
Nonlocality in Shallow Quantum Circuits

Junior/Senior Honours Thesis

(Math 4971)

Alexandra Veliche

December 5, 2019

Faculty Consultant: Professor Christopher King

Abstract: In this paper, I illustrate the nonlocality properties that give shallow quantum circuits an advantage

over their classical counterparts. To do this, I focus on a few small examples of the main results presented

in the paper ”Quantum Advantage of Shallow Circuits” by Sergey Bravyi, David Gosset, Robert König. I

prove some of their results for these examples and discuss their connection to the 2D-Hidden Linear Function

Problem, the problem they used to separate the classes NC0 from QNC0. My contribution consists of the

detailed proofs of these small examples and an introductory exposition of the key ideas in the paper.

Keywords: shallow quantum circuits, Noisy Intermediate-Scale Quantum technology, nonlocality, Hidden

Linear Function Problem

Acknowledgements: I would like to thank my advisor, Professor Christopher King, for his guidance

and patience throughout this research project. I would also like to thank Professor Christopher

Beasley for his guidance in exploring related topics in preparation for this project.

1



Contents

1 Introduction 3

2 Preliminaries 4

3 Hidden Linear Function Problem 7

4 Quantum Circuit for HLFP 8

5 Nonlocality 9

6 Conclusion 13

7 Appendix 14

8 Terminology 17

2



1 Introduction

In the past few decades, there has been a significant amount of interest and research in

the field of quantum computing. It has been shown that quantum computers are theoretically

more powerful than their classical counterparts, but the physical implementation of these quantum

computers is difficult due to the nature of qubits [9]. If sufficiently-powerful quantum computers

are ever constructed, this potential running-time advantage, known as “quantum supremacy” [8],

is expected to heavily impact modern computing, and hence modern privacy and security.

A famous example is the quantum algorithm developed by Peter Shor in 1995, which can

factor a given number with a running time polynomial in the size of the number being factored [9].

Shor’s algorithm consists of two parts: a classical algorithm that reduces the problem of finding the

non-trivial divisors of a given number N to finding the order of a particular number modulo N, and

a quantum subroutine that finds the order of that element using the quantum Fourier transform

and arrangement of quantum logic gates in a specific circuit [6]. The problem of factoring a

random integer is considered to be infeasible for classical computers, and no classical algorithm for

polynomial-time factoring is believed to exist. This is because the factoring problem lies in the

classical complexity class of decision problems solvable in nondeterministic polynomial time (NP),

which contains the class of polynomial-time problems (P), so finding a classical polynomial-time

algorithm would partially solve the Millennium Prize problem of “P =? NP” [3]. Because several

commonly-used cryptosystems, such as RSA and variants of Elliptic-Curve Cryptography (ECC),

rely on the difficulty of this problem, Shor’s result poses a threat to public-key cryptography as we

know it [4]. As a result, there has been increasing interest in post-quantum cryptography, which

involves cryptographic schemes resistant to quantum attacks; these include lattice-based GGH and

NTRU-Encrypt [3]. Despite this threat, it is believed that a quantum computer operating with

thousands of qubits and billions of logic gates would be necessary to accurately perform these kinds

of computations. This large number of qubits and gates would be required to compensate for errors

produced as a result of ambient noise that would interfere with the qubits’ behavior [2]. Without

error-correction capabilities, a quantum computation can only run for constant time before the

qubits decohere and entropy accumulates. [2]

For the time being, there has been increasing interest in quantum computers with far fewer

qubits – about 50-100 qubits – which are expected to be available in the next few years [7]. This

technology is known as Noisy Intermediate-Scale Quantum (NISQ) technology and is believed to

be capable of performing computations that would surpass the capabilities of modern classical

computers [7]. This past October, Google unveiled their new 53-qubit quantum computer, which

they claim to have solved an obscure problem in a few minutes, that would otherwise have taken

a classical computer thousands of years [8]. While the demonstration does not have any practical

application [8], the development is a first step in the direction of producing quantum computers

for practical purposes.
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As part of this effort, Bravyi, Gosset, and König wrote a paper called “Quantum Advantage

of Shallow Circuits”, in which they show that constant-depth quantum circuits are more powerful

than their classical counterparts [2]. They examine computations performed by Shallow Quan-

tum Circuits (SQC) – constant-depth quantum circuits executed by quantum parallel algorithms

running in constant time. Because NISQ technology may not have error-correction capabilities by

definition, parallelization and circuit depth are important factors to consider when designing quan-

tum algorithms for these computers. This is in order to optimize the efficiency of the computations

being performed in the time-frame before the qubits decohere.

NC0 denotes the complexity class of all decision problems solvable by a classical circuit of

polynomial size, constant depth, and bounded fan-in [11]. The quantum analog to this class is

QNC0. In their paper, Bravyi, Gosset, and König focus on a particular case of the Hidden Linear

Function Problem (HLFP, defined in section 1.3). They demonstrate that this problem can be solved

with certainty by a quantum circuit that satisfies the constraints of the QNC0 class. Furthermore,

they show that no classical probabilistic circuit in the class NC0 can solve the problem with a

success probability of greater than 7
8 [2]. More specifically, any classical probabilistic circuit with

fan-in bounded above by K which solves all instances of the 2D-HLFP of size N with a success

probability greater than 7
8 would require a depth of at least log(N)

8 log(K) [2]. In other words, they show

that HLFP is in the complexity class QNC0 but not in NC0. It is particularly remarkable that

they prove this result unconditionally, without complexity theory assumptions.

One of the special properties of quantum circuits that gives them this advantage in solving the

HLFP is the nonlocality constraint presented in s section 5. In this paper, we give detailed proofs

for some of the results presented in the original paper for some small examples (see Examples 2.1

and 5.2). This serves to illustrate the significance of nonlocality in quantum shallow circuits.

2 Preliminaries

In this section, we define the terminology used throughout the paper. Recall that a qubit

exists in a state |ψ〉 = α|0〉 + β|1〉, where α, β ∈ C, so it can be represented by a length-2 vector.

The states |0〉, |1〉 are known as the standard or computational basis states of a qubit. Some of the

basic gates that act on single qubits are represented by the following set of matrices over C:

Hadamard gate: H := 1√
2

[
1 1

1 −1

]
, S gate: S :=

[
1 0

0 −i

]

Pauli X-gate: X :=

[
0 1

1 0

]
, Pauli Y-gate: Y :=

[
0 −i
i 0

]
, Pauli Z-gate: Z :=

[
1 0

0 −1

]

We remark that the standard basis states |0〉 and |1〉 correspond to measuring a qubit in the

Z-basis, since these are the eigenvectors of Z with eigenvalues ±1 [5]. Qubit states can also be

measured in bases other than the standard basis. For example, a qubit with some state
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|ψ〉 = α|0〉 + β|1〉 can be measured in the X-basis by mapping the original basis states to the

eigenvectors of X: |0〉 7→ |+〉 := 1√
2
(|0〉 + |1〉), |1〉 7→ |−〉 := 1√

2
(|0〉 − |1〉). Then the state can be

rewritten as |ψ〉 = α′|+〉+ β′|−〉 for some α′, β′ ∈ C.

The controlled-Z gate acts on two qubits and is represented by a matrix CZ ∈ C4×4. It can

be expressed in terms of the Pauli gates as: CZ := |0〉〈0| ⊗ I + |1〉〈1| ⊗ Z.

We present the following set of observations about the Pauli gates and CZ gate that will be

referred to throughout the remainder of this paper:

1. Gates that do not affect the same qubits commute.

2. The Pauli gates X,Y, Z are involutory and anti-commutative.

3. XY = iZ, Y Z = iX, and ZX = iY .

4. Xi|ψ〉 = |ψ〉, where |ψ〉 is the uniform superposition of basis states.

5. CZij = CZji.

6. ZjCZij = CZijZj for all i, j ∈ V .

7. XiCZij = ZjCZijXi for all i, j ∈ V .

8. XjCZij = ZiCZijXj for all i, j ∈ V .

9. SY = XS.

Definition 2.1. Let G = (V,E) be a finite simple graph with |V | = n and |E| = m. Suppose that

a qubit is associated with each vertex of G. Then the n-qubit graph state of G is given by

|φG〉 :=

 ∏
(u,v)∈E

CZuv

H⊗n|0n〉.

Recall that H⊗n denotes n Hadamard gates applied in parallel to |0n〉, the n qubits initialized

to |0〉. This serves to entangle the qubits. We clarify that in the product of CZuv gates, only one

edge (u, v) for every pair of vertices u and v is represented (even if G is an undirected graph).

This graph state has special properties that are leveraged to obtain the results of the Bravyi-

Gosset-König paper. In particular, the graph state has a clear set of stabilizer states - states that

keep the graph state invariant when operating on it. The following claim explicitly describes the

group of stabilizer states for the graph state:

Claim 2.1. Let G = (V,E) be a finite simple graph. Then |φG〉 is a stabilizer state for the stabilizer

group generated by the operators gv, for all v ∈ V , given by

gv := Xv

 ∏
(u,v)∈E

Zu

 .
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To see why this is true, consider the following example:

Example 2.1. Consider the line graph G = (V,E) represented in the diagram below, where

V = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 2), (2, 1)}.

1 2 3

By definition, the graph state for this graph is |φG〉 = CZ12CZ23H
⊗3|03〉. This can be

explicitly expressed in the following manner:

Let |ψ〉 := H⊗3|03〉 denote the state produced by applying the Hadamard gates on the initialized

qubits. By definition of the Hadamard gate, this can be written as

|ψ〉 := H⊗3|03〉 =
1√
23

1∑
bi=0

b1b2b3 =
1√
8

(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉).

Recall that the gate CZij only affects the qubits at vertices i and j and flips the sign of a qubit

state if both of these qubits are in the state 1. Applying the gates CZ12 and then CZ23, we obtain

CZ23|ψ〉 =
1√
8

(|000〉+ |001〉+ |010〉 − |011〉+ |100〉+ |101〉+ |110〉 − |111〉)

CZ12CZ23|ψ〉 =
1√
8

(|000〉+ |001〉+ |010〉 − |011〉+ |100〉+ |101〉 − |110〉+ |111〉) = |φG〉

Now we prove the claim above for this particular graph:

Claim 2.2. |φG〉 is a stabilizer state with stabilizer group generated by

g1 = X1Z2, g2 = X2Z1Z3, and g3 = X3Z2.

Proof: We show that (i) gv|φG〉 = |φG〉 for all v ∈ V , and (ii) any element in the group generated

by the gv is a stabilizer of |φG〉.

(i) We show that g1, g2, and g3 defined above are stabilizers of the graph state. For clarity, we

underline the product of gates being rewritten in each step and reference the property used.

g1|φG〉 = X1Z2CZ12CZ23|ψ〉, by 1

= Z2X1CZ12CZ23|ψ〉, by 7

= Z2Z2CZ12X1CZ23|ψ〉, by 2

= CZ12X1CZ23|ψ〉, by 1

= CZ12CZ23X1|ψ〉, by 4

= CZ12CZ23|ψ〉 = |φG〉

g2|φG〉 = X2Z1Z3CZ12CZ23|ψ〉, by 1

= Z3Z1X2CZ12CZ23|ψ〉,by 8

= Z3Z1Z1CZ12X2CZ23|ψ〉, by 2

= Z3CZ12X2CZ23|ψ〉, by 7

= Z3CZ12Z3CZ23X2|ψ〉, by 1

= Z3Z3CZ12CZ23X2|ψ〉, by 2

= CZ12CZ23X2|ψ〉, by 4

= CZ12CZ23|ψ〉 = |φG〉
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g3|φG〉 = X3Z2CZ12CZ23|ψ〉, by 1

= Z2CZ12X3CZ23|ψ〉, by 6

= CZ12Z2X3CZ23|ψ〉, by 8

= CZ12Z2Z2CZ23X3|ψ〉, by 2

= CZ12CZ23X3|ψ〉, by 4

= CZ12CZ23|ψ〉 = |φG〉

Hence g1|φG〉 = |φG〉, g2|φG〉 = |φG〉, and g3|φG〉 = |φG〉.

(ii) Let gi1 ...gik ∈ 〈g1, g2, g3〉 be an element in the group generated by the stabilizers above, where

ij ∈ {1, 2, 3}. Since each gij leaves |φG〉 invariant, it follows that the product composed of

these stabilizers leaves the graph state invariant. Hence, any element in 〈g1, g2, g3〉 is a

stabilizer of |φG〉. �

Definition 2.2. Let z ∈ {0, 1}∗ be a bit-string. For a bit zj of z, define mj := (−1)zj . Let G be a

line graph with end-vertices u and v, and L be the set of vertices that lie between u and v. Then

Leven := {` ∈ L | δ(`, u) ≡ 0 (mod 2) ≡ δ(`, v)}

denotes the set of vertices at an even distance from both u and v. Similarly, denote the vertices at

an odd distance by Lodd. For this L, define mL :=
∏
j∈Lodd

mj .

We note that from this point onward, unless explicitly said otherwise, addition expressed with

“+” represents addition modulo 4, while “⊕” represents the usual addition modulo 2.

3 Hidden Linear Function Problem

In their paper, Bravyi, Gosset, and König examine a specific search problem and show that

a specific case of this particular problem can be solved with certainty by a quantum circuit with

constant depth. They also show that for any classical circuit there is a problem of this type whose

solution with probability greater than 7/8 requires a depth logarithmic in the size of the instance

of the problem. The problem of focus is the Hidden Linear Function Problem defined below [2]:

Definition 3.1. The Hidden Linear Function Problem (HLFP) is a search problem stated as

follows: given a quadratic form q : Fn2 → Z4 defined by

q(x) = 2
∑

1≤a<b≤n
Aα,βxαxβ +

n∑
i=1

bixi,

where x1, ...xn ∈ {0, 1} are binary variables and Aα,β ∈ {0, 1}, bi ∈ {0, 1} are specified by a matrix

A and vector b, find a binary vector z ∈ {0, 1}n such that q(x) = 2zTx for all x ∈ Lq, where

Lq := {x ∈ Fn2 | q(x⊕ y) = q(x) + q(y) (mod 4) for all y ∈ Fn2}.
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Bravyi, Gosset, and König show that the restriction of the quadratic form q(x) to the set

Lq is always a linear form, meaning that there exists a vector z ∈ Fn2 that satisfies q(x) = 2zTx.

Hence the HLFP asks for a solution to this problem, for the given q(x) specified by A and b. The

2D-Hidden Linear Function is a particular case of the HLFP, in which the matrix A has a specific

structure:

Definition 3.2. The 2D Hidden Linear Function Problem (2D-HLFP) is a special case of the

HLFP, where the inputs have a specific structure: Let G = (V,E) be the graph describing an

N ×N grid. Define A ∈ {0, 1}|E| to be the N2×N2 adjacency matrix of G, where A(u,v) = 0 unless

(u, v) ∈ E, and b ∈ {0, 1}|V |. Given a quadratic form q specified by A and b as

q(x) = 2
∑

(u,v)∈E

Auvxuxv +
∑
v∈V

bvxv,

find a vector z ∈ {0, 1}|V | such that q(x) = 2zTx for all x ∈ Lq. We call this a size-N instance of

the 2D-HLFP.

Note that here the number of input bits is |V |+ |E| = N2 + 2N(N − 1) = 3N2 − 2N .

The following result formally states the significance of this problem in showing the separation

between classical and quantum shallow circuits (which we state without proof):

Theorem 3.1. For every instance N ≥ 2, there exists a quantum circuit QN of depth d = O(1)

which deterministically solves size-N instances of the 2D-HLFP.

This quantum circuit QN is presented in the following section.

4 Quantum Circuit for HLFP

In this section we present the quantum circuit that deterministically solves instances of the

2D-HLFP for a given size N [2]. In the circuit below, the controlled gates determined by the inputs

of the HLFP A and b are the following:

CZ(A) :=
∏

1≤i<j≤N
CZ

Aij

ij and S(b) :=
N⊗
j=1

S
bj
j .

The circuit below deterministically solves all size-N instances of the 2D-HLFP [2]:

|b〉 |b〉
|A〉 |A〉

|0n〉 H⊗N CZ(A) S(b) H⊗N

Uq

Figure 1: Quantum Circuit for size-N instance of 2D-HLFP
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The CZ(A) and S(B) gates above can be expressed as constant-depth quantum circuits com-

posed of the gates presented in section 2. Since there are a fixed number of gates in this circuit, it

follows that the depth remains constant for any instance of size N [2].

We make the following remark about the run-time of this circuit: Since any set of gates that

operate on distinct sets of qubits do not interfere with each other, these gates can be operated

in parallel simultaneously in the circuit. This simultaneous operation can be considered as one

step in the computation. Hence, the run-time of such a step is given by the run-time for a single

gate, which is fixed. In this way, the gates in the circuit can be partitioned into a small number of

disjoint sets such that the gates in each set can be operated simultaneously. Because the number

of such sets is independent of the size of the input N , the total run-time does not depend on N .

Thus, this circuit runs in constant time.

5 Nonlocality

One of the properties of qubits that differentiate them from classical bits is quantum nonlo-

cality. This is a phenomenon in which measurement results of entangled quantum states cannot

be reproduced by completely local functions where every output bit depends only on one input bit

and some randomness. With this property, qubits in the output may depend on multiple input

qubits that may be physically distant (even light-years away) from each other.

A fundamental example of the way nonlocality produces the separation between the capabilities

of quantum and classical circuits is given by the Greenberger–Horne–Zeilinger state below [2]:

Example 5.1. Consider the 3-qubit state

|GHZ〉 :=
1√
2

(|000〉+ |111〉).

A set of stabilizers for this state is P := {X1X2X3,−X1Y2Y3,−Y1X2Y3,−Y1Y2X3}. (This can

easily be shown using our set of observations as in the proof of Claim 2.2 above).

Now let b = b1b2b3 ∈ {0, 1}3 be a bit-string and suppose that each qubit j of |GHZ〉 is measured

in the X-basis if bj = 0 or the Y -basis if bj = 1, giving the measurement outcomes m ∈ {−1, 1}3.
Then using the four stabilizers in P , we see that the measurement statistics satisfy the following

constraint:
If b1 ⊕ b2 ⊕ b3 = 0, then ib1+b2+b3m1m2m3 = 1.

Each of the four cases (b = 000, 011, 101, 110) of this condition cannot be solved by any local

classical measurement, however, where each mj depends on just one of the bits bk. [10] �

Now we illustrate the geometric nonlocality properties of single-qubit measurements on the

1-dimensional graph state corresponding to an even-length cycle graph [2]. Due to the peculiar

properties of qubits, the measurement outcomes of a circuit with this property cannot be simulated

by shallow classical circuits that are 1-dimensionally geometrically local [2].
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The key idea behind the cycle graph below is the following: fix any three vertices in the

quantum circuit, and consider the triangle graph they determine. In examining the way these

qubits affect each other’s states, we see that these satisfy a certain constraint not necessarily

present in a classical circuit. Using the following example, we illustrate the concept of quantum

nonlocality and state results that describe the significance of nonlocality in proving the advantage

of quantum shallow circuits over classical ones:

Example 5.2. Let G = (V,E) be the cycle graph represented by the diagram below, with m :=

|V | = 6 = |E|. We let u, v, and w denote the vertices that are pair-wise at an even distance from

each other, and label the other vertices by a, b, and c. This graph can be thought of as a triangle

determined by the vertices u, v, and w. Denote the sets of vertices to the right, left, and bottom

of the triangle by R, L, and B, respectively. Notice that in this particular case, there are only odd

vertices (a, b, c) and no even vertices.

v

b

w

a

u c

R

B

L

Figure 2: 6-Vertex Cycle Graph

The graph state corresponding to this graph is given by

|φG〉 = CZuaCZavCZvbCZbwCZwcCZcuH
⊗6|06〉.

�
Let b := bubvbw ∈ {0, 1}3 and define

T (b) := {z ∈ {0, 1}m | 〈z|H⊗mSbuu Sbvv Sbww |φG〉 6= 0}

to be the set of possible measurements of the qubits arranged in this graph formation. Here the

qubits in the graph state are measured in the X-basis (where the columns of X determine the basis

vectors |0〉 and |1〉) and u, v, w are measured in the X- or Y -basis according to b: if bi = 0, then

qubit i is measured in the X-basis, otherwise it is measured in the Y -basis.

One of the manifestations of quantum nonlocality is the constraint given in the claim below

from the Bravyi-Gosset-König paper. Informally, this states that for any length-3 string b and

measurement z, the sum of the measurements of the bits of z corresponding to the set R ∪ B ∪ L
must be even. In addition to this, if the string b has an even Hamming weight, a stronger constraint

holds. We explicitly prove the general claim for the case where G is the graph in Figure 2:
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Claim 5.1. Let b = bubvbw ∈ {0, 1}3 and z ∈ T (b). Then mRmBmL = 1.

Moreover, if bu ⊕ bv ⊕ bw = 0, then ibu+bv+bwmumvmwmEm
bu
Rm

bv
Bm

bw
L = 1.

Proof: (for Example 5.2) We prove both parts of the claim as follows:

(i) To show: mRmBmL = 1.

Let Odds := Rodd ∪ Lodd ∪ Bodd. For this graph G, the only vertices are {a, b, c}. Define

X(Odd) :=
∏
j∈OddXj and g(Odd) :=

∏
j∈Odd gj . In this case, X(Odd) = XaXbXc and

g(Odd) = gagbgc = (XaZvZw)(XbZuZv)(XcZwZu), by definition

= XaXbXcZ
2
uZ

2
vZ

2
w, by properties of Pauli gates

= XaXbXc.

Since the gj are stabilizers of the graph state |φG〉, it follows that g(Odd) = XaXbXc is a stabi-

lizer for |φG〉. Then, XaXbXc|φG〉 = |φG〉. Now consider the measurement 〈z|H⊗6XaXbXc|φG〉.
Since the Hadamard gate produces a measurement in the X-basis and by the properties of

the X gate, this can be rewritten as follows:

〈z|H⊗6XaXbXc|φG〉 = 〈zx|XaXbXc|φG〉

= (−1)za+zb+zc〈zx|φG〉

= (−1)za+zb+zc〈z|H⊗6|φG〉

By the result above, 〈z|H⊗6XaXbXc|φG〉 = 〈z|H⊗6|φG〉, so it follows that (−1)za+zb+zc = 1.

Rewriting, we obtain

(−1)za+zb+zc = (−1)za(−1)zb(−1)zc = mambmc = mLmBmR = 1.

(ii) To show: If bu ⊕ bv ⊕ bw = 0, then ibu+bv+bwmumvmwmEm
bu
Rm

bv
Bm

bw
L = 1.

For this part, we make use of some of the stabilizer states of the graph G. In particular, we

rely on the following lemma:

Lemma 5.1. The following operators are stabilizers of the graph state |φG〉:

XuXvXw,−XuYvYwXaXc,−YuXvYwXaXb, and − YuYvXwXbXc.

Proof of Lemma: (see Appendix) �

If b = bu ⊕ bv ⊕ bw = 0, then there are four cases to consider: b = 000, 011, 101, or 110. For

each of these cases, we consider the properties of the measurement of z ∈ T (b). We use the

lemma above to derive conditions from the stabilizers that correspond to each of these cases,

similar to part (i).
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b = 000: In this case, the qubits in positions u, v, and w are all measured in the X-basis. By

definition, Sbuu S
bv
v S

bw
w = 1. Hence, we can use the stabilizer XuXvXw to rewrite the

measurement of z:

〈z|H⊗6XuXvXw|φG〉 = (−1)zuzvzw〈z|H⊗6|φG〉 by X gate definition.

By the lemma, 〈z|H⊗6XuXvXw|φG〉 = 〈z|H⊗6|φG〉, so it follows that (−1)zuzvzw = 1.

Rewriting, we obtain:

(−1)zuzvzw = (−1)zu(−1)zv(−1)zw = mumvmw = 1.

Thus, ibu+bv+bwmumvmwmEm
bu
Rm

bv
Bm

bw
L = i0mumvmw = 1.

b = 011: In this case, the qubits in position u is measured in the X-basis and v and w are

measured in the Y -basis. By definition, Sbuu S
bv
v S

bw
w = SvSw. Hence, we use the

stabilizer −XuYvYwXaXc to rewrite the measurement of z:

〈z|H⊗6SvSw(−XuYvYwXaXc)|φG〉 = −〈z|H⊗6Xu(SvYv)(SwYw)XaXc|φG〉

= −〈z|H⊗6Xu(XvSv)(XwSw)XaXc|φG〉, by 7

= −〈z|H⊗6XuXvXwXaXcSvSw|φG〉, by 1

= −(−1)zu+zv+zw+za+zc〈z|H⊗6SvSw|φG〉.

By the lemma, 〈z|H⊗6SvSw(−XuYvYwXaXc)|φG〉 = 〈z|H⊗6SvSw|φG〉, so it follows

that −(−1)zu+zv+zw+za+zc = 1. Rewriting, we obtain:

(−1)zu+zv+zw+za+zc = (−1)zu(−1)zv(−1)zw(−1)za(−1)zc

= mumvmwmamc = mumvmwmLmB = −1.

Thus, ibu+bv+bwmumvmwmEm
bu
Rm

bv
Bm

bw
L = i2mumvmwmLmB = (−1)(−1) = 1.

Since the cases b = 101 and b = 110 are almost identical to the case b = 011, we omit the

details for these cases here (see Appendix for details).

Hence condition (ii) holds for all b that satisfy the hypothesis. �
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6 Conclusion

In the previous sections, we illustrate how the quantum circuit with its corresponding graph

state has certain properties that are not necessarily found in classical circuits [2]. We referred to

the GHZ state as a key example of this and later examined the role of the graph state in showing

that quantum circuits must satisfy certain constraints as a result of nonlocality. In the original

paper, the authors use the nonlocality constraints of Claim 5.1 to show that the input and output

bits of a classical circuit are not necessarily correlated in the same way.

The goal of the classical circuit analysis is to find a cycle in the classical circuit similar to

that in Example 5.2, for which the identities in Claim 5.1 cannot be satisfied with certainty. In the

N×N grid corresponding to the classical circuit that solves the 2D-HLFP, three vertices u, v, w can

be found that do not exhibit the nonlocality properties. The cycle graph determined by these three

vertices determine the matrix A and vector b that define a subset of instances of the 2D-HLFP [2].

This is the key idea to showing that classical circuits are not able to solve the 2D-HLFP with the

certainty and constant-depth of their quantum counterparts.
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7 Appendix

In this section we include the last two cases of the proof of Claim 5.1 for completeness. We

also give a detailed proof of Lemma 5.1 used to prove part (ii) of Claim 5.1 for Example 5.2.

Proof of Claim 5.1 (cases b=101 and b=110):

b = 101: In this case, the qubits in positions u and w are measured in the Y -basis and v is mea-

sured in the X-basis. By definition, Sbuu S
bv
v S

bw
w = SuSw. Hence, we use the stabilizer

−YuXvYwXaXb to rewrite the measurement of z:

〈z|H⊗6SuSw(−YuXvYwXaXb)|φG〉 = −〈z|H⊗6Xv(SuYu)(SwYw)XaXb|φG〉, by property 1

= −〈z|H⊗6Xv(XuSu)(XwSw)XaXb|φG〉, by property 7

= −〈z|H⊗6XuXvXwXaXbSuSw|φG〉, by property 1

= −(−1)zu+zv+zw+za+zb〈z|H⊗6SuSw|φG〉, by X gate definition.

By the lemma, 〈z|H⊗6SuSw(−YuXvYwXaXb)|φG〉 = 〈z|H⊗6SuSw|φG〉, so it follows that

−(−1)zu+zv+zw+za+zb = 1. Rewriting, we obtain:

(−1)zu+zv+zw+za+zb = (−1)zu(−1)zv(−1)zw(−1)za(−1)zb

= mumvmwmamb = mumvmwmLmR = −1.

Thus, ibu+bv+bwmumvmwmEm
bu
Rm

bv
Bm

bw
L = i2mumvmwmRmL = (−1)(−1) = 1.

b = 110: In this case, the qubits in positions u and v are measured in the Y -basis and w is mea-

sured in the X-basis. By definition, Sbuu S
bv
v S

bw
w = SuSv. Hence, we use the stabilizer

−YuYvXwXbXc to rewrite the measurement of z:

〈z|H⊗6SuSv(−YuYvXwXbXc)|φG〉 = −〈z|H⊗6(SuYu)(SvYv)XwXbXc|φG〉

= −〈z|H⊗6(XuSu)(XvSv)XwXbXc|φG〉 by property 7

= −〈z|H⊗6XuXvXwXbXcSuSv|φG〉 by property 1

= −(−1)zu+zv+zw+zb+zc〈z|H⊗6SuSv|φG〉 by X gate definition.

By the lemma, 〈z|H⊗6SuSv(−YuYvXwXbXc)|φG〉 = 〈z|H⊗6SuSv|φG〉, so it follows that

−(−1)zu+zv+zw+zb+zc = 1. Rewriting, we obtain:

(−1)zu+zv+zw+zb+zc = (−1)zu(−1)zv(−1)zw(−1)zb(−1)zc

= mumvmwmbmc = mumvmwmRmB = −1.

Thus, ibu+bv+bwmumvmwmEm
bu
Rm

bv
Bm

bw
L = i2mumvmwmRmB = (−1)(−1) = 1.

�
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Proof of Lemma 5.1: We show that each of the four operatorsXuXvXw, −XuYvYwXaXc, −YuXvYwXaXb,

and −YuYvXwXbXc are stabilizers of the graph state |φG〉 using the properties of the Pauli gates,

S gate and CZ gates. As in Example 2.1, we denote |ψ〉 := H⊗6|06〉. For clarity, we underline the

set of operators rewritten or moved in each step. Note that throughout the process of rewriting,

the goal is to move the X gates to the right (since they leave the state |ψ〉 fixed) and the Z gates

to the left.

(i) To show: XuXvXw|φG〉 = |φG〉.

XuXvXw|φG〉 =

XuXvXwCZuaCZavCZvbCZbwCZwcCZcu|ψ〉 =

XuCZua XvCZavCZvb XwCZbwCZwcCZcu|ψ〉 =

ZaCZuaXu ZaCZav XvCZvb ZbCZbw XwCZwcCZcu|ψ〉 =

Z2
a Zb CZuaCZav Zb CZvbXv CZbw Zc CZwc Xw XuCZcu|ψ〉 =

Z2
b Zc CZuaCZavCZvbCZbwCZwc ZcCZcuXuXwXv|ψ〉 =

Z2
c CZuaCZavCZvbCZbwCZwcCZcu|ψ〉 =

CZuaCZavCZvbCZbwCZwcCZcu|ψ〉 = |φG〉

(ii) To show: −XuYvYwXaXc|φG〉 = |φG〉.

−XuYvYwXaXc|φG〉 =

−XuYvYwXa XcCZuaCZavCZvbCZbwCZwcCZcu|ψ〉 =

−YvYwXuXaCZuaCZavCZvbCZbwXcCZwcCZcu|ψ〉 =

−YvYwXuZuCZuaXaCZavCZvbCZbwZwCZwcXcCZcu|ψ〉 =

−YvYwZw(−1)ZuXuCZua ZvCZavXaCZvbCZbwCZwcZuCZcuXc|ψ〉 =

YvZv YwZwZuZaCZuaXuCZavCZvbCZbwCZwcZuCZcuXa|ψ〉 =

iXv iXwZuZaCZuaCZavCZvbCZbwCZwcXuZuCZcu|ψ〉 =

(−1)ZuZaCZuaXvCZavCZvbXwCZbwCZwc(−1)Zu XuCZcu|ψ〉 =

Z2
uZaCZuaZaCZavXvCZvb ZbCZbwXwCZwc ZcCZcuXu|ψ〉 =

Z2
aZbZcCZuaCZavZbCZvbXvCZbwZcCZwcXwCZcu|ψ〉 =

Z2
bZ

2
cCZuaCZavCZvbCZbwCZwcCZcuXvXw|ψ〉 =

CZuaCZavCZvbCZbwCZwcCZcu|ψ〉 = |φG〉
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(iii) To show: −YuXvYwXaXb|φG〉 = |φG〉.
−YuXvYwXaXb|φG〉 =

−YuXvYwXa XbCZuaCZavCZvbCZbwCZwcCZcu|ψ〉 =

−YuYwXaCZua XvCZav XbCZvbCZbwCZwcCZcu|ψ〉 =

−YuYwZuCZuaXaZaCZavXvZvCZvbXbCZbwCZwcCZcu|ψ〉 =

−YuYwZuCZua(−1)Za XaCZav(−1)Zv XvCZvb ZwCZbwXbCZwcCZcu|ψ〉 =

−YuYwZuZvZwZaCZuaZvCZavXa ZbCZvbXvCZbwCZwcCZcuXb|ψ〉 =

−YuYwZu Z2
v ZwZaZbCZuaCZavCZvbCZbwCZwcCZcuXaXv|ψ〉 =

−YuZu YwZwZaZbCZuaCZavCZvbCZbwCZwcCZcu|ψ〉 =

−iXu iXwZaZbCZuaCZavCZvbCZbwCZwcCZcu|ψ〉 =

−(−1)ZaZbXuCZuaCZavCZvbXwCZbwCZwcCZcu|ψ〉 =

ZaZbZaCZuaXuCZavCZvbZbCZbwXwCZwcCZcu|ψ〉 =

Z2
aZ

2
bCZuaCZavCZvbCZbwZcCZwcXw XuCZcu|ψ〉 =

ZcCZuaCZavCZvbCZbwCZwcZcCZcuXuXw|ψ〉 =

Z2
cCZuaCZavCZvbCZbwCZwcCZcu|ψ〉 =

CZuaCZavCZvbCZbwCZwcCZcu|ψ〉 = |φG〉

(iv) To show: −YuYvXwXbXc|φG〉 = |φG〉.
−YuYvXwXbXc|φG〉 =

−YuYvXw Xb Xc CZuaCZavCZvbCZbwCZwcCZcu|ψ〉 =

−YuYvCZuaCZavXbCZvb XwCZbw XcCZwcCZcu|ψ〉 =

−YuYvCZuaCZavZvCZvbXbZb CZbwXwZwCZwcXcCZcu|ψ〉 =

−YuYvZvZbZwCZuaCZavCZvbXbCZbw XwCZwc ZuCZcu Xc|ψ〉 =

−YuYvZuZvZwZbCZuaCZavCZvbZw CZbwXb ZcCZwcXwCZcu|ψ〉 =

−YuYvZu Zv Z2
wZbZcCZuaCZavCZvbCZbwCZwcCZcuXbXw|ψ〉 =

−YuZu YvZvZbZcCZuaCZavCZvbCZbwCZwcCZcu|ψ〉 =

−(iXu)(iXv)ZbZcCZuaCZavCZvbCZbwCZwcCZcu|ψ〉 =

−(−1)ZbZcXuCZua XvCZav CZvbCZbwCZwcCZcu|ψ〉 =

ZbZcZaCZuaXu ZaCZavXvCZvbCZbwCZwcCZcu|ψ〉 =

Z2
aZbZcCZuaCZavZbCZvb XvCZbwCZwc XuCZcu|ψ〉 =

Z2
bZcCZuaCZavCZvbCZbwCZwcZcCZcuXuXv|ψ〉 =

Z2
cCZuaCZavCZvbCZbwCZwcCZcu‖ψ〉 =

CZuaCZavCZvbCZbwCZwcCZcu|ψ〉 = |φG〉
�
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8 Terminology

• AC0 - the complexity class of all polynomial-size circuits of constant-depth with unbounded

fan-in gates.

• Depth - (of a circuit) the greatest number of gates along any (qu)bit wire of the circuit; this

determines the longest path between the input and output of the circuit.

• Entanglement - a phenomenon in which the states of multiple qubits depend on one another.

• Fan-in - (of a gate) the maximum number of inputs the gate can accept; (of a circuit) the

maximum fan-in of the gates in the circuit.

• Hamming weight - (of a bit-string) the number of non-zero bits in the string.

• NC0 - a subclass of AC0, containing all polynomial-size circuits of constant-depth with

bounded fan-in gates.

• Nonlocality - a form of correlation present in the measurement statistics of entangled quantum

states that cannot be reproduced by local hidden variable models [2].

• QNC0 - the quantum analog of NC0; the compelxity class of all quantum polynomial-size

circuits of constant-depth with bounded fan-in gates.

• Qubit - Shortened form of ”quantum bit”, the basic unit of quantum information.

• Shallow quantum circuits - circuits corresponding to quantum parallel algorithms that run in

constant time, take a classical bit string as input, apply a constant-depth quantum circuit

composed of 1- and 2-qubit gates, and output a random bit string obtained by measuring

each qubit in the standard basis [2].

• Superposition - a qubit’s property of being able to exist in multiple states at the same time;

|φ〉 = c1|α〉+ c2|β〉 is a superposition of the states |α〉 and |β〉 with amplitudes c1, c2 ∈ C.
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