛2

𝐛𝐛1

Presenter Notes
Presentation Notes
In our work we assume that all lattices are full rank (so n=k)



𝟎𝟎

𝐛𝐛2

𝐛𝐛1

𝝀𝝀1(ℒ)

Presenter Notes
Presentation Notes
In our work we assume that all lattices are full rank (so n=k)



Lattice Problems:

Code Problems:

BDDSVP CVP

find the shortest 
lattice vector

find the closest 
lattice vector

LIPGapSVP

decide how large is 
the shortest distance

decide if two lattices 
are isomorphic

Unique-Decode List-Decode

find the closest 
codeword(s)

PCE SPCE LCE

decide if two codes 
are equivalent

LWE

decode a random 
linear code



BDDSVP CVP LIPGapSVP

Unique-Decode List-Decode PCE SPCE LCELWE

vs.

How are these problems related?

Computational Complexity



BDDSVP CVP LIPGapSVP

Unique-Decode List-Decode PCE SPCE LCELWE

How can these problems be solved?

How can we construct efficient algorithms to solve these?

Constructions and Algorithmsvs.



BDD

LIP

Unique-Decode

List-Decode

PCE SPCE LCE

How are these problems related? How can these problems be solved?

Computational Complexity vs.

GapSVP

Constructions and Algorithms

LWE







LWE

IND-CPA-secure 
Public-Key Encryption

[Regev, 2005]

CCA-secure 
Encryption
[Peikert, 2009]

Key Exchange Scheme
[Ding-Xie-Lin, 2012], 

[Peikert, 2014]

…

Presenter Notes
Presentation Notes
LWE is a versatile, robust problem that is the basis of many cryptosystems.
(Robust means it remains hard even if some information is leaked).



LWE

IND-CPA-secure 
Public-Key Encryption

[Regev, 2005]

CCA-secure 
Encryption
[Peikert, 2009]

Key Exchange Scheme
[Ding-Xie-Lin, 2012], 

[Peikert, 2014]

…

worst-case 
problems

average-case 
problem

Presenter Notes
Presentation Notes
Because there are worst-case problems that reduce to LWE, the random (average-case) distributions used for practical cryptographic applications are just as hard to solve as the hardest (worst-case) instances we can come up with.
This makes LWE a strong basis for cryptography.



LWE

average-case 
hardness cryptosystems⟹

GapSVP BDD

worst-case 
hardness

⟹



LWE

average-case 
hardness

Post-quantum 
cryptosystems⟹

GapSVP BDD

worst-case 
hardness

⟹

no known efficient quantum 
algorithms for these problems 



𝑛𝑛𝑘𝑘 A
s + e

𝑛𝑛

random 
matrix

secret 
vector

small error 
vector

(search)

Presenter Notes
Presentation Notes
LWE is equivalent to the problem of decoding a random linear code where the channel noise distribution is \phi.



A
s + e

r

LWE samples

random samples

(decision)

Presenter Notes
Presentation Notes
LWE is equivalent to the problem of decoding a random linear code where the channel noise distribution is \phi.



𝟎𝟎

𝒙𝒙

Presenter Notes
Presentation Notes
GapSVP is an approximate decision variant of SVP.



𝟎𝟎

𝒙𝒙

𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝜸𝜸

Presenter Notes
Presentation Notes
GapSVP is an approximate decision variant of SVP.



𝜆𝜆1

𝑑𝑑 𝛾𝛾𝑑𝑑

Presenter Notes
Presentation Notes
We are guaranteed that there is a gap, i.e. no lattice points exist between the inner and outer balls.



𝒙𝒙

𝒕𝒕

Presenter Notes
Presentation Notes
GapSVP is an approximate decision variant of SVP.



𝒙𝒙

𝒕𝒕

𝐁𝐁𝐁𝐁𝐁𝐁𝜶𝜶 

Presenter Notes
Presentation Notes
GapSVP is an approximate decision variant of SVP.



𝒙𝒙

𝒕𝒕
𝛼𝛼 ⋅ 𝜆𝜆1

Presenter Notes
Presentation Notes
LWE can be seen as a version of BDD in which the lattice vector (x=s) is shifted by some small error vector (b = a s + e).



𝒙𝒙

𝒕𝒕
𝛼𝛼 ⋅ 𝜆𝜆1

unique!

Presenter Notes
Presentation Notes
LWE can be seen as a version of BDD in which the lattice vector (x=s) is shifted by some small error vector (b = a s + e).



classical
BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙GapSVP𝛾𝛾 

quantum

Presenter Notes
Presentation Notes
Turing reductions!



classical
BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙GapSVP𝛾𝛾 

classical

𝑝𝑝 = exp(𝑛𝑛)



𝑝𝑝 = poly(𝑛𝑛)

binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙

LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙

classical
BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙GapSVP𝛾𝛾 

classical

classical

classical



binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙GapSVP𝛾𝛾 
𝑝𝑝 = poly(𝑛𝑛)𝑝𝑝 = exp(𝑛𝑛)



 2Θ(𝑛𝑛) 
 

binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙GapSVP𝛾𝛾 

Presenter Notes
Presentation Notes
LLL algorithm for lattice basis reduction is the best known polynomial-time algorithm.



binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙GapSVP𝛾𝛾 



⟹

binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙GapSVP𝛾𝛾 

 



 ⟹

binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙GapSVP𝛾𝛾 



 ⟹

binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙GapSVP𝛾𝛾 

Big Gap!



Presenter Notes
Presentation Notes
We close this gap by changing our perspective – this is a new approach! 





Presenter Notes
Presentation Notes
There are differing notions of this, but there is no conventional universal definition. Here are two main contenders.



This is what we usually want 
for cryptographic security

Presenter Notes
Presentation Notes
In practice we care about time 2^60, but 2^256 is longer than the believed age of the universe, so (a) is usually irrelevant  in practice.
(b) is what we usually want because security models rely on limited computational power.�



Presenter Notes
Presentation Notes
This gives us a natural, practical alternative way to measure hardness.
This is a well-studied notion in complexity theory.



Presenter Notes
Presentation Notes
Given that LWE is the basis for many post-quantum cryptosystems, this is right framework to consider.






A
s + e

random 
matrix

secret 
vector

small error 
vector











Presenter Notes
Presentation Notes
Proving this conjecture is an open problem.



⟹



⟹

Tight!



binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙
𝟏𝟏 call 𝟏𝟏 call

mod-BDD𝛼𝛼,𝑝𝑝 gen-LWE𝑛𝑛,𝑝𝑝,𝒟𝒟
𝟏𝟏 call

poly calls poly calls



binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙
𝟏𝟏 call 𝟏𝟏 call

mod-BDD𝛼𝛼,𝑝𝑝 gen-LWE𝑛𝑛,𝑝𝑝,𝒟𝒟
𝟏𝟏 call

poly calls poly calls

Presenter Notes
Presentation Notes
CHECK WHICH REDUCTION HAVE POLY # CALLS









binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙

𝟏𝟏 call

𝟏𝟏 call 𝟏𝟏 call

mod-BDD𝛼𝛼,𝑝𝑝 gen-LWE𝑛𝑛,𝑝𝑝,𝒟𝒟
𝟏𝟏 call

𝟏𝟏 call

Presenter Notes
Presentation Notes
Limiting the number of oracle calls is essential to maximizing the success probability of reduction algorithms.



binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙

𝟏𝟏 call

𝟏𝟏 call 𝟏𝟏 call

mod-BDD𝛼𝛼,𝑝𝑝 gen-LWE𝑛𝑛,𝑝𝑝,𝒟𝒟
𝟏𝟏 call

𝟏𝟏 call





binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙

mod-BDD𝛼𝛼,𝑝𝑝 gen-LWE𝑛𝑛,𝑝𝑝,𝒟𝒟

Presenter Notes
Presentation Notes
Not as straightforward as it looks, there is a detour



binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙

mod-BDD𝛼𝛼,𝑝𝑝 gen-LWE𝑛𝑛,𝑝𝑝,𝒟𝒟

Trivial: blow up 
modulus to 𝑝𝑝 ≈ 2𝑛𝑛

success prob. 𝑞𝑞

success prob. 𝑞𝑞



binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙

mod-BDD𝛼𝛼,𝑝𝑝 gen-LWE𝑛𝑛,𝑝𝑝,𝒟𝒟

success prob. 
𝑞𝑞 − 𝜖𝜖

Generate discrete Gaussian 
samples and use them to 

generate LWE samples

success prob. 
𝑞𝑞



binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙

mod-BDD𝛼𝛼,𝑝𝑝 gen-LWE𝑛𝑛,𝑝𝑝,𝒟𝒟

success prob. 𝑞𝑞

success prob. 
𝑞𝑞

1 + 𝜖𝜖 3

Carefully sample Gaussian 
noise that guarantees 

optimal success probability



binary-LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙 LWE𝑛𝑛2,𝑝𝑝,𝜙𝜙BDD𝛼𝛼 LWE𝑛𝑛,𝑝𝑝,𝜙𝜙

mod-BDD𝛼𝛼,𝑝𝑝 gen-LWE𝑛𝑛,𝑝𝑝,𝒟𝒟

success prob. 𝑞𝑞 success prob. 𝑞𝑞 success prob. 𝑞𝑞

These reductions preserve success probability



Presenter Notes
Presentation Notes
“Solve” is defined formally in the paper, but we do not cover this in the talk.�In particular, we must define carefully what success probability means for probabilistic decision problems (we use a slight relaxation of OPP algorithms for this to make sense for probabilistic problems).







CE

Public-Key Encryption
[McEliece, 1978]

Classic McEliece:
CCA-secure 

Public-Key Encryption
[ABC+, 2022]

LESS: 
Identification Scheme
[BBPS, 2021], [BBPS, 2022]

…



𝐂𝐂𝐂𝐂



𝐂𝐂𝐂𝐂

𝐏𝐏𝐏𝐏𝐏𝐏

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒

L𝐂𝐂𝐂𝐂



𝐏𝐏𝐏𝐏𝐏𝐏

000

110

101

011

000

101

011

110

𝓒𝓒𝟏𝟏 𝓒𝓒𝟐𝟐

≡



𝑮𝑮𝟏𝟏 𝑮𝑮𝟐𝟐 𝑺𝑺
𝑷𝑷

=

𝐏𝐏𝐏𝐏𝐏𝐏



𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒

𝑮𝑮𝟏𝟏 𝑮𝑮𝟐𝟐 𝑺𝑺
𝑷𝑷

=



𝐋𝐋𝐋𝐋𝐋𝐋

𝑮𝑮𝟏𝟏 𝑮𝑮𝟐𝟐 𝑺𝑺
𝑴𝑴 =



110

000

101

011𝓒𝓒𝟏𝟏

000

101

011

110

𝓒𝓒𝟐𝟐



110

000

101

011𝓒𝓒𝟏𝟏

000

101

011

110

𝓛𝓛𝟏𝟏

𝓛𝓛𝟐𝟐

𝓒𝓒𝟐𝟐



𝐋𝐋𝐋𝐋𝐋𝐋

𝓛𝓛𝟏𝟏 𝓛𝓛𝟐𝟐



𝐋𝐋𝐋𝐋𝐋𝐋

𝑩𝑩𝟏𝟏 𝑩𝑩𝟐𝟐 𝑺𝑺
𝑶𝑶 =



𝐋𝐋𝐋𝐋𝐋𝐋

𝑩𝑩𝟏𝟏 𝑩𝑩𝟐𝟐 𝑺𝑺
𝑶𝑶 =

row span



𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋

SP𝐂𝐂𝐂𝐂

P𝐂𝐂𝐂𝐂

search – P𝐂𝐂𝐂𝐂

[Biasse-Micheli ‘23]

[Bennett-Win ‘24]
[Bennett-Win ‘24]

[Ducas-Gibbons ‘23]

[Sendrier-Simons ‘13]

𝐆𝐆𝐆𝐆

Presenter Notes
Presentation Notes
These are Karp reductions (except for the search- to decision-PCE reduction, which makes several oracle calls).�Reduction from GI  LCE is polynomial time. For graphs with n vertices and m edges, codes have dimension n + O(1) and blocklength m + O(n)



𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋

SP𝐂𝐂𝐂𝐂

P𝐂𝐂𝐂𝐂

search – P𝐂𝐂𝐂𝐂

𝐆𝐆𝐆𝐆

Presenter Notes
Presentation Notes
Reduction from GI  LCE is polynomial time. For graphs with n vertices and m edges, codes have dimension n + O(1) and blocklength m + O(n)





Presenter Notes
Presentation Notes
Our construction was inspired by the techniques used in the search-to-decision reduction for PCE.



𝑮𝑮 =

𝑚𝑚𝐺𝐺



𝑮𝑮 =

�𝑮𝑮  =

𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚

𝑛𝑛𝑛𝑛



𝑮𝑮 �𝑮𝑮

𝑛𝑛𝑛𝑛𝑛𝑛



𝑮𝑮 �𝑮𝑮

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛 + 1



𝑮𝑮 �𝑮𝑮

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛 + 1



𝑮𝑮′ ≔ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1





𝑮𝑮𝟏𝟏′ 𝑮𝑮𝟐𝟐′ 𝑺𝑺𝑺
𝑷𝑷𝑷

=

Presenter Notes
Presentation Notes
Idea is for reduction from PCE to SPCE. The one to LCE is very similar.



𝑮𝑮𝟏𝟏′ 𝑮𝑮𝟐𝟐′ 𝑺𝑺𝑺
𝑷𝑷𝑷

=



𝑮𝑮𝟏𝟏′ 𝑮𝑮𝟐𝟐′ 𝑺𝑺𝑺
𝑷𝑷𝑷

=



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝑮𝑮𝟏𝟏′ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝑮𝑮𝟏𝟏′ =

𝑮𝑮𝟏𝟏



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Under any 𝐏𝐏𝐏, this block is 
mapped to itself.

𝑮𝑮𝟏𝟏′ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝑮𝑮𝟏𝟏′ =

�𝑮𝑮𝟏𝟏



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Under any 𝐏𝐏𝐏, columns in this block 
are mapped back into this block.

𝑮𝑮𝟏𝟏′ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This last row prevents 𝐏𝐏𝐏 from swapping columns from different blocks.

𝑮𝑮𝟏𝟏′ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I II III

𝑮𝑮𝟏𝟏′ =



𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋

SP𝐂𝐂𝐂𝐂

P𝐂𝐂𝐂𝐂

search – P𝐂𝐂𝐂𝐂

𝐆𝐆𝐆𝐆

This runs in poly 𝑛𝑛, 𝑞𝑞  time.
Can it be improved to poly 𝑛𝑛, log 𝑞𝑞 ?

poly 𝑛𝑛, log 𝑞𝑞

poly 𝑛𝑛, 𝑞𝑞  

Presenter Notes
Presentation Notes
Reduction from GI  LCE is polynomial time. For graphs with n vertices and m edges, codes have dimension n + O(1) and blocklength m + O(n)



𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋

SP𝐂𝐂𝐂𝐂

P𝐂𝐂𝐂𝐂

search – P𝐂𝐂𝐂𝐂

𝐆𝐆𝐆𝐆

?

?

?

Is there a Karp reduction from 
LIP to any variant of CE?

Presenter Notes
Presentation Notes
Reduction from GI  LCE is polynomial time. For graphs with n vertices and m edges, codes have dimension n + O(1) and blocklength m + O(n)







𝟎𝟎





𝑓𝑓 𝑥𝑥 = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥 + ⋯+ 𝑐𝑐𝑘𝑘−1𝑥𝑥𝑘𝑘−1 



𝑓𝑓 𝑥𝑥 = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥 + ⋯+ 𝑐𝑐𝑘𝑘−1𝑥𝑥𝑘𝑘−1 

𝑓𝑓 𝛼𝛼1
𝑓𝑓 𝛼𝛼2

𝑓𝑓 𝛼𝛼𝑛𝑛

⋮



𝑓𝑓 𝑥𝑥 = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥 + ⋯+ 𝑐𝑐𝑘𝑘−1𝑥𝑥𝑘𝑘−1 

𝑓𝑓 𝛼𝛼1
𝑓𝑓 𝛼𝛼2

𝑓𝑓 𝛼𝛼𝑛𝑛

⋮

𝑡𝑡1
𝑡𝑡2

𝑡𝑡𝑛𝑛

⋮



𝑓𝑓 𝑥𝑥 = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥 + ⋯+ 𝑐𝑐𝑘𝑘−1𝑥𝑥𝑘𝑘−1 

𝑓𝑓 𝛼𝛼1
𝑓𝑓 𝛼𝛼2

𝑓𝑓 𝛼𝛼𝑛𝑛

⋮

𝑡𝑡1
𝑡𝑡2

𝑡𝑡𝑛𝑛

⋮

𝑡𝑡1 ⋅ 𝑓𝑓 𝛼𝛼1
𝑡𝑡2 ⋅ 𝑓𝑓 𝛼𝛼2

𝑡𝑡𝑛𝑛 ⋅ 𝑓𝑓 𝛼𝛼𝑛𝑛

⋮



𝑓𝑓 𝑥𝑥 = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥 + ⋯+ 𝑐𝑐𝑘𝑘−1𝑥𝑥𝑘𝑘−1 

𝑓𝑓 𝛼𝛼1
𝑓𝑓 𝛼𝛼2

𝑓𝑓 𝛼𝛼𝑛𝑛

⋮

𝑡𝑡1
𝑡𝑡2

𝑡𝑡𝑛𝑛

⋮

𝑐𝑐1
𝑐𝑐2

𝑐𝑐𝑛𝑛

⋮
∈ 𝐺𝐺𝐺𝐺𝐺𝐺



𝓒𝓒 code

𝔽𝔽𝑞𝑞𝑛𝑛



𝑦𝑦

𝑦𝑦 received word

𝓒𝓒 code



𝑦𝑦

find all codewords within distance 𝛿𝛿 of 𝑦𝑦

𝓒𝓒 code

𝛿𝛿



𝓒𝓒 ⊆ 𝔽𝔽𝑞𝑞 𝑛𝑛

𝑘𝑘 dimension



𝓒𝓒 ⊆ 𝔽𝔽𝑞𝑞 𝑛𝑛

𝑘𝑘 dimension

How much space 
does this code 

occupy?



𝓒𝓒 ⊆ 𝔽𝔽𝑞𝑞 𝑛𝑛

𝑘𝑘 dimension

“density” of a code

𝑅𝑅∗ =
𝑘𝑘 − 1 
𝑛𝑛

(adjusted) rate



𝓒𝓒 ⊆ 𝔽𝔽𝑞𝑞 𝑛𝑛

𝑘𝑘 dimension

low rate 

decoding ball 
contains few 
codewords

𝛿𝛿



𝓒𝓒 ⊆ 𝔽𝔽𝑞𝑞 𝑛𝑛

𝑘𝑘 dimension

high rate 

decoding ball 
contains many 

codewords

𝛿𝛿



𝑥𝑥

𝑦𝑦

How is distance measured?



𝑥𝑥

ℝ𝑞𝑞
 𝑛𝑛 =  (ℝ/𝑞𝑞ℤ)𝑛𝑛

𝑦𝑦



𝑥𝑥

ℓ2 norm (Euclidean distance)

𝑦𝑦



𝑥𝑥

𝑦𝑦

ℓ1 norm (Manhattan distance)



ℓ𝑝𝑝

Presenter Notes
Presentation Notes
A quasinorm (for p<1) relaxes the triangle inequality to ||x+y|| <= K (||x|| + ||y||) for a fixed K. We don’t use the triangle inequality at all. 







received word 
𝑦𝑦 ∈ ℝ𝑞𝑞

𝑛𝑛

list of close codewords 
𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐿𝐿 ∈ 𝒞𝒞



weight vector 

𝑊𝑊 = w1, … , w𝑖𝑖 , … , w𝑛𝑛 ∈ 0,1 𝑞𝑞𝑞𝑞

list of close codewords 
𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐿𝐿 ∈ 𝒞𝒞



𝑤𝑤𝑖𝑖 𝑥𝑥  specifies the ``likelihood’’ that 

𝑥𝑥 was the 𝑖𝑖-th transmitted symbol list of close codewords 
𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐿𝐿 ∈ 𝒞𝒞

𝑤𝑤𝑖𝑖 𝑥𝑥1 𝑤𝑤𝑖𝑖 𝑥𝑥2 … 𝑤𝑤𝑖𝑖 𝑥𝑥𝑞𝑞

weight vector 

𝑊𝑊 = w1, … , w𝑖𝑖 , … , w𝑛𝑛 ∈ 0,1 𝑞𝑞𝑞𝑞







received word 
𝑦𝑦 ∈ ℝ𝑞𝑞

𝑛𝑛

list of close codewords 
𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐿𝐿 ∈ 𝒞𝒞

transform 𝑦𝑦 into a 
weight vector 𝑊𝑊 ∈ 0,1 𝑞𝑞𝑞𝑞

𝑊𝑊

GS Algorithm



𝑦𝑦1received word  𝑦𝑦 = 𝑦𝑦2 … 𝑦𝑦𝑛𝑛 ∈ ℝ𝑞𝑞
𝑛𝑛



𝑦𝑦𝑖𝑖

𝑦𝑦1received word  𝑦𝑦 = 𝑦𝑦2 … 𝑦𝑦𝑛𝑛 ∈ ℝ𝑞𝑞
𝑛𝑛

ℝ𝑞𝑞 = ℝ/𝑞𝑞𝑞



𝑦𝑦1received word  𝑦𝑦 = 𝑦𝑦2 … 𝑦𝑦𝑛𝑛 ∈ ℝ𝑞𝑞
𝑛𝑛

ℝ𝑞𝑞

𝑦𝑦𝑖𝑖

ℤ𝑞𝑞



𝑦𝑦1received word  𝑦𝑦 = 𝑦𝑦2 … 𝑦𝑦𝑛𝑛 ∈ ℝ𝑞𝑞
𝑛𝑛

ℝ𝑞𝑞

𝑦𝑦𝑖𝑖

ℤ𝑞𝑞



𝑦𝑦1received word  𝑦𝑦 = 𝑦𝑦2 … 𝑦𝑦𝑛𝑛 ∈ ℝ𝑞𝑞
𝑛𝑛

ℝ𝑞𝑞 ℤ𝑞𝑞

𝑦𝑦𝑖𝑖



𝑦𝑦1received word  𝑦𝑦 = 𝑦𝑦2 … 𝑦𝑦𝑛𝑛 ∈ ℝ𝑞𝑞
𝑛𝑛

ℝ𝑞𝑞 ℤ𝑞𝑞

𝑦𝑦𝑖𝑖

[Mook-Peikert, 2022] :

𝑤𝑤𝑖𝑖 𝑤𝑤𝑖𝑖′ 0 000 0w𝑖𝑖 =

𝑖𝑖-th weight vector



𝑦𝑦1received word  𝑦𝑦 = 𝑦𝑦2 … 𝑦𝑦𝑛𝑛 ∈ ℝ𝑞𝑞
𝑛𝑛

ℝ𝑞𝑞 ℤ𝑞𝑞

𝑦𝑦𝑖𝑖

[Mook-Peikert, 2022] :

𝑤𝑤1 𝑤𝑤1′ 0 000 0w1 =

weight vector

𝑤𝑤𝑛𝑛 𝑤𝑤𝑛𝑛′

𝑤𝑤2𝑤𝑤2′ 0 000 0w2 =

0 000 0w𝑛𝑛 =

⋮
⋮



𝑦𝑦1received word  𝑦𝑦 = 𝑦𝑦2 … 𝑦𝑦𝑛𝑛 ∈ ℝ𝑞𝑞
𝑛𝑛

ℝ𝑞𝑞 ℤ𝑞𝑞

𝑦𝑦𝑖𝑖

Our weight vector :



𝑦𝑦1received word  𝑦𝑦 = 𝑦𝑦2 … 𝑦𝑦𝑛𝑛 ∈ ℝ𝑞𝑞
𝑛𝑛

ℝ𝑞𝑞 ℤ𝑞𝑞

𝑦𝑦𝑖𝑖

Our weight vector :

weights given by a 
function 𝑓𝑓𝑠𝑠 of width 𝑠𝑠 > 0 

𝑤𝑤𝑦𝑦𝑖𝑖 𝑥𝑥1w𝑖𝑖 = 𝑤𝑤𝑦𝑦𝑖𝑖 𝑥𝑥𝑞𝑞…

𝑖𝑖-th weight vector



𝑦𝑦1received word  𝑦𝑦 = 𝑦𝑦2 … 𝑦𝑦𝑛𝑛 ∈ ℝ𝑞𝑞
𝑛𝑛

ℝ𝑞𝑞 ℤ𝑞𝑞

𝑦𝑦𝑖𝑖

Our weight vector :

𝑤𝑤𝑠𝑠,𝑦𝑦𝑖𝑖 𝑥𝑥1w𝑖𝑖 =

𝑖𝑖-th weight vector

𝑤𝑤𝑠𝑠,𝑦𝑦𝑖𝑖 𝑥𝑥𝑞𝑞…

𝑤𝑤𝑠𝑠,𝑦𝑦𝑖𝑖 𝑥𝑥 = 𝑓𝑓𝑠𝑠 𝑦𝑦𝑖𝑖 − 𝑥𝑥 + 𝑞𝑞𝑞

determined by the distance 
between 𝑦𝑦𝑖𝑖 and symbol 𝑥𝑥





normalizing constant



Gaussian function

Laplacian function





𝑞𝑞

(0,0)
(1,1)

(−1, −1)

(2,2)





𝑠𝑠, 𝑞𝑞/𝑠𝑠 → ∞ 1
𝛿𝛿 ⋅ 𝑐𝑐𝑝𝑝 𝑒𝑒 ⋅ 𝑝𝑝 1/𝑝𝑝

This is the (dimension-normalized) volume 
of the 𝑛𝑛-dim. ℓ𝑝𝑝 ball of radius 𝑛𝑛1/𝑝𝑝 !



distance 𝛿𝛿

rate 𝑅𝑅∗

Rate-distance trade-off for ℓ𝟐𝟐

our algorithm

[Mook-Peikert, 2022]

min ℓ𝟐𝟐distance 
lower bound



distance 𝛿𝛿

rate 𝑅𝑅∗

[Roth-Siegel, 1994]

our algorithm

min ℓ𝟏𝟏distance 
lower bound

Rate-distance trade-off for ℓ𝟏𝟏








	Codes & Lattices:�Computational Complexity and Constructions
	Outline
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Codes
	Codes
	Codes
	Codes
	Lattices
	Lattices
	Lattices
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	I. Computational Complexity
	�Fine-Grained Hardness of LWE
	Cryptography from LWE
	Cryptographic Significance
	Cryptographic Significance
	Cryptographic Significance
	Learning With Errors
	Learning With Errors
	Shortest Vector Problem
	Shortest Vector Problem
	Approximate Shortest Vector Problem
	Closest Vector Problem
	Closest Vector Problem
	Bounded Distance Decoding
	Bounded Distance Decoding
	Hardness of LWE
	Hardness of LWE
	Hardness of LWE
	Hardness of LWE
	Algorithms for Lattice Problems
	What the Reduction says about LWE Algorithms
	What the Reduction says about LWE Algorithms
	What the Reduction says about LWE Algorithms
	What the Reduction says about LWE Algorithms
	Our Contribution
	Security in Practice
	Security in Practice
	Security in Practice
	An Alternative Perspective
	An Alternative Perspective
	Success Probability of Solving LWE
	Success Probability of Solving LWE
	Success Probability of Solving LWE
	Success Probability of Solving Lattice Problems
	Success Probability of Solving Lattice Problems
	Success Probability of Solving Lattice Problems
	A Natural Conjecture
	What We Show
	What We Show
	Limitations of the Original Reduction
	Limitations of the Original Reduction
	Limitations of the Original Reduction
	Limitations of the Original Reduction
	Limitations of the Original Reduction
	Our Reduction
	Our Reduction
	Our Main Result
	Our Reduction
	Our Proof Techniques
	Our Proof Techniques
	Our Proof Techniques
	Our Proof Techniques
	Our Second Result
	Open Directions
	Reductions Between Code Equivalence Problems
	Cryptographic Significance
	Code Equivalence Problem
	Code Equivalence Problem
	Permutation Code Equivalence
	Permutation Code Equivalence
	Signed Permutation Code Equivalence
	Linear Code Equivalence
	Code Equivalence
	Code Equivalence
	Lattice Isomorphism Problem
	Lattice Isomorphism Problem
	Lattice Isomorphism Problem
	Slide Number 89
	Slide Number 90
	Our Results
	Our Results
	Our Construction
	Our Construction
	Our Construction
	Our Construction
	Our Construction
	Our Construction
	Our Results
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Slide Number 110
	Slide Number 111
	II. Constructions and Algorithms
	List-Decoding GRS Codes over General Norms
	Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	Generalized Reed-Solomon Codes
	List-Decoding Problem
	List-Decoding Problem
	List-Decoding Problem
	Rate-Distance Trade-off
	Rate-Distance Trade-off
	Rate-Distance Trade-off
	Rate-Distance Trade-off
	Rate-Distance Trade-off
	Measuring Distance
	Measuring Distance
	Measuring Distance
	Measuring Distance
	General (Quasi)Norms
	Our Results
	Our Results
	List-decoding Algorithm
	Soft-decision Decoding Algorithm
	Soft-decision Decoding Algorithm
	Guruswami-Sudan Algorithm
	Guruswami-Sudan Algorithm
	Our List-decoding Algorithm
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Transforming into Weights
	Choosing the Weight Function
	Choosing the Weight Function
	Choosing the Weight Function
	Our Main Result
	Our Main Result
	Our Main Result
	Our Main Result
	Comparison to Prior Algorithms
	Comparison to Prior Algorithms
	Open Directions
	Slide Number 162
	Slide Number 163

