# Shor's Algorithm and Its Impact on Modern Cryptography 

Alexandra Veliche - veliche.a@husky.neu.edu<br>Northeastern University, Boston, MA

## Objectives

- To gain an intuitive understanding of how the quantum Fourier transform and Shor's algorithm work by visualizing the role of the roots of unity involved.
- To understand the impact of Shor's algorithm on the RSA cryptosystem, and thereby understand the importance of quantum computing in relation to modern cryptography.


## Introduction

The factoring problem is formalized in the following manner: given a composite odd integer $N$, find its prime factorization $N=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{n}^{\alpha_{n}}$. Since the number of operations required to find factors increases exponentially relative to the size of $N$, this is an infeasible problem. The fastest classical algorithm to date is the General Number Field Sieve (GNFS) algorithm, which has an asymptotic running time of $O\left(e^{c(l \operatorname{logn}) 1 / 3(\log \operatorname{logn}) 2 / 3}\right)$ in terms of the length $n$ of $N$. Because it is widely believed that $P \neq N P$, it is thought that no polynomial-time classical factoring algorithm exists. In quantum computing, however, this is possible: in 1995, Peter Shor formulated a quantum algorithm for factoring. One of the most commonly-used cryptosystems is RSA, which relies on the infeasibility of the factoring problem. In particular, the encryption and decryption function are defined modulo $N$, where $N$ is of the form $N=p \cdot q$, for large primes $p, q \in \mathbb{Z}_{+}$. Because this cryptosystem plays a major role in the secure transmission of data, the potential ability to quickly factor $N$ poses a threat. According to the National Institute of Standards and Technology (NIST), quantum computers will bring an end to modern cryptography as we know it.

## Quantum Computing Basics

Qubits - quantum bits, can be in any linear combination, or superposition, of the basis states $|0\rangle$ and $|1\rangle:|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$, where $\alpha, \beta \in \mathbb{C}$ with normalization condition $|\alpha|^{2}+|\beta|^{2}=1$.


Figure 1:Bloch sphere
Quantum logic gates used in QFT:
Hadamard gate: $H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
Controlled-phase gate: $R_{k}=\left[\begin{array}{cc}1 & 0 \\ 0 & e^{\frac{2 \pi i}{2^{k}}}\end{array}\right.$

## Shor's Algorithm

I. Reduction of factoring to order-finding algorithm: Input: odd composite $N \in \mathbb{Z}_{+}$
Output: non-trivial factors of $N$

1. Choose a random $a \in \mathbb{Z}_{+}, a<N$.
2. Compute $g c d(a, N)$ using Euclidean Algorithm.
3. If $\operatorname{gcd}(a, N) \neq 1$, return $\operatorname{gcd}(a, N)$.

Else, use subroutine (II) to find the order $r$, $a^{r} \equiv 1 \bmod N$.
4. If $r$ odd or $a^{\frac{r}{2}} \equiv-1(\bmod N)$, return to (1.).

Else, return $\operatorname{gcd}\left(a^{\frac{r}{2}}+1, N\right)$ and/or $\operatorname{gcd}\left(a^{\frac{r}{2}}-1, N\right)$.


Figure 2:Quantum Subroutine Circuit
II. Quantum subroutine for order-finding: Inputs:
(i) black box transformation
$U_{a, N}:|j\rangle|k\rangle \rightarrow|j\rangle\left|a^{j} k(\bmod N)\right\rangle$ for $a \in \mathbb{Z}_{+}$
(ii) $t$ qubits intialized to $|0\rangle$, where
$t:=2 l+1+\left\lceil\log \left(2+\frac{1}{2 \epsilon}\right)\right\rceil$ and $l:=|N|$
(iii) $l$ qubits intialized to $|1\rangle$

Output: order of $a$ modulo $N$

1. Apply the Hadamard gate to each qubit in $R_{1}$ :

$$
H^{\otimes t}\left(|0\rangle^{\otimes t}\right)=\left(\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right)^{\otimes t}=\frac{1}{\sqrt{2}} \sum_{j=0}^{2^{t}-1}|j\rangle
$$

2. Apply $U_{a, N}$ to each qubit in $R_{2}$ :

$$
\begin{aligned}
U_{a, N}\left(\frac{1}{\sqrt{2}^{2}} \sum_{j=0}^{2^{t}-1}|j\rangle|1\rangle\right) & =\frac{1}{\sqrt{2^{2}}} \sum_{j=0}^{2^{t}-1}|j\rangle\left|a^{j} \bmod N\right\rangle \\
& =\frac{1}{\sqrt{r^{2}}} \sum_{s=0}^{r-1} \sum_{j=0}^{2^{t}-1} e^{2 \pi i j i s}|j\rangle\left|u_{s}\right\rangle \\
& =:|\psi\rangle
\end{aligned}
$$

where $\left|u_{s}\right\rangle=\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{-\frac{2 \pi i j s}{r}}\left|a^{j} \bmod N\right\rangle$ an eigenstate of $U$ defined by $U|x\rangle=|a x \bmod N\rangle$.
3. Apply inverse QFT to $R_{1}$ :

$$
\begin{aligned}
\operatorname{QFT}^{-1}(|\psi\rangle)= & \frac{1}{\sqrt{r^{2}}} \sum_{s=0}^{r-1} \sum_{j=0}^{2^{t}-1} e^{\frac{2 \pi i \pi i s}{r}} \\
& \left(\frac{1}{\sqrt{2} \sum^{2}} \sum_{k=0}^{2^{t}-1} e^{-2 \pi i j k} \boldsymbol{e}^{t}|k\rangle\right)\left|u_{s}\right\rangle \\
= & \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} \sum_{k=0}^{2^{t}-1} \alpha_{k, s}|k\rangle\left|u_{s}\right\rangle
\end{aligned}
$$

4. Measure $R_{2}$ to choose an $s$, then measure $R_{1}$ to obtain a value $\widetilde{k}$ for this $s$.
5. Apply continued fractions algorithm to $\frac{\tilde{k}}{2^{t}}$ to find partial denominators $r_{0}, r_{1}, \ldots r_{l}$, and test $r_{i}$ at each step to find the order $r$.


## Quantum Fourier Transform

An $n$-qubit system has basis states $|0\rangle, \ldots\left|2^{n}-1\right\rangle$. A state $|j\rangle$ can be written in binary form $|j\rangle=j_{1} \cdot 2^{n-1}+j_{2} \cdot 2^{n-2}+\ldots+j_{n} \cdot 2^{0}=\left|j_{1} j_{2} \ldots j_{n}\right\rangle$. The QFT acts on an input state $|\psi\rangle$ by transforming each basis state $|j\rangle$ by the following:
$|j\rangle \rightarrow \frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} e^{\frac{2 \pi i j j^{2}}{n^{2}}}|k\rangle$

$$
=\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i 0 \cdot j_{n}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 \cdot j_{n-1} j_{n}}|1\rangle\right) \ldots
$$

$$
\ldots\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} \ldots j_{n}}|1\rangle\right) .
$$



Figure 4:QFT Circuit Representation

## Roots of Unity

Let $b+\delta:=\frac{s 2^{t}}{r}-k$, where $b=\left\lfloor\frac{s 2^{t}}{r}-k\right\rfloor$, and $\omega:=e^{\frac{2 \pi i}{2^{t}}}$. Then the amplitude in step II, 3. can be rewritten as

$$
\alpha_{k, s}=\frac{1}{2^{t}} \sum_{j=0}^{2^{t}-1} \omega^{j(b+\delta)}
$$

Black roots correspond to $b \geq 1$ and $\delta=0$, shifted by a factor of $\omega^{b}$ for $b>1$. Grey roots correspond to error produced by $\delta \neq 0$, with shifting amount relative to exponent of $\omega^{j}$. For $\delta=0$, the total sum is $\alpha_{k, s}=1$ resulting in no error, but is inexact otherwise.


Figure 5:Roots of Unity for Quantum Subroutine

## Acknowledgements

Advisor and Faculty consultant: Professor Christopher King Research Capstone Instructor: Professor Anthony Iarrobino

## References

- Nielsen, M.A. and Chuang I.L., Quantum Computation and Quantum Information, 2000
- Shor, Peter W., Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, 1995
- Weisstein, Eric W., Number Field Sieve, Wolfram MathWorld
- Rupert, Steven, et al., Shor's Algorithm Simulator, Colorado School of Mines, 2011

