Shor’s Algorlthm and Its Impact on Modern Cryptography

Objectives

rm

e 'T0 gain an intuitive understanding of how the

quantum Fourier transform and Shor’s algorithm
work by visualizing the role of the roots of unity
involved.

e 1o understand the impact of Shor’s algorithm on
the RSA cryptosystem, and thereby understand
the importance of quantum computing in
relation to modern cryptography:.

Introduction

The factoring problem is formalized in the following
manner: given a composite odd integer /N, find its
Since
the number of operations required to find factors in-

prime factorization N = p{* - p5? - ... - pin.

creases exponentially relative to the size of V, this
is an infeasible problem. The fastest classical algo-
rithm to date is the General Number Field Sieve
(GNFS) algorithm, which has an asymptotic run-
ning time of O(ecl9n)/3lloglogn)2/3) in terms of the
length n of V. Because it is widely believed that
P # NP, it is thought that no polynomial-time
classical factoring algorithm exists. In quantum
computing, however, this is possible: in 1995, Peter
ohor formulated a quantum algorithm for factoring.
One of the most commonly-used cryptosystems is
RSA, which relies on the infeasibility of the factor-
ing problem. In particular, the encryption and de-
cryption function are defined modulo N, where N
is of the form N = p- q, for large primes p,q € Z...
Because this cryptosystem plays a major role in the
secure transmission of data, the potential ability
to quickly factor N poses a threat. According to
the National Institute of Standards and Technol-
ogy (NIST), quantum computers will bring an end

to modern cryptography as we know it.

Quantum Computing Basics

Qubits - quantum bits, can be in any linear com-
bination, or superposition, of the basis states |0)
and |1): |¥) = a|0) + B|1), where «, 8 € C with

normalization condition |a|? + |3]* = 1.

z = |0)

Figure 1:Bloch sphere

(Quantum logic gates used in QFT:

1 1
Hadamard gate: H = \/ -1
.
Controlled-phase gate: Ry = | om
0 e*
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Shor’s Algorithm

I. Reduction of factoring to order-finding algorithm:

Input: odd composite N € Z.
Output: non-trivial tactors of NV

1.Choose a randoma € Z,, a < N.

2. Compute ged(a, N) using Euclidean Algorithm.
3.1f ged(a, N) # 1, return ged(a, N).

_Jlse use subroutine (II) to find the order r,
= 1 mod N.

4 If r odd or a2 = —1 (mod N), return to (1.).
Else, return ged(a2 + 1, N) and /or
ged(ar — 1, N).

Ry |0)®" —HH T QFT 1~

a’ mod N

R, [1)® —#

Figure 2:Quantum Subroutine Circuit

II. Quantum subroutine for order-finding:
Inputs:

(i) black box transformation
Usn 2 |1)K) — |9)]a’k (mod N)) for a € Z,

(i) ¢ qubits intialized to |0), where
t:=2l+1+[log(2+ ,.)] and [ := | N|
(iii) I qubits intialized to |1)

Output: order of @ modulo NV

1. Apply the Hadamard gate to each qubit in R;:

HE([0)51) = (43(]0) + 1)) = V55 15).

2. Apply U, n to each qubit in Ry:
21 21
UaN(\/_Z o 1211)) = \/_Z =0 |]>\a]m0d N)
B \/T?ZT 12 —01627rﬁjs
= [¥)
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where |u,) = Z Oer a’mod N) an
eigenstate of U deﬁned by Ulx) = |ax mod N).
3. Apply inverse QFT to R;:

QFT(j9)) = viz >, 12]

4. Measure Ry to choose an s, then measure R; to
obtain a value k for this s.

5. Apply continued fractions algorithm to ;i to find
partial denominators rg, r1, ...77, and test r; at

each step to find the order r.
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Figure 3:Probability Distribution for R; Given Rs
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Quantum Fourier Transform

An n-qubit system has basis states |0),...]2" — 1).
A state |j) can be written in binary form

) =12 450 2" 4 4 g 20 = | J1g2e )
The QFT acts on an input state [¢) by transforming
each basis state |7) by the following:
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Figure 4:QFT Circuit Representation

Roots of Unity

Let b+ 0 :Sft—

271

and w = e?.
3. can be rewritten as

12 Ow]b+5°

Black roots correspond tob > 1and o = 0,
shifted by a factor of w® for b > 1. Grey roots
correspond to error produced by o # 0, with
shiftine amount relative to exponent of w’. For

where b = Lsft —

Then the amplitude in step 11

)

0 = 0, the total sum is aj s = 1 resulting in
no error, but is inexact otherwise.

Figure 5:Roots of Unity for Quantum Subroutine
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