
Shor’s Algorithm and Its Impact On Present-Day Cryptography

Research Capstone (Math 4020)

Alexandra Veliche

December 6, 2018

Faculty Consultant: Professor Christopher King

In this project, I will be exploring the mathematics used in the field of quantum computation, as well as

its applications to cryptography. I will be focusing on the quantum Fourier transform and its application in

Shor’s Algorithm. This algorithm can be used to factor large integers - a classically infeasible problem upon

which many present-day cryptosystems rely. I will analyze the roots of unity used in Shor’s algorithm and

visualize the qubit transformations involved throughout.

1

Contents

1 Motivation 3

2 Approach 3

3 The Factoring Problem 3

4 Introduction to Quantum Computing 4

5 Quantum Fourier Transform 5

6 QFT Circuit Representation 7

7 Shor’s Algorithm 11

8 Conclusion 16

9 Terminology 17

2

1 Motivation

As a mathematics major and computer science minor, I am interested in the connection between math-

ematics and theoretical computer science, particularly in the field of cryptography. I have been fascinated

with cryptography since middle school, and have studied both private-key and public-key encryption for

various projects as part of coursework, as well as on my own. Since I have studied both private and public

key cryptography in the past, and have had experience with their applications on my cybersecurity co-op,

learning about quantum computing would complement what I know by providing me with a better under-

standing of the modern-day challenges and fears for the future involved in keeping information secure and

communication private. While I have encountered encryption algorithms that have been broken or are still

in use, I am not familiar with algorithms in the quantum field, which concerns itself with the future of

cryptography. For this reason, I have chosen this topic in order to broaden and deepen my understanding of

present-day cryptography. Quantum computation relies heavily on linear algebra, physics, and some com-

plexity theory, and while I have taken Linear Algebra, Physics, Algorithms, and Theory of Computation, I

was required to study these subjects more in depth.

2 Approach

In order to create a foundation for further exploration of the field, I have been studying the basics of

quantum computation, as well as some topics of linear algebra, number theory, and physical and algorithmic

concepts underlying it. I have studied the quantum Fourier transform and its implementation in Shor’s

algorithm. The purpose of this paper is to clearly explain these concepts and make them accessible to those

who have never before encountered this field. As part of this, I have focused on providing simple examples,

making connections to more familiar concepts (such as group theory) and visualizing the processes involved

throughout. A secondary goal is to provide a sense of why this field is important, by describing how it

impacts modern cryptography.

3 The Factoring Problem

Factoring a given number may not seem like such a difficult task at first glance, but when the number is

a few hundred digits long and is the product of two very large primes, the problem becomes quite difficult.

Even using the fastest algorithms on the fastest computers, the search for factors becomes infeasible, because

as the number becomes larger, the number of operations required to factor it increases exponentially. The

fastest classical algorithm to date is the General Number Field Sieve (GNFS) algorithm [9], which has an

asymptotic running time of O(ec(log n)
1/3(log log n)2/3), exponential in the length of the given number n. As a

more practical example, in 2010 researchers managed to factor a 232-digit (768-bit) RSA key using hundreds

of machines in the span of two years. They estimated that a 1024-bit number would be a thousand times

more difficult, even with technological advances [7]. At the time of this writing, no algorithm has been found

that can factor any integer in polynomial time, and it is predominantly thought that no such algorithm

exists [2]. 1 In the quantum world, however, this is another matter entirely. In 1995, Peter Shor formulated

an algorithm that could solve the factoring problem in polynomial time [3]. But until now, no quantum

1If a polynomial-time algorithm were to be found, this would solve the Millennium Prize problem of ”P vs. NP”,
because it is known that factoring is an NP-problem.

3

computer powerful enough to run it has been built, so the factoring problem remains infeasible for the time

being.

4 Introduction to Quantum Computing

In order to understand the way Shor’s algorithm works, we first describe some basic concepts of quantum

computing. In classical computers, the basic unit of information is the binary digit, or bit, which can have a

value of either 0 or 1. In quantum computing, the analog of the bit is the quantum bit, or qubit; but instead

of having only two possible states, a qubit can be in the basis states |0〉, |1〉, or any linear combination of

the two |ψ〉 = α|0〉+ β|1〉, where α, β ∈ C. This linear combination is known as a superposition of quantum

states, and has the normalization condition |α|2 + |β|2 = 1 [2].

An n-qubit system would have 2n computational basis states |0〉, |1〉, ...|2n − 1〉, so that any quantum

state would be of the form

|ψ〉 = α0|0〉+ α1|1〉...+ α2n−1|2n − 1〉 =

2n−1∑
j=0

αj |j〉, where αj ∈ C, ∀ 0 ≤ j ≤ 2n − 1.

For example, a 2-qubit system would have basis states |0〉, |1〉, |2〉, |3〉. Since each qubit in the system

can be in one of two states, these basis states can be rewritten in terms of the states of each qubit as

|00〉, |01〉, |10〉, |11〉.

Because any arbitrary state |ψ〉 is a linear combination of the basis states, it can be thought of as a

vector. The bra-ket notation for the states is known as the Dirac notation (see terminology section) [4].

With this correspondence to vectors, we have the following definition, which will be used from now on [4, 5]:

Definition: Let V and W be complex vector spaces of dimensions n and m, respectively. Their tensor

product V ⊗W is a complex vector space of dimension nm, whose elements are spanned by the tensor prod-

ucts of vectors from V and W . Let |v〉 ∈ Cm, |w〉 ∈ Cn be two arbitrary states. Then their tensor product

is given by |v〉 ⊗ |w〉, also written as |v〉|w〉 or |vw〉.

(The formal definition and properties of the tensor product is beyond the scope of this paper, as only

tensors of vectors are used.) To get more of an intuition about how this works, consider the 2-qubit system

as an example: here the basis states are |0〉 and |1〉. These can be represented by vectors as follows

|0〉 = 1|0〉+ 0|1〉 =

[
1

0

]
and |1〉 = 0|0〉+ 1|1〉 =

[
0

1

]
.

The tensor product of these two basis states can be found in the following manner:

|0〉 ⊗ |1〉 =

[
1

0

]
⊗

[
0

1

]
=


1

[
0

1

]

0

[
0

1

]
 =


0

1

0

0

 = |01〉.

Notice that in this case we obtained a vector of length 4 from two vectors of length 2, and that the resulting

4

state |01〉 corresponds to the state second basis state |1〉 of the 4-qubit system with basis states |0〉, |1〉, |2〉, |3〉.
Hence we have a transformation from (C2)⊗2 to C4 [1].

Now we introduce a useful representation for a single qubit: Since a qubit can be in any of an infinite

number of possible states, it can be visually represented by a point on the Bloch sphere shown below [2]:

Figure 1: Bloch sphere

Here the poles are the basis states |0〉 and |1〉. Since the phase of the qubit lies on the sphere with these

poles, it can be written in terms of spherical coordinates as follows [1]:

|ψ〉 = cos
(θ

2

)
|0〉+ eiφsin

(θ
2

)
|1〉, where θ, φ ∈ R.

Here the amplitudes of the basis states for this qubit state are in terms of the angles defining the position

on the sphere. This alternate representation is important to keep in mind for the discussion of roots of unity

in later sections.

5 Quantum Fourier Transform

The quantum Fourier transform (QFT) is the key component of Shor’s algorithm and other useful

quantum algorithms. Its classical analog is the discrete Fourier transform (DFT), a linear transformation

that converts a sequence of complex numbers, often denoted as the input vector x = (x0, x1, ...xn−1), into

another sequence of complex numbers, denoted by the output vector y = (y0, y1, ...yn−1), by the following

formula [2, 10]:

yk =
1√
n

n−1∑
j=0

xje
2πijk/n, where 0 ≤ k ≤ n− 1.

The quantum version is also a linear transformation, but instead of acting on a simple vector x ∈ Cn, it

transforms a quantum state |x〉 into another state |y〉. Given an input state that is a superposition of the

2n basis states of an n-qubit system, we have that

|x〉 =

2n−1∑
j=0

xj |j〉, where 0 ≤ j ≤ 2n − 1.

5

The QFT maps the input state to the state |y〉 =
∑2n−1
j=0 yj |j〉 by the same formula as above [2]:

yk =
1√
2n

2n−1∑
j=0

xje
2πijk/2n , where 0 ≤ k ≤ 2n − 1.

The inverse quantum Fourier transform (QFT−1), is defined similarly, but with the output basis states given

by the adjoint of the previous transformation:

yk =
1√
2n

2n−1∑
j=0

xje
−2πijk/2n , where 0 ≤ k ≤ 2n − 1.

Recall that the adjoint of a complex matrix is the complex conjugate composed with the transpose (see

terminology section for details). Hence, because a complex number can be considered as a single-entry

matrix, its transpose is itself, so that its adjoint is its complex conjugate. In polar form, the complex

number a+ bi = reiφ has the complex conjugate a− bi = re−iφ [1].

The transformation of a quantum state under the QFT can be decomposed into the transformation of

the computational basis states of the system: for an n-qubit system, the basis states are |0〉, |1〉, ...|2n − 1〉.
Thus given an arbitrary basis state |j〉, where 0 ≤ j ≤ 2n − 1, the QFT transforms it by the following:

|j〉 → 1√
2n

2n−1∑
k=0

e2πijk/2
n

|k〉.

Here, the state |k〉 can be written in its binary form k = k1 · 2n−1 + k2 · 2n−2 + ...+ kn · 20, while its binary

fraction is given by k · 2−n = k1 · 2−1 + k2 · 2−2 + ...+ kn2n = 0.k1k2...kn [2]. By the properties of the Dirac

notation, the binary form of the state |k〉 = |k1k2...kn〉 is the same as the tensor product |k1〉⊗|k2〉⊗...⊗|kn〉.
Using these facts, the QFT transformation of a basis state can be rewritten as the following product [2]:

|j〉 → 1√
2n

2n−1∑
k=0

e2πijk/2
n

|k〉 =
1√
2n

1∑
k1=0

1∑
k2=0

...

1∑
kn=0

e2πij0.k1k2...kn |k〉

=
1√
2n

1∑
k1=0

1∑
k2=0

...

1∑
kn=0

e2πij(
∑n
l=1 kl·2

−l)|k1k2...kn〉

=
1√
2n

1∑
k1=0

1∑
k2=0

...

1∑
kn=0

n⊗
l=1

e2πijkl2
−l
|kl〉

=
1√
2n

n⊗
l=1

(1∑
kl=0

e2πijkl2
−l
|kl〉
)

=
1√
2n

n⊗
l=1

(
|0〉+ e2πij2

−l
|1〉
)

=
1√
2n

(
|0〉+ e2πi0.jn |1〉

)(
|0〉+ e2πi0.jn−1jn |1〉

)
...
(
|0〉+ e2πi0.j1j2...jn |1〉

)
This product is used as often as the formal definition of the QFT, as it clearly shows the transformation

of each qubit in the system as a superposition of states. The significance of this product is explained in the

following section.

6

6 QFT Circuit Representation

In preparation for representing the QFT as a circuit, we introduce some important quantum logic gates:

A simple quantum gate is the Pauli-X gate, also known as the NOT gate [5]. It operates on a single

qubit in the following manner: given a quantum state |ψ〉 = α|0〉 + β|1〉, the gate switches the |0〉 and |1〉
basis states to give the resulting state X (|ψ〉)=α|1〉 + β|0〉. For a single qubit system, this gate can be

represented by the matrix

X =

[
0 1

1 0

]
.

In terms of the Bloch sphere representation, this is equivalent to a rotation by π around the x-axis.

Unlike the Pauli-X gate, the SWAP gate acts on two qubits at once, swapping one with the other [5].

Since the basis states for a 2-qubit system are represented by |00〉, |01〉, |10〉, |11〉, this gate can be represented

by the matrix

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


.

Another important gate is the Hadamard gate represented by the matrix

H =
1√
2

[
1 1

1 −1

]
.

This sends |0〉 7→ 1√
2
(|0〉+ |1〉) and |1〉 7→ 1√

2
(|0〉 − |1〉), and is equivalent to a rotation around the y-axis by

π
2 followed by a reflection in the x-y plane [5]. We will focus on the transformation of the basis state |0〉, as

this is used in the QFT circuit. For a 2-qubit system with basis states |00〉, |01〉, |10〉, |11〉, the Hadamard

gate acts on each qubit by H ⊗H and sends |00〉 = |0〉 ⊗ |0〉 to the following:

(H ⊗H)(|0〉 ⊗ |0〉) = H|0〉 ⊗H|0〉

=
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉 − |1〉)

=
1

2
(|00〉+ |01〉+ |10〉+ |11〉)

=
1

2
(|0〉+ |1〉+ |2〉+ |3〉) in terms of the alternate basis.

In general, for an n-qubit system, the Hadamard gate acts on the basis state |00...0〉 by the following:

H⊗n(|0〉⊗n) = (
1√
2

(|0〉+ |1〉))⊗n =
1√
2n

2n−1∑
j=0

|j〉.

7

A third important gate, is the controlled-phase gate represented by the matrix

Rk =

[
1 0

0 e
2πi

2k

]
,

where 2πi
2k

is the phase shift [5]. This acts on a single qubit, and only changes the amplitude of the |1〉
component of the phase state.

Using these basic quantum gates, the QFT on a given basis state |j〉 can be represented with the fol-

lowing circuit, in which each binary digit |ji〉 of the basis state |j〉 = |j1j2...jn〉 = |j1〉 ⊗ |j2〉 ⊗ ... ⊗ |jn〉 is

passed through a Hadamard gate and a series of controlled-phase gates. The controlled-phase gates for a

single digit is determined by the states of the digits after it in the binary form for |j〉. After each digit passes

through its series of gates, the resulting states for each pair |ji〉 and |jn−i〉 are swapped so that the state

|ji〉 corresponds to the transformed state 1√
2

(
|0〉 + e2πi0.ji...jn−1jn |1〉

)
. In the product form of the QFT,

the swapping has no overall effect, but in the circuit, the swapping matches each initial digit state with its

resulting state. This swapping is explained further in the example below. The QFT circuit for an n-qubit

system is given by the following figure:

. . .

.

...
...

...
...

. . .

. . .

|j1〉 H R2 Rn−1 Rn |0〉+ e2πi0.j1...jn |1〉

|j2〉 H Rn−2 Rn−1 |0〉+ e2πi0.j2...jn |1〉

|jn−1〉 H R2 |0〉+ e2πi0.jn−1jn |1〉

|jn〉 H |0〉+ e2πi0.jn |1〉

Figure 2: General QFT Circuit

Example:

To better understand how the QFT works, consider the 2-qubit system, with the basis state |j〉 = |j1j2〉
as the input. Then the QFT circuit is given by the following figure:

|j1〉 H R2

|j2〉 H

Figure 3: QFT Circuit for 2-Qubit System

As seen previously, the basis states for this system are |0〉, |1〉, |2〉, |3〉. Since each qubit in the system

has the state |0〉 or |1〉, the basis states can be rewritten as |00〉, |01〉, |10〉, |11〉. Thus, any arbitrary state is

of the form |ψ〉 = α0|00〉+ α1|01〉+ α2|10〉+ α3|11〉.

8

Using the definition of the QFT, the input state |j〉 is transformed into the following:

QFT (|j〉) =
1√
22

22−1∑
k=0

e
2πijk

22 |k〉 =
1

2

3∑
k=0

e
πijk

2 |k〉 =
1

2

(
|0〉+ e2πi0.j2 |1〉

)(
|0〉+ e2πi0.j1j2 |1〉

)
.

Using the QFT circuit, the following process is performed: First the Hadamard gate is applied to the

first qubit state |j1〉. For the cases where |j1〉 = |0〉 and |j1〉 = |1〉, then we obtain the following:

H(|0〉) =
1√
2

[
1 1

1 −1

][
1

0

]
=

1√
2

(|0〉+ |1〉) and H(|1〉) =
1√
2

[
1 1

1 −1

][
0

1

]
=

1√
2

(|0〉 − |1〉).

These possible results can be combined into the following form, using binary representation:

H(|j1〉) =
1√
2

(|0〉+ (−1)j1 |1〉) =
1√
2

(|0〉+ e
2πij1

2 |1〉) =
1√
2

(|0〉+ e2πi0.j1 |1〉).

Next, the controlled-phase gate is applied to the transformed qubit state:

R2(H|j1〉) =

[
1 0

0 e
2πij2
22

](1√
2

[
1

e2πi0.j1

])
=

1√
2

[
1

e2πi0.j1+
2πij2

4

]
=

1√
2

(
|0〉+ e2πi0.j1j2 |1〉

)
.

Notice that here the controlled-phase gate includes the state of |j2〉, because it is controlled by |j2〉 in the

circuit. Combining the individual qubit transformations, we obtain the following result:

QFT (|j1j2〉) = R2(H|j1〉)⊗H|j2〉

=
1

2

(
|0〉+ e2πi0.j1j2 |1〉

)(
|0〉+ e2πi0.j2 |1〉

)
Comparing this result from the QFT circuit to the result obtained from the QFT equation, we notice that

the resulting state for each individual qubit is switched. In order to match the circuit result exactly with

the definition, the swapping is implemented in the circuit at the very end.

Note that the QFT equation can be written in terms of the primitive nth root of unity: Let ω := e
πi
2 = i.

Then the 4th roots of unity are given by e
πik
2 , for 1 ≤ k ≤ 4. These are ω2 = −1, ω3 = −i, ω4 = 1. Using

these roots of unity, the QFT for this 2-qubit system can be written in the following matrix form:

QFT2 =
1

2


1 1 1 1

1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω

 =
1

2


1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i

 .

Here the columns of the matrix correspond to the possible cases for the state of the qubits in the system:

|00〉, |01〉, |10〉, |11〉, respectively. Notice that these roots of unity form a group under multiplication, of order

4: 〈ω〉 = {1, ω, ω2, ω3}. Since gcd(1, 4) = 1 and gcd(3, 4) = 1, both ω and ω3 are generators of this group. A

visual representation of this group is shown below:

9

x

y

ω2 ω4 = 1

ω3

ω

Figure 4: Roots of Unity for 2-Qubit System

Similarly, the QFT for a 3-qubit system can be represented as the following matrix:

QFT3 =



1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω


In this case, the group of roots of unity is generated by ω := e

πi
4 , which has order 8. The visual representation

of this group is given below:

x

y

ω8 = 1

ω

ω2

ω3

ω4

ω5

ω6

ω7

Figure 5: Roots of Unity for 3-Qubit System

10

7 Shor’s Algorithm

Now that we have discussed the basic components, we can put them together into Shor’s algorithm. This

algorithm consists of two parts: (I) a classical algorithm for reducing the factoring problem to order-finding,

and (II) a quantum order-finding subroutine that uses the QFT, and is called by part (I) [5, 11, 12]. First

we define the order-finding problem:

Problem: Given integers x,N ∈ Z+ such that x < N and gcd(x,N) 6= 1, find the smallest r ∈ Z+ such

that xr = 1(mod N). This r is the order of the integer x modulo N (see Terminology).

Before introducing the algorithm, we first state some number theory definitions and theorems used in part

(I) of the algorithm (without proof, as this is beyond the scope of this paper) [2]:

(1) Theorem: Let N ∈ Z+ be a composite number and x ∈ Z+ in the range 1 ≤ x ≤ N be a non-trivial

solution to the equation x2 = 1(mod N) (i.e. x 6= ±1(mod N)). Then at least one of gcd(x + 1, N) and

gcd(x− 1, N) is a non-trivial factor of N .

(2) Theorem: Suppose N ∈ Z+ is an odd composite with prime factorization N = pα1
1 · p

α2
2 · ... · p

αk
k . Let

x ∈ Z∗N be a random, uniformly-chosen element with order r. Then we have the following probability:

P (r odd or x
r
2 = −1(mod N)) ≤ 1

2k

.

(3) Euclidean Algorithm: Given two integers a, b ∈ Z+, their greatest common denominator can be found

by the following recursive algorithm [12]:

gcd(a, b) =

b, if a ≡ 0 (mod b)

gcd(a, a mod b), otherwise

Definition: Given a set of integers a0, a1, ...an ∈ Z+, the finite simple continued fraction they define is

given by:

a0 +
1

a1 + 1
a2+

1

...+ 1
an

=: [a0 a1 a2 ... an].

These integers are known as the partial denominators of this fraction [8]. The continued fractions algorithm is

a process of finding these partial denominators from a given fraction, and is illustrated by the example below:

Example:

Consider the fraction 43
30 . The partial denominators of this fraction can be found by repeatedly rewriting

each fraction as a partial fraction, as shown below:

43

30
= 1 +

13

30
= 1 +

1
30
13

= 1 +
1

2 + 4
13

= 1 +
1

2 + 1
13
4

= 1 +
1

2 + 1
3+ 1

4

= [1 2 3 4].

Hence, the partial denominators of this fraction are 1, 2, 3, and 4.

11

Now we introduce the main process of Shor’s algorithm given by part (I):

I. Classical algorithm for the reduction of factoring to order-finding:

Input: odd composite N ∈ Z+

Output: non-trivial factors of N

1. Choose a random a ∈ Z+ such that a < N .

2. Compute gcd(a,N) using the Euclidean Algorithm (4) above.

3. If gcd(a,N) 6= 1, then return the non-trivial factor gcd(a,N).

Else, use the subroutine (II) to find r, the order of a modulo N .

4. If r odd or a
r
2 ≡ −1 (mod N), then go back to 1. and choose a different a.

Else, return the non-trivial factor(s) given by gcd(a
r
2 + 1, N) and/or gcd(a

r
2 − 1, N).

In this algorithm, the problem of factoring a given integer N is reduced to the problem of finding the

order of an element modulo N , and using this to find the non-trivial factors of N . This is possible with the

properties given by the theorems stated above. Here, Theorem (1) implies that if the conditions for r in step

(4) do not hold, there exist the non-trivial factors described. By Theorem (2), the probability that r meets

the conditions in the ”if” clause is quite small, depending on the number of prime factors of N . Overall,

there is a high probability that the algorithm will find a suitable a eventually, so the algorithm halts (the

formal complexity analysis of this algorithm is beyond the scope of this paper, however).

The quantum order-finding subroutine called in step (3) is given below. Here we use registers to group

the input qubits into two sets, each treated as a composite system [4]. Let R1 denote the collection of t

qubits given as input (ii) and R2 denote the collection of l given as input (iii). The circuit representation

for this subroutine algorithm is given below [2]:

R1 |0〉⊗t H QFT−1

R2 |1〉⊗l aj mod N

Figure 6: Quantum Order-Finding Subroutine Circuit

12

II. Quantum subroutine algorithm for order-finding:

Input:

(i) black box transformation Ua,N : |j〉|k〉 → |j〉|ajk (mod N)〉 for a ∈ Z+ where gcd(a,N) = 1

(ii) t qubits intialized to |0〉, where t := 2l + 1 + dlog(2 + 1
2ε)e and l := number of bits in N

(iii) l qubits intialized to |1〉

Output: order of a modulo N

1. Apply the Hadamard gate to each of the t qubits in R1:

H⊗t(|0〉⊗t) =
(1√

2
(|0〉+ |1〉)

)⊗t
=

1√
2t

2t−1∑
j=0

|j〉.

2. Apply the black box transformation Ua,N to each of the l qubits in R2:

Ua,N (
1√
2t

2t−1∑
j=0

|j〉|1〉) =
1√
2t

2t−1∑
j=0

|j〉|ajmod N〉 =
1√
r2t

r−1∑
s=0

2t−1∑
j=0

e
2πijs
r |j〉|us〉 =: |ψ〉,

where |us〉 = 1√
r

∑r−1
s=0 e

−2πijs
r |ajmod N〉.

3. Apply the inverse QFT to R1:

QFT−1(|ψ〉) =
1√
r2t

r−1∑
s=0

2t−1∑
j=0

e
2πijs
r

(1√
2t

2t−1∑
k=0

e
−2πijk

2t |k〉
)
|us〉

=
1

2t
√
r

r−1∑
s=0

(2t−1∑
j,k=0

e2πij(
s
r−

k
2t

)
)
|k〉|us〉

=
1√
r

r−1∑
s=0

(1

2t

2t−1∑
j,k=0

e2πij(
s
r−

k
2t

)|k〉
)
|us〉 (∗)

=
1√
r

r−1∑
s=0

2t−1∑
k=0

αk,s|k〉|us〉

where αk,s := 1
2t

∑2t−1
j=0 e

2πij

2t
(s2

t

r −k).

4. Measure R2 to choose an s, then measure R1 to obtain a value k̃ for this s.

5. Apply the continued fractions algorithm to k̃
2t to find the partial denominators r0, r1, ...rl, and

test ri at each step to find the order r.

In this algorithm, the black box Ua,N given as input (i) is a unitary transformation that changes the

second state of the tensor product input, depending on the a ∈ Z+ chosen in part (I) of the algorithm

[2]. Because the output of this function can no longer be written as a product of separate states, the two

states have become entangled. The term black box indicates that the inner workings of this subroutine are

hidden, and that the algorithm is only interested in its input and output. In practice, however, this can

be implemented with an additional subroutine algorithm. This transformation is significant because this

13

subroutine is a specific case of the phase estimation procedure. This procedure performs the following: given

a unitary matrix U and an eigenvector |u〉, it estimates the phase φ of the eigenvalue e2πiφ. In this subroutine

algorithm, the desired phase is s
r , where r is the order to be determined. The 2l + 1 qubits given as input

(ii) are just enough to represent the value of N2, as the length of N in binary is given by l = dlog(N)e [2].

The remaining dlog(2 + 1
2ε)e are used to estimate the phase depending on the desired number of digits of

accuracy and the desired probability of success (the derivation of this value is beyond the scope of this paper

this paper). The l qubits given as input (iii) are used for computation purposes in modifying the state of

the qubits in the first register.

In step (1) of the subroutine algorithm, the Hadamard gate is applied to the collection of t qubits set to

|0〉, in the same manner as shown in the previous section.

In step (2), the black box Ua,N is applied to each of the tensor products of the transformed t qubits

and l qubits. Since the black box only affects the state of the second qubit in the product, it is described

as being applied only to the second register R2. However, it modifies the second qubit based on the state

of the first, so that these become entangled; so in effect, it is acting on both registers at once. Hence, the

transformations in steps (1) and (2) can be summarized in the following way:

Ua,N ((H⊗t ⊗ I)(|0〉⊗t ⊗ |1〉)) = Ua,N

(1√
2t

2t−1∑
j=0

|j〉 ⊗ |1〉
)
.

For ease of reference, the result of this transformation is named |ψ〉. In step (2), the state of the tensor

product is rewritten from being in terms of the output of Ua,N to being in terms of the states |us〉. The

states |us〉 are the eigenstates of the transformation matrix U defined by U |x〉 = |ax mod N〉, and has

corresponding eigenvalues e
−2πis
r [1, 2]. This transformation changes the summation from being in the basis〈

|1〉, |a mod N〉, ...|ar−1 mod N〉
〉

to being in terms of the eigenvectors
〈
|uo〉, |u1〉, ...|ur−1〉

〉
.

In step (3), the inverse QFT is applied to the previous result |ψ〉. Since this only affects the state of the

first set of qubits in the tensor product, it is in effect being applied only to the first register R1. The result

of this step is in terms of the eigenstate |us〉 and the possible values for the order r. In reality, the quantum

computer implementing this algorithm would not perform the formal linear algebra analysis done to obtain

the state |k̃〉 [1]. Instead it would use a series of implicit measurements like the following [1, 2]:

Let αk,s :=
1

2t

2t−1∑
j=0

e
2πij

2t
(s2

t

r −k)

Then the QFT−1 equation at (∗) can be rewritten as (∗) =
1√
r

r−1∑
s=0

2t−1∑
k=0

αk,s|k〉|us〉

Measure R2 to choose an s and obtain :

2t−1∑
k=0

αk,s|k〉

Measure R1 to choose a 0 ≤ k ≤ 2t − 1 as done before.

The probability of choosing the value k in measuring R1 is determined by P (k) := |αk,s|2,which is represented

in the plot below. Here the peak occurs when k is closest to s
r2t, so with a high probability, the machine

will choose a value k close to this.

14

k

|αk,s|2

b sr2tc

Figure 7: Probability Distribution for Measurement of R1 After Measurement of R2

This measurement can also be understood in terms of the 2t roots of unity of αk,s: Let b+ δ := s2t

r − k
be the error in measuring the value k, where b is the integral part and δ is the decimal part of the difference,

and denote the root of unity by ω := e
2πi
2t . Then αk,s can be rewritten as follows:

αk,s =
1

2t

2t−1∑
j=0

ωj(b+δ).

As an example, consider the case where b = 1. Here the roots would be of the form ωj(b+δ) for 0 ≤ j ≤ 2t−1.

A visualization of these roots of unity is shown below:

x

y

w1

w2

w3

wn = 1

wn−1

...

...

Figure 8: Roots of Unity for Shor’s Algorithm

As shown by the black points in the figure above, if b = 1 and δ = 0, then the roots of unity are those

determined by the exponent j. If b > 1 and δ = 0, then the roots are shifted by a factor of ωb, but are still

in the original set of roots. If δ 6= 0, then each root is shifted relative to the exponent j of ωj , as shown by

the gray points in the figure above. In the cases where δ = 0, the sum of the roots will be αk,s = 1 if b = 0

and 0 otherwise. In the alternative case, there will be some error: αk,s ' 1 if b = 0 and αk,s ' 0 otherwise.

Finally, in step (4) the algorithm measures R1 to obtain |k̃〉, the state which best approximates b sr2tc
[1]. This is used to form the fraction k̃

2t , and the continued fractions algorithm is applied to find its partial

denominators [r0, r1, ...rl]. For each partial denominator ri, the algorithm tests to see if ari ≡ 1 mod N . If

15

so, the order r = ri is returned.

To better understand how Shor’s algorithm works, consider the following example, in which the non-

trivial factors of N = 21 are found:

Example:

1. Suppose that the random integer chosen is a = 13.

2. Then using the Euclidean algorithm, we find that gcd(13, 21) = 1.

3. Since 13 and 21 are relatively prime, we call the quantum subroutine to find the order r such that

13r ≡ 1(mod 21).

inputs: � U13,21(|j〉|k〉) = |j〉|13j(mod 21)〉.
� Since 21 is 10101 in binary, l = 5, and so R2 contains 5 qubits initialized to |1〉.
� Suppose that the desired accuracy is ε = 0.2. Then t = 2(5) + 1 + dlog(2 + 1

2(0.2))e = 12,

and so R1 contains 12 qubits initialized to |0〉.

1) Applying the Hadamard gate to R1, we obtain: H⊗12(|0〉⊗12) = 1
26 (|0〉+ |1〉+ ...+ |212 − 1〉).

2) Applying the black box operation, we obtain the state:

U13,21

(1

26

212−1∑
j=0

|j〉|1〉
)

=
1

26
(|0〉|1〉+ |1〉|13〉+ |2〉|1〉+ |3〉|13〉+ ...).

3) Apply QFT−1 to the current state and measure R2.

4) Then measure R1. Suppose that the measurement of R1 results in 2048.

5) Performing the continued fractions algorithm on 2048
4096 , we obtain the only partial denominator 2.

Since 132 ≡ 1 (mod 21), we return the order r = 2.

4. Since r = 2 is not odd and 13
2
2 = 13 6≡ −1(mod 21), we return the factors:

gcd(13 + 1, 21) = 7 and gcd(13− 1, 21) = 3.

8 Conclusion

Now that we have seen how Shor’s algorithm factors a given number in quantum polynomial time, we

discuss the impact this could have on modern cryptography. The commonly-used RSA cryptosystem relies

on the difficulty of factoring large integers of the form N = p · q, where p and q are two large primes

[14]. This cryptosystem is used as part of more complex encryption schemes to securely transmit data in

anything from communication to signing electronic documents. Shor’s algorithm is not the only quantum

algorithm that can solve an infeasible problem - others have been created that can solve the discrete logarithm

problem, for example, upon which Elliptic Curve cryptography relies. Because of this, Shor’s algorithm and

other quantum algorithms pose a potential threat to most modern encryption schemes. According to the

National Institute of Standards and Technology (NIST), quantum computers will bring an end to modern

cryptography as we know it [14]. This being the case, considerable research is being done in the field of

post-quantum cryptography, in an effort to develop cryptosystems that are resistant to both classical and

quantum attacks. In the future, I plan to study both classical and post-quantum cryptography with a focus

on the mathematics involved.

16

9 Terminology

� Qubit - Shortened form of ”quantum bit”, the basic unit of quantum information.

� Superposition - A qubit’s property of being able to exist in multiple states at the same time. A

superposition of states |α〉 and |β〉 is a linear combination of these states |phi〉 = c1|α〉+ c2|β〉, where

the amplitudes are c1, c2 ∈ C.

� Dirac notation - the standard notation for qubit states used in quantum mechanics, consisting of the

”bra” 〈 | and ”ket” | 〉.

� Tensor Product - given two vector spaces V and W of dimensions m and n, respectively, their tensor

product V ⊗W is an mn-dimensional vector space, whose elements are spanned by the tensor products

|v〉⊗|w〉, where |v〉 ∈ V, |w〉 ∈W ; alternate notations include |v〉|w〉 and |vw〉. (see definition in Section

7)

� Bloch sphere - a visualization of the state of a single qubit using spherical coordinates; here the north

and south poles of the z-axis represent the |0〉 and |1〉 states, respectively, while the represented state

is any point on the sphere.

� Complex Conjugate - the complex conjugate of a+ bi ∈ C is a+ bi = a− bi, also denoted by (a+ bi)∗.

In polar form, the complex conjugate of reiφ is re−iφ

� Linear Operator - a function between vector spaces A : V →W , such that A(α|u〉+β|v〉) = α(A|u〉)+

β(A|v〉); if V and W have dimensions n and m respectively, then A can be represented by an n ×m
matrix.

� Unitary Operator - a linear operator A that satisfies AA† = A†A = I, where I is the identity operator;

A is normal, diagonalizable, norm-preserving, and invertible; all eigenvalues of A have modulus 1.

� Adjoint - given a matrix A, its adjoint is given by A† = (A∗)T , the composition of the complex

conjugate with the transpose; as a linear operator, A† satisfies 〈v|Aw〉 = 〈A†v|w〉.

� Root of Unity - A complex number ω ∈ C with the property ωk = 1 for some k ∈ Z+. The nth roots

of unity for any n ∈ Z+ are given by the group Un = {e 2πik
n | k ∈ Z+, k ≤ n}.

� Order - Given an element x ∈ Z∗n of the group modulo n under multiplication, the order of x is the

smallest r ∈ Z+ such that xr ≡ 1 (mod N).

� Continued Fraction - (defined in section 7)

� Register - A set of qubits treated as a composite system [4]. Specifically, in computer science, a register

is a type of memory storage used to store data.

� Black Box - A function or system that is viewed only in terms of its input and output, and whose

inner mechanism is unknown.

� Entanglement - Two qubits are entangled if the state |φ〉 describing their relationship cannot be written

in terms of the states |α〉 and |β〉 such that |phi〉 = |α〉|β〉. This is a mysterious physical property of

qubits, but crucial in quantum computation [2].

� Phase Estimation Algorithm - An algorithm that performs the following procedure: given a unitary

operator U with eigenvector |u〉 and corresponding eigenvalue e2πiφ, estimates the phase φ.

17

Bibliography

[1] Professor Christopher King, Meetings and Conversations

[2] Nielsen, M.A. & Chuang I.L., Quantum Computation and Quantum Information, 2000

This is the main textbook I will be using to learn the basics of quantum computation and the necessary

background.

[3] Shor, Peter W., Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a

Quantum Computer, August 30, 1995,

Shor’s original paper describing his quantum algorithm.

[4] CERN, Linear Algebra for Quantum Computation, Appendix A,

https://cds.cern.ch/record/1522001/files/978-1-4614-6336-8 BookBackMatter.pdf

This is a reference to supplement the corresponding linear algebra section in the textbook.

[5] Lavor, Mansure, Portugal, Shor’s Algorithm for Factoring Large Integers

https://arxiv.org/pdf/quant-ph/0303175.pdf

This article will be used as a supplement to the corresponding textbook section on Shor’s Algorithm.

It is a bit convoluted in terms of organization, but gives an interesting perspective.

[6] Lomonaco, Samuel J., A Lecture on Shor’s Quantum Factoring Algorithm

https://arxiv.org/pdf/quant-ph/0010034.pdf

This lecture gives a clear overview of the steps in Shor’s algorithm.

[7] Leinjung, T., Factorization of a 768-bit RSA modulus, February 18, 2010,

https://eprint.iacr.org/2010/006.pdf

This study exemplifies the difficulty of factoring numbers.

[8] Weisstein, Eric W., Continued Fractions, Wolfram Mathworld,

http://mathworld.wolfram.com/ContinuedFraction.html

Reference for the continued fractions terminology used.

[9] Weisstein, Eric W., Number Field Sieve, Wolfram MathWorld,

http://mathworld.wolfram.com/NumberFieldSieve.html

This article is for reference when comparing algorithm runtimes and discussing complexity analysis.

[10] Styles, Iain B., Lecture 6: The Quantum Fourier Transform,

http://www.cs.bham.ac.uk/internal/courses/intromqc/current/lecture06 handout.pdf

These slides contains some examples and a minimal overview of the DFT and QFT, useful for getting

a basic idea of the subject.

[11] Chapter 5: QFT, Period Finding & Shor’s Algorithm,

https://courses.edx.org/c4x/BerkeleyX/CS191x/asset/chap5.pdf

This book chapter is useful for more detailed aspects of the QFT and Shor’s algorithm, contains some

good examples, and discusses roots of unity.

[12] Bäumer, Elisa, Sobez, Jan-Grimo, Tessarini, Stefan Shor’s Algorithm,

https://qudev.phys.ethz.ch/content/QSIT15/Shors%20Algorithm.pdf

These slides give a nice overview of the components and subroutines of Shor’s algorithm.

18

[13] Rupert, Steven,, Cabell-Kluch, Zach, Pigg, Jonathan, Shor’s Algorithm Simulator,

Colorado School of Mines, 2011, http://blendmaster.github.io/ShorJS/

A nice simulator for factoring a number using Shor’s algorithm that explains the steps involved. This

was used to obtain the values used in the example of Shor’s algorithm.

[14] Impact of Quantum Computing on Present Cryptography, International Journal of Advanced Computer

Science and Applications, Vol. 9, No. 3, 2018,

https://arxiv.org/pdf/1804.00200.pdf

I will be using this article to understand the applications of quantum computation on modern-day

cryptography.

[15] Kay, Alastair, Tutorial on the Quantikz Package,

http://mirror.hmc.edu/ctan/graphics/pgf/contrib/quantikz/manual.pdf

Latex package used to generate the circuit diagrams throughout the paper.

[16] Aryal, Supreme, Example: Unit Circle, March 16, 2010

http://www.texample.net/tikz/examples/unit-circle/

Latex code for drawing a unit circle with common angle coordinates.

[17] RockyRock, Plot 8th roots of unity on complex plane with PGFPlots, May 16, 2018

https://tex.stackexchange.com/questions/431736/plot8throotsofunity oncomplexplanewithpgfplots

Inspiration for code used to plot roots of unity diagrams.

19

