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Abstract—Mean-based reconstruction is a fundamental, nat-
ural approach to worst-case trace reconstruction over channels
with synchronization errors. It is known that exp(O(n1/3)) traces
are necessary and sufficient for mean-based worst-case trace
reconstruction over the deletion channel, and this result was also
extended to certain channels combining deletions and geometric
insertions of uniformly random bits. In this work, we use a
simple extension of the original complex-analytic approach to
show that these results are examples of a much more general
phenomenon: exp(O(n1/3)) traces suffice for mean-based worst-
case trace reconstruction over any memoryless channel that
maps each input bit to an arbitrarily distributed sequence of
replications and insertions of random bits, provided the length
of this sequence follows a sub-exponential distribution.

I. INTRODUCTION

When any length-n message x ∈ {−1, 1}n is sent through
a noisy channel Ch, the channel modifies the input x in some
way to produce a distorted copy of x, called a trace. The
goal of worst-case trace reconstruction over Ch is to design
a reconstruction algorithm which recovers any input string
x ∈ {−1, 1}n with high probability from as few independent
and identically distributed (i.i.d.) traces as possible. This prob-
lem was first introduced by Levenshtein [1], [2], who studied
it over combinatorial channels causing synchronization errors,
such as deletions and insertions of symbols and certain discrete
memoryless channels. Trace reconstruction over the deletion
channel, which independently deletes each input symbol with
some probability, was first considered by Batu, Kannan,
Khanna, and McGregor [3]. Some of their results were quickly
generalized to what we call the geometric insertion-deletion
channel [4], [5], which prepends a geometric number of
independent, uniformly random symbols to each input symbol
and then deletes it with a given probability. Both the deletion
and geometric insertion-deletion channels are examples of
discrete memoryless synchronization channels [6], [7].

Holenstein, Mitzenmacher, Panigrahy, and Wieder [8] were
the first to obtain non-trivial worst-case trace reconstruction
algorithms for the deletion channel with constant deletion
probability. They showed that exp(Õ(

√
n)) traces suffice for

mean-based reconstruction of any input string with high prob-
ability. By mean-based reconstruction, we mean that the recon-
struction algorithm only requires knowledge of the expected
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value of each trace coordinate. In general, this procedure
works as follows: Let Yx = (Yx,1, Yx,2, . . . ) denote the trace
distribution on input x ∈ {−1, 1}n and Y ′x denote the infinite
string obtained by padding Yx with zeros on the right. The
mean trace µx is given by

µx = (E[Y ′x,1],E[Y ′x,2], . . . ).

As the first step, the algorithm estimates µx from t traces
T (1), T (2), . . . , T (t) sampled i.i.d. according to Y ′x via the
empirical means

µ̂i =
1

t

t∑
j=1

T
(j)
i , i = 1, 2, . . . . (1)

Subsequently, it outputs the string x̂ ∈ {−1, 1}n that min-
imizes ‖µx̂ − µ̂‖1. If t = t(n) is large enough, we have
x̂ = x with high probability over the randomness of the traces.
Because of their structure, pinpointing the number of traces re-
quired for mean-based reconstruction over any channel reduces
to bounding ‖µx−µx′‖1 for any pair of distinct strings x and
x′. Overall, mean-based reconstruction is a natural paradigm,
and it is not only useful over channels with synchronization
errors. For example, O(log n) traces suffice for mean-based
reconstruction over the binary symmetric channel, which is
optimal.

More recently, an elegant complex-analytic approach was
employed concurrently by De, O’Donnell, and Servedio [9]
and by Nazarov and Peres [10] to show that exp(O(n1/3))
traces suffice for mean-based worst-case trace reconstruc-
tion not only over the deletion channel with constant dele-
tion probability, but also over the more general geometric
insertion-deletion channel we described previously.1 Remark-
ably, exp(Ω(n1/3)) traces were shown to also be necessary
for mean-based reconstruction over the deletion channel.

Given the fundamental nature of mean-based reconstruction
and this state of affairs, the following question arises nat-
urally: Are these results examples of a much more general
phenomenon? In particular, is it true that exp(O(n1/3)) traces
suffice for mean-based trace reconstruction over any discrete
memoryless synchronization channel? We make significant
progress in this direction by showing that a simple extension of
the analysis from [9], [10] yields that result for a much broader

1Nazarov and Peres [10] consider a slightly modified geometric insertion-
deletion channel: First, a geometric number of independent, uniformly random
symbols is added independently before each input symbol. Then, the resulting
string is sent through a deletion channel. The analysis is similar to that of the
geometric-insertion channel.



class of such channels which map each input symbol to an
arbitrarily distributed sequence of noisy symbol replications
and insertions of random symbols, under a mild assumption.

Research in this direction has other practical and theo-
retical implications. First, studying trace reconstruction over
channels introducing more complex synchronization errors
than simple i.i.d. deletions is fundamental for the design
of reliable DNA-based data storage systems with nanopore-
based sequencing [11], [12], [13]. Second, understanding the
structure of the mean trace of a string is by itself a natural
information-theoretic problem which may lead to improved
capacity bounds and coding techniques for channels with
synchronization errors, both notoriously difficult problems (see
the extensive surveys [14], [15], [7], [16]).

A. Related Work

Besides the works mentioned above, there has been signifi-
cant recent interest in various notions of trace reconstruction.

The mean-based approach of [9], [10] has proven useful
to some problems incomparable to our general setting: the
deletion channel with position- and symbol-dependent deletion
probabilities satisfying strong monotonicity and periodicity
assumptions [17]; a combination of the geometric insertion-
deletion channel and random shifts of the output string as
an intermediate step in the design of average-case trace
reconstruction algorithms (which are only required to have
low average reconstruction error probability) [18], [19]; trace
reconstruction of trees with i.i.d. deletions of vertices [20];
trace reconstruction of matrices with i.i.d. deletions of rows
and columns [21]; trace reconstruction of circular strings over
the deletion channel [22]. In another direction, Grigorescu,
Sudan, and Zhu [23] studied the performance of mean-
based reconstruction for distinguishing between strings at low
Hamming or edit distance from each other over the deletion
channel.

Different complex-analytic methods have been used to, for
example, obtain the current best upper bound of exp(Õ(n1/5))
traces on the trace complexity of the deletion channel [24], as
well as upper bounds for trace reconstruction of “smoothed”
worst-case strings over the deletion channel [25]. We note,
however, that mean-based reconstruction remains the state-of-
the-art approach for the geometric insertion-deletion channel.

Other related problems considered include the already-
mentioned average-case trace reconstruction problem over the
deletion and geometric insertion-deletion channels [3], [8],
[26], [18], [19], trace reconstruction over the deletion and
geometric insertion-deletion channels with vanishing deletion
probabilities [3], [4], [5], [27], trace complexity lower bounds
for the deletion channel [3], [26], [28], [29], trace recon-
struction of coded strings over the deletion channel [30],
[31], approximate trace reconstruction [32], alternative trace
reconstruction models motivated by immunology [33], and
population recovery over the deletion and geometric insertion-
deletion channels [34], [35], [36]. Moreover, related complex
analytic techniques have been applied to population recovery

over the binary symmetric and erasure channels [37], [38] and
parameter learning in mixture models [39].

B. Notation
For convenience, we denote discrete random variables and

their corresponding distributions by uppercase letters, such as
X , Y , and Z. The expected value of X is denoted by E[X].
Sets are denoted by calligraphic uppercase letters such as S
and T , and we write [n] := {1, 2, . . . , n}. The open disk of
radius r centered at z ∈ C is Dr(z) = {z′ ∈ C :

∣∣z − z′∣∣ < r}.
The 1-norm of vector x is denoted by ‖x‖1. The concatenation
of strings x and y is denoted by x‖y.

C. Channel Model
We consider a general replication-insertion channel model

that, in particular, captures the models studied in [4], [5], [9],
[10]. A replication-insertion channel Ch(M,R,pflip) is charac-
terized by a constant pflip ∈ [0, 1/2) and a joint probability
distribution (M,R) with M ∈ {0, 1, 2, . . . } and R ⊆ [M ]. To
avoid trivial settings where trace reconstruction is impossible,
we require that Pr[M > 0] > 0 and Pr[R 6= ∅] > 0. Given an
input string x ∈ {−1, 1}n, the channel Ch(M,R,pflip) behaves
independently on each input xi as follows:

1) Sample a pair (mi,Ri) with mi ∈ {0, 1, 2, . . . } and
Ri ⊆ [mi] according to the distribution of (M,R);

2) Construct an output string Yxi
∈ {−1, 1}mi . If j ∈ Ri,

then let Yxi,j = −xi with probability pflip and Yxi,j = xi
with probability 1− pflip. If j 6∈ Ri, then let Yxi,j be a
uniformly random bit.

The overall output of Ch(M,R,pflip) on input x is

Yx = Yx1
‖Yx2
‖ · · · ‖Yxn

.

For example, the geometric insertion-deletion channel
from [4], [5], [9] can be easily instantiated in this gen-
eral framework by sampling (M,R) as follows: First, sam-
ple G following a geometric distribution with support in
{0, 1, 2, . . . } and success probability σ and B following a
Bernoulli distribution with success probability δ. Then, set
M = B+G and let R = ∅ if B = 1 and R = {1} otherwise.
Likewise, the alternative geometric insertion-deletion channel
from [10], [18], [19] can also be easily instantiated in our
framework.

D. Our Contributions
Our main theorem shows that previous results on mean-

based trace reconstruction over the deletion and geometric
insertion-deletion channels are examples of a much more
general phenomenon.

Theorem 1: Worst-case mean-based trace reconstruction
with success probability at least 1− e−Ω(n) over any channel
Ch(M,R,pflip) with sub-exponential2 random variable M is
achievable with exp(O(n1/3)) traces.

Note that many common distributions satisfy the require-
ment that M is sub-exponential, including geometric, Poisson,
and all finitely-supported distributions.

2A random variable M is sub-exponential if there exists a constant α > 0
such that Pr[|M | ≥ τ ] ≤ 2e−ατ for all τ ≥ 0.



II. PROOF OF THEOREM 1

Fix a replication-insertion channel Ch(M,R,pflip), where
M is a sub-exponential random variable. To every string
x ∈ {−1, 1}n, we can associate a polynomial Px over C
defined as

Px(z) :=

n∑
i=1

xiz
i−1.

Then, using the definition of mean trace above, we define the
mean trace power series P x as

P x(z) :=

∞∑
i=1

µx,iz
i−1.

Let N > 0 and denote the mean trace truncated at N by

µNx := (µx,1, . . . , µx,N ).

To prove Theorem 1, we will show that there exists a
constant C > 0 such that for a large enough n, appropriate N ,
and any distinct input strings x, x′ ∈ {−1, 1}n, their truncated
mean traces satisfy∥∥∥µNx − µNx′∥∥∥

1
=

N∑
i=1

∣∣µx,i − µx′,i∣∣ ≥ δ(n) := e−Cn
1/3

. (2)

This implies that exp(O(n1/3)) traces suffice for mean-
based worst-case trace reconstruction as follows: Let x
be the true input and suppose that we have access to
t := n/δ(n)2 = exp(O(n1/3)) traces. Then a direct applica-
tion of the Chernoff bound and a union bound over all
coordinates i = 1, . . . , N shows that the empirical mean trace
µ̂N = (µ̂1, . . . , µ̂N ) defined in (1) satisfies∥∥∥µ̂N − µNx ∥∥∥

1
≤ δ(n)

4
(3)

with probability at least 1 − e−Ω(n) over the randomness of
the traces. On the other hand, if (3) holds, we also have that∥∥∥µ̂N − µNx′∥∥∥

1
≥ 3δ(n)

4

for all x′ 6= x as a result of (2). This allows us to recover x
naively from µ̂ by computing µNx̂ for every x̂ ∈ {−1, 1}n and
outputting the x̂ minimizing

∥∥µ̂N − µNx̂ ∥∥.
We prove (2) by relating

∥∥µ̂N − µNx ∥∥1
to |P x(z)−P x′(z)|

for an appropriate choice of z ∈ C. By the triangle inequality,
we have∣∣∣P x(z)− P x′(z)

∣∣∣
≤
∞∑
i=1

∣∣µx,i − µx′,i∣∣ |z|i−1

=

N∑
i=1

∣∣µx,i − µx′,i∣∣ |z|i−1 +

∞∑
i=N+1

∣∣µx,i − µx′,i∣∣ |z|i−1

≤ |z|N
∥∥∥µNx − µNx′∥∥∥

1
+

∞∑
i=N+1

∣∣µx,i − µx′,i∣∣ |z|i−1

for every z ∈ C such that |z| ≥ 1. Rearranging, it follows that∥∥µNx − µNx′∥∥1
is lower bounded by

|z|−N
∣∣∣P x(z)− P x′(z)

∣∣∣− ∞∑
i=N+1

∣∣µx,i − µx′,i∣∣ |z|i−1


(4)

for any such z. The lower bound in (2), and thus Theorem 1,
follows by combining (4) with the next two lemmas, each
bounding a different term in the right-hand side of (4).

Lemma 2: There exist constants c1, c2 > 0 such that for
n large enough and any distinct strings x, x′ ∈ {−1, 1}n, it
holds that

∣∣∣P x(z)− P x′(z)
∣∣∣ ≥ e−c1n1/3

for some z satisfying

1 ≤ |z| ≤ ec2n−2/3

.
Lemma 3: If 1 ≤ |z| ≤ ec3n

−2/3

for some constant c3 > 0,
there exist constants c4, c5 > 0 such that if N = c4n then

∞∑
i=N+1

∣∣µx,i − µx′,i∣∣ |z|i−1 ≤ e−c5n

for all distinct x, x′ ∈ {−1, 1}n when n is large enough.
Invoking Lemmas 2 and 3, we have that for n large enough

and any distinct x, x′ ∈ {−1, 1}n, there exists an appropriate
choice z? ∈ C possibly depending on x and x′ which satisfies
1 ≤ |z?| ≤ ec2n

−2/3

and by setting z = z? and N = c4n
in (4) yields∥∥∥µNx − µNx′∥∥∥

1
≥ e−c4·c2n

1/3
(
e−c1n

1/3

− e−c5n
)

≥ e−Cn
1/3

for some constant C > 0, implying (2).
We prove Lemmas 2 and 3 in Sections III and IV, respec-

tively, which completes the argument.

III. PROOF OF LEMMA 2

Our proof of Lemma 2 follows the blueprint of [9, Sections
4 and 5] and [10, Sections 2 and 3]. The key differences lie
in Lemmas 4 and 6 below. Lemma 4 generalizes [9, Section 4
and Appendix A.3] and [10, Lemmas 2.1 and 5.2] to arbitrary
replication-insertion channels well beyond the deletion and ge-
ometric insertion-deletion channels. Lemma 6 requires analyz-
ing the local behavior of the inverse of an arbitrary probability
generating function (PGF) in the complex plane around z = 1.
Remarkably, the desired behavior follows by combining the
standard inverse function theorem for analytic functions with
basic properties of PGFs. In contrast, the PGFs associated to
the deletion and geometric insertion-deletion channels treated
in [9], [10], [18], [19] are all Möbius transformations, meaning
that their inverses have simple explicit expressions and could
be easily analyzed directly.

As a first step, we show that the mean trace power series
P x is related to the input polynomial Px through a change of
variable. This allows us to bound

∣∣∣P x(z)− P x′(z)
∣∣∣ in terms

of
∣∣Px(w)− Px′(w)

∣∣ for some w related to z.



Lemma 4: Let Ch(M,R,pflip) be a replication-insertion chan-
nel. Suppose E

[
|R|
]
> 0 is finite. Let W be the distribution

given by

W (j) =
Pr[j + 1 ∈ R]

E
[
|R|
] , j = 0, 1, 2 . . . ,

and gM and gW be the probability generating functions of M
and W , respectively. Then for every x ∈ {−1, 1}n and z ∈ C
such that z is in the disk of convergence of both gM and gW ,
we have P x(z) = (1− 2pflip) · E

[
|R|
]
· gW (z) · Px(gM (z)).

Let C1 := (1− 2pflip) · E
[
|R|
]
. Then, Lemma 4 yields∣∣∣P x(z)− P x′(z)

∣∣∣
= |C1| ·

∣∣gW (z)
∣∣ ·∣∣Px(gM (z))− Px′(gM (z))

∣∣ . (5)

Analogously to [9], [10], we use the following lemma due
to Borwein and Erdélyi [40] to lower bound∣∣Px(gM (z))− Px′(gM (z))

∣∣ .
Lemma 5 ([40]): There is a universal constant c > 0

for which the following holds: Let a = (a0, ..., a`−1) ∈
{−1, 0, 1}` be non-zero and define A(w) :=

∑`−1
j=0 ajw

j .
Let γL denote the arc

{
eiϕ : ϕ ∈ [− π

L ,
π
L ]
}

. Then, we have
maxw∈γL |A(w)| ≥ e−cL for every L > 0.

This lemma implies that there is a constant C2 > 0 such
that for every L > 0 there exists wL = eiϕL with |ϕL| ≤ π

L
satisfying ∣∣Px(wL)− Px′(wL)

∣∣ ≥ e−C2L. (6)

We can use (6) to lower bound (5), provided there exists zL
such that gM (zL) = wL with good properties. The following
lemma ensures this.

Lemma 6: For L large enough there is a constant c′ > 0
such that for any ϕ ∈

[
− π
L ,

π
L

]
there exists zϕ satisfying

gM (zϕ) = eiϕ,
∣∣gW (zϕ)

∣∣ ≥ 1/2, and 1 ≤
∣∣zϕ∣∣ ≤ 1 + c′ϕ2.

As a result of Lemma 6, we can choose a zL
that satisfies gM (zL) = wL, |gW (zL)| ≥ 1/2, and
1 ≤|zL| ≤ 1 + C2

L2 ≤ eC2/L
2

for large enough L. Using this
together with (6), we obtain∣∣Px(gM (zL))− Px′(gM (zL))

∣∣ =
∣∣Px(wL)− Px′(wL)

∣∣
≥ e−C2L. (7)

Set L = n1/3. Combining (5), (7), and the fact that
|gW (zL)| ≥ 1/2 for large enough L, we obtain∣∣∣P x(zL)− P x′(zL)

∣∣∣ ≥ |C1| ·
∣∣gW (zL)

∣∣ · e−C2L

≥ e−C3n
1/3

for some constant C3 > 0 when n is large enough. This
concludes the proof of Lemma 2 assuming Lemmas 4 and 6.

A. Proofs of Lemmas 4 and 6

In this section, we prove the remaining lemmas.
Proof of Lemma 4: Fix an input string x ∈ {−1, 1}n. For

each i ∈ [n], let Ri denote the indices of Yx that correspond
to replications of xi and let Ii denote the indices of Yx that
correspond to insertions of random bits resulting from the
channel’s action on xi. Then we may write

(Y ′x)j =

n∑
i=1

[Bi,jxi · 1{j∈Ri} + 1{j∈Ii} · Ui,j ],

where the Ui,j are uniformly distributed over {−1, 1}, the Bi,j
are random variables over {−1, 1} that are −1 with probability
pflip, and all these are independent of each other, Ri, and Ii.
Note that if an output bit is in Ri, then it has expected value
(1− 2pflip)xi. Therefore, we have that

E[(Y ′x)j ] =

n∑
i=1

(1− 2pflip)xi · Pr[j ∈ Ri].

We can use this to show that

P x(z) =

∞∑
j=1

E[(Y ′x)j ] · zj−1

=

∞∑
j=1

n∑
i=1

(1− 2pflip)xi · Pr[j ∈ Ri] · zj−1

= (1− 2pflip)

n∑
i=1

xi ·
∞∑
j=1

Pr[j ∈ Ri] · zj−1. (8)

We proceed to simplify
∑∞
j=1 Pr[j ∈ Ri] · zj−1. Let

M (`) :=
∑`
k=1Mk, where the Mk := |Yxk

| denote the length
of the channel outputs associated to each input bit xk and are
i.i.d. according to M . We have
∞∑
j=1

Pr[j ∈ Ri] · zj−1

=

∞∑
j=1

Pr[M (i−1) < j, j ∈ Ri] · zj−1

=

∞∑
j=1

j−1∑
j′=0

Pr[M (i−1) = j′] · Pr[j ∈ Ri|M (i−1) = j′] · zj−1

=

∞∑
j=1

j−1∑
j′=0

Pr[M (i−1) = j′] · Pr[j − j′ ∈ R] · zj−1

=

∞∑
j′=0

Pr[M (i−1) = j′] ·
∞∑

j=j′+1

Pr[j − j′ ∈ R] · zj−1

=

∞∑
j′=0

Pr[M (i−1) = j′]zj
′
·
∞∑
j=1

Pr[j ∈ R] · zj−1

= gM (z)i−1 ·
∞∑
j=1

Pr[j ∈ R] · zj−1. (9)

We can interchange the sums above because z is in the disk
of convergence of gM and gW . From the definition of W ,



gW (z) =

∞∑
j=0

W (j) · zj

=
1

E
[
|R|
] · ∞∑

j=1

Pr[j ∈ R] · zj−1. (10)

Combining (9) with (10) yields
∞∑
j=1

Pr[j ∈ Ri] · zj−1 = E
[
|R|
]
· gW (z) · gM (z)i−1,

Recalling (8) concludes the proof.
We prove Lemma 6 using the standard inverse function

theorem stated below.
Lemma 7 ([41, Section VIII.4], adapted): Let g : Ω → C

be a non-constant function analytic on a connected open set
Ω ⊆ C such that g′(z) 6= 0 for a given z ∈ Ω. Then, there exist
radii ρ, δ > 0 such that for every w ∈ Dδ(g(z)) there exists
a unique zw ∈ Dρ(z) satisfying g(zw) = w. Moreover, the
inverse function f : Dδ(g(z))→ Dρ(z) defined as f(w) = zw
is analytic on Dδ(g(z)).

Proof of Lemma 6: Because M is sub-exponential
and non-trivial, gM is a non-constant analytic function
on some open ball Dr(0) of radius r > 1 that sat-
isfies g′M (1) = E[M ] 6= 0. Hence, Lemma 7 applies with
g = gM , so there exist ρ, δ > 0 and an analytic function
f : Dδ(1)→ Dρ(1) such that gM (f(w)) = w. In particular,
there exists γ ∈ (0, δ) such that for every w ∈ Dγ(1) we can
write

f(w) = 1 + f ′(1)(w − 1) +

∞∑
i=2

f (i)(1)

i!
(w − 1)i. (11)

This is because f(1) = 1 since g(1) = 1. Note that
|f(w)| ≤ 1 + ρ for all w such that |w − 1| ≤ γ since
f(z) ∈ Dρ(1). Then by standard estimates [41, Section V.4],∣∣∣∣ f(i)(1)

i!

∣∣∣∣ ≤ 1+ρ
γi for all i. Choosing L large enough so that

|w − 1| ≤ γ/2 yields the bound
∞∑
i=2

∣∣∣∣∣f (i)(1)

i!

∣∣∣∣∣·|w − 1|i ≤ c′′

2
·|w−1|2·

∞∑
i=2

2−(i−2) = c′′·|w−1|2

(12)
for the constant c′′ := 2(1+ρ)

γ2 and all such w.
Assume that L is large enough so that eiϕ ∈ Dγ/2(1)

for all ϕ ∈
[
− π
L ,

π
L

]
. Then, we set zϕ = f(eiϕ). Note that

gM (zϕ) = eiϕ by the definition of f , as required.
Combining (11) with w = eiϕ and the triangle inequality,

we have ∣∣zϕ − 1
∣∣ = O

(∣∣∣eiϕ − 1
∣∣∣)→ 0

as L → ∞. Since gW is a continuous function on a neigh-
borhood of 1 and gW (1) = 1, it follows that

∣∣gW (zϕ)
∣∣ ≥ 1/2

if L is large enough. On the other hand, combining (11) with
the fact that

f ′(1) =
1

g′(f(1))
=

1

g′(1)
=

1

E[M ]
∈ R,

by the chain rule, we obtain

∣∣zϕ∣∣ ≤
∣∣∣∣∣1 +

eiϕ − 1

E[M ]

∣∣∣∣∣+ c′′
∣∣∣eiϕ − 1

∣∣∣2
≤

√(
1− 1− cos(ϕ)

E[M ]

)2

+
sin(ϕ)2

E[M ]2
+ c′′ϕ2

≤

√
1 +

2(1− cos(ϕ))

E[M ]2
+ c′′ϕ2

≤ 1 +

(
1

E[M ]2
+ c′′

)
ϕ2.

The second inequality holds because
∣∣eiϕ − 1

∣∣ ≤ ϕ. The last
inequality follows by noting that 1 − cos(ϕ) ≤ ϕ2/2 and√

1 + x ≤ 1 + x for x ≥ 0.

IV. PROOF OF LEMMA 3

To conclude the argument, we prove Lemma 3 using an
argument analogous to [9, Appendix A.2] and the fact that M
is sub-exponential.

Let M1,M2, . . . ,Mn be i.i.d. according to M , and set
M (n) =

∑n
i=1Mi. Then, we have∣∣µx,i − µx′,i∣∣ ≤ Pr[M (n) ≥ i]

for every i. Since M is sub-exponential, a direct application
of Bernstein’s inequality [42, Theorem 2.8.1] guarantees the
existence of constants c4, c6 > 0 such that for N = c4n and
any j ≥ 1 we have

Pr[M (n) ≥ N + j] ≤ 2e−c6(N+j).

Combining these observations with the assumption that
|z| ≤ ec3n−2/3

yields
∞∑

i=N+1

∣∣µx,i − µx′,i∣∣ |z|i−1 ≤
∞∑
j=1

2e−c6(N+j) · ec3n
−2/3

≤ e−c5n

for some constant c5 > 0 and n large enough.

V. FUTURE WORK

We have shown that exp(O(n1/3)) traces suffice for mean-
based worst-case trace reconstruction over a broad class of
replication-insertion channels. However, our channel model
does not cover all discrete memoryless synchronization chan-
nels as defined by Dobrushin [6], [7]. It would be interesting to
extend the result in some form to all such non-trivial channels.
On the other hand, to complement the above, it would be
interesting to prove trace complexity lower bounds for mean-
based reconstruction over all these channels.

Furthermore, it is unclear whether the assumption that M be
sub-exponential is necessary for our result. A clear extension
of this work would be to either remove this condition or prove
that it is necessary for mean-based trace reconstruction from
exp(O(n1/3)) traces.
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