NONLIOCALITY IN SHALLOW QUANTUM CIRCUITS

Alexandra Veliche
Northeastern University, Boston, MA

INTRODUCTION

Quantum supremacy is expected to drastically change modern computing, but physical implementation is difficult due to nature of qubits.

Due to limitations, there is increasing interest in Noisy Intermediate-Scale Quantum technology (50-100 qubits).

In 2017, Bravyi, Gosset, and König publish "Quantum Advantage of Shallow Circuits".

Authors prove quantum circuits are more powerful than classical ones, without complexity theory assumptions. In particular,
$2 D-H L F P \in Q N C^{0} \backslash N C^{0}$.
We illustrated the importance of the nonlocality property in shallow quantum circuits by proving some of their results for some small examples.

$\mathrm{NC}^{\mathbf{0}}=$ complexity class of all poly-size circuits of $O(1)$ depth with bounded fan-in gates
$\mathrm{QNC}^{0}=$ quantum analog of $N C^{0}$

Hidden Linear Function PROBLEM

Hidden Linear Function Problem (HLFP): Given: quadratic form $q: \mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}_{4}$,

$$
q(x)=2 \sum_{1 \leq i<j \leq n} A_{i j} x_{i} x_{j}+\sum_{k=1}^{n} b_{k} x_{k},
$$ where $x_{k}, A_{i j}, b_{k} \in \mathbb{F}_{2}^{n}$.

Find: $z \in \mathbb{F}_{2}^{n}$ such that $q(x)=2 z^{T} x$, $\forall x \in \mathcal{L}_{q}$, where \mathcal{L}_{q} denotes the set
$\left\{x \in \mathbb{F}_{2}^{n} \mid q(x \oplus y)=q(x)+q(y), \forall y \in \mathbb{F}_{2}^{n}\right\}$.

2D-HLFP:

Let $G=(V, E)$ denote the $N \times N$ grid graph and $A \in\{0,1\}^{|E|}$ be its adjacency matrix. Given: quadratic form $q: \mathbb{F}_{2}^{|V|} \rightarrow \mathbb{Z}_{4}$

$$
q(x)=2 \sum_{(u, v) \in E} x_{u} x_{v}+\sum_{v \in V} b_{v} x_{v}
$$

where $b \in\{0,1\}^{|V|}$
Find: $z \in \mathbb{F}_{2}^{|V|}$ such that $q(x)=2 z^{T} x, \forall x \in \mathcal{L}_{q}$.

BACKGROUND

Quantum logic gates used in circuit \mathcal{Q}_{N}

$$
\begin{array}{ll}
\mathrm{H} & :=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right], \\
\mathrm{X}:=\left[\begin{array}{ll}
0 & \mathrm{~S} \\
1 & 0
\end{array}\right], \quad \mathrm{Y}:=\left[\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right], \\
\mathrm{Z}:=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \\
\left.\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad \mathrm{CZ}:=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
\end{array}
$$

Definition: Let $G=(V, E)$ be a finite simple graph with $|V|=n$ and $|E|=m$. Suppose that a qubit is associated with each vertex of G. The n-qubit graph state of G is

$$
\left|\phi_{G}\right\rangle:=\left(\prod_{(u, v) \in E} C Z_{u v}\right) H^{\otimes n}\left|0^{n}\right\rangle .
$$

Example:

$$
\begin{aligned}
& V=\{1,2,3\}, E=\{(1,2),(2,3),(3,2),(2,1)\} \\
&\left|\phi_{G}\right\rangle=C Z_{12} C Z_{23} H^{\otimes 3}\left|0^{3}\right\rangle \\
&=\frac{1}{\sqrt{8}}(|000\rangle+|001\rangle+\ldots+|111\rangle) .
\end{aligned}
$$

Claim: For finite simple graph $G=(V, E)$, $\left|\phi_{G}\right\rangle$ is a stabilizer state for the stabilizer group generated by the operators

$$
g_{v}:=X_{v}\left(\prod_{(u, v) \in E} Z_{u}\right), \forall v \in V .
$$

Definition: Let $z \in\{0,1\}^{*}$. For a bit z_{j} of z, define $m_{j}:=(-1)^{z_{j}}$. Describe G and L by

We define $L_{\text {odd }}$ and similarly
$L_{\text {even }}:=\{\ell \in L \mid \delta(\ell, u) \equiv 0(\bmod 2) \equiv \delta(\ell, v)\}$. Also define $m_{L}:=\prod_{j \in L_{\text {odd }}} m_{j}$.

QUANTUM CIRCUIT FOR 2D-HLFP

Theorem: For every $N \geq 2$, there exists a quantum circuit \mathcal{Q}_{N} of depth $d=O(1)$ which deterministically solves size $-N$ instances of 2D-HLFP.

NONLOCALITY PROPERTY

Nonlocality: a form of correlation present in the measurement statistics of entangled quantum states that cannot be reproduced by local hidden variable models.
Example: Let G describe the graph below

Let $b:=b_{u} b_{v} b_{w} \in\{0,1\}^{3}$ and define
$\mathcal{T}(b):=\left\{z \in\{0,1\}^{m} \mid\langle z| H^{\otimes m} S_{u}^{b_{u}} S_{v}^{b_{v}} S_{w}^{b_{w}}\left|\phi_{G}\right\rangle \neq 0\right\}$.
Claim: Let $b=b_{u} b_{v} b_{w} \in\{0,1\}^{3}$ and $z \in \mathcal{T}(b)$.
Then $m_{R} m_{B} m_{L}=1$. If $b_{u} \oplus b_{v} \oplus b_{w}=0$, then $i^{b_{u}+b_{v}+b_{w}} m_{u} m_{v} m_{w} m_{E} m_{R}^{b_{u}} m_{B}^{b_{v}} m_{L}^{b_{w}}=1$.
Lemma: The stabilizers of $\left|\phi_{G}\right\rangle$ are
$X_{u} X_{v} X_{w},-X_{u} Y_{v} Y_{w} X_{a} X_{c},-Y_{u} X_{v} Y_{w} X_{a} X_{b}$, and $-Y_{u} Y_{v} X_{w} X_{b} X_{c}$.

Measurements on classical local circuits cannot simultaneously satisfy these nonlocality identities!

ACKNOWLEDGEMENTS

I would like to thank the following people for their guidance and support in this project:
Advisor \& Consultant: Professor Christopher King Secondary Advisor: Professor Christopher Beasley Faculty Coordinator: Professor Anthony Iarrobino Sponsors: NCUWM, Northeastern University

REFERENCES

[1] Bravyi, S., Gosset, D., \& König, R. (2018). Quantum Advantage with Shallow Circuits. Science. 362(6412), 308-311. Retrieved from: https://arxiv.org/pdf/1704.00690.pdf.
[2] (2019). Discussions with Prof. Christopher King. [3] Preskill, J. (2018). Quantum Computing in the NISQ Era and Beyond. Quantum. 2(79). Retrieved from: https://arxiv.org/pdf/1801.00862.pdf.
[4] Corner image retreived from: https://www hiclipart.com/.
$\mathcal{Q}_{N}:$

