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1 Introduction

In the past few decades, there has been a significant amount of interest and research in
the field of quantum computing. It has been shown that quantum computers are theoretically
more powerful than their classical counterparts, but the physical implementation of these quantum
computers is difficult due to the nature of qubits [9]. If sufficiently-powerful quantum computers
are ever constructed, this potential running-time advantage, known as “quantum supremacy” [8],

is expected to heavily impact modern computing, and hence modern privacy and security.

A famous example is the quantum algorithm developed by Peter Shor in 1995, which can
factor a given number with a running time polynomial in the size of the number being factored [9].
Shor’s algorithm consists of two parts: a classical algorithm that reduces the problem of finding the
non-trivial divisors of a given number N to finding the order of a particular number modulo N, and
a quantum subroutine that finds the order of that element using the quantum Fourier transform
and arrangement of quantum logic gates in a specific circuit [6]. The problem of factoring a
random integer is considered to be infeasible for classical computers, and no classical algorithm for
polynomial-time factoring is believed to exist. This is because the factoring problem lies in the
classical complexity class of decision problems solvable in nondeterministic polynomial time (NP),
which contains the class of polynomial-time problems (P), so finding a classical polynomial-time
algorithm would partially solve the Millennium Prize problem of “P =7 NP” [3]. Because several
commonly-used cryptosystems, such as RSA and variants of Elliptic-Curve Cryptography (ECC),
rely on the difficulty of this problem, Shor’s result poses a threat to public-key cryptography as we
know it [4]. As a result, there has been increasing interest in post-quantum cryptography, which
involves cryptographic schemes resistant to quantum attacks; these include lattice-based GGH and
NTRU-Encrypt [3]. Despite this threat, it is believed that a quantum computer operating with
thousands of qubits and billions of logic gates would be necessary to accurately perform these kinds
of computations. This large number of qubits and gates would be required to compensate for errors
produced as a result of ambient noise that would interfere with the qubits’ behavior [2]. Without
error-correction capabilities, a quantum computation can only run for constant time before the

qubits decohere and entropy accumulates. [2]

For the time being, there has been increasing interest in quantum computers with far fewer
qubits — about 50-100 qubits — which are expected to be available in the next few years [7]. This
technology is known as Noisy Intermediate-Scale Quantum (NISQ) technology and is believed to
be capable of performing computations that would surpass the capabilities of modern classical
computers [7]. This past October, Google unveiled their new 53-qubit quantum computer, which
they claim to have solved an obscure problem in a few minutes, that would otherwise have taken
a classical computer thousands of years [8]. While the demonstration does not have any practical
application [8], the development is a first step in the direction of producing quantum computers

for practical purposes.



As part of this effort, Bravyi, Gosset, and Konig wrote a paper called “Quantum Advantage
of Shallow Circuits”, in which they show that constant-depth quantum circuits are more powerful
than their classical counterparts [2]. They examine computations performed by Shallow Quan-
tum Circuits (SQC) — constant-depth quantum circuits executed by quantum parallel algorithms
running in constant time. Because NISQ technology may not have error-correction capabilities by
definition, parallelization and circuit depth are important factors to consider when designing quan-
tum algorithms for these computers. This is in order to optimize the efficiency of the computations

being performed in the time-frame before the qubits decohere.

NCY denotes the complexity class of all decision problems solvable by a classical circuit of
polynomial size, constant depth, and bounded fan-in [11]. The quantum analog to this class is
QNCP. In their paper, Bravyi, Gosset, and Kénig focus on a particular case of the Hidden Linear
Function Problem (HLFP, defined in section 1.3). They demonstrate that this problem can be solved
with certainty by a quantum circuit that satisfies the constraints of the QNC? class. Furthermore,
they show that no classical probabilistic circuit in the class NC° can solve the problem with a
success probability of greater than % [2]. More specifically, any classical probabilistic circuit with

fan-in bounded above by K which solves all instances of the 2D-HLFP of size N with a success
log (V)
8log(K)
that HLFP is in the complexity class QNC? but not in NC°. It is particularly remarkable that

they prove this result unconditionally, without complexity theory assumptions.

probability greater than % would require a depth of at least [2]. In other words, they show

One of the special properties of quantum circuits that gives them this advantage in solving the
HLFP is the nonlocality constraint presented in s section 5. In this paper, we give detailed proofs
for some of the results presented in the original paper for some small examples (see Examples 2.1

and 5.2). This serves to illustrate the significance of nonlocality in quantum shallow circuits.

2 Preliminaries

In this section, we define the terminology used throughout the paper. Recall that a qubit
exists in a state |¢) = a|0) + (|1), where a, 8 € C, so it can be represented by a length-2 vector.
The states |0), |1) are known as the standard or computational basis states of a qubit. Some of the

basic gates that act on single qubits are represented by the following set of matrices over C:

1 1 1 0
Hadamard gate: H := 1 ., Sgate: S:=
g V2 (1 —1] g 0 —i

0 —

[

0 1
Pauli X-gate: X := [1 ol Pauli Y-gate: Y = ,  Pauli Z-gate: Z :=

1 0
0 -1
We remark that the standard basis states |0) and |1) correspond to measuring a qubit in the

Z-basis, since these are the eigenvectors of Z with eigenvalues +1 [5]. Qubit states can also be

measured in bases other than the standard basis. For example, a qubit with some state



|) = «|0) + B|1) can be measured in the X-basis by mapping the original basis states to the
eigenvectors of X: |0) — |[+) := %(|0> + 1)), [1) — |—) = %(|0> — |1)). Then the state can be
rewritten as [¢) = o/[+) + §’'|—) for some o/, " € C.

The controlled-Z gate acts on two qubits and is represented by a matrix CZ € C***. It can
be expressed in terms of the Pauli gates as: CZ := |0)(0| ® I + |1)(1]| ® Z.

We present the following set of observations about the Pauli gates and C'Z gate that will be

referred to throughout the remainder of this paper:
1. Gates that do not affect the same qubits commute.
2. The Pauli gates X,Y, Z are involutory and anti-commutative.
3. XY=iZ,YZ=iX,and ZX =1iY.
4. X;|v) = |¢), where [¢) is the uniform superposition of basis states.
5. CZ;; = CZj;.
6. Z;CZij =CZ;;Zj for all i,j € V.
7. XiCZ;j; = Z;CZ;j; X; for all i, j € V.
8. X;CZ;; = 7,CZ;; X for all i,5 € V.
9. SY = XS.

Definition 2.1. Let G = (V, E) be a finite simple graph with |V| = n and |E| = m. Suppose that
a qubit is associated with each vertex of G. Then the n-qubit graph state of G is given by

’¢G’> = H CZy H®n|0n>
(u,w)ER
Recall that H®™ denotes n Hadamard gates applied in parallel to |0™), the n qubits initialized
to |0). This serves to entangle the qubits. We clarify that in the product of CZ,, gates, only one

edge (u,v) for every pair of vertices u and v is represented (even if G is an undirected graph).

This graph state has special properties that are leveraged to obtain the results of the Bravyi-
Gosset-Konig paper. In particular, the graph state has a clear set of stabilizer states - states that
keep the graph state invariant when operating on it. The following claim explicitly describes the

group of stabilizer states for the graph state:

Claim 2.1. Let G = (V, E) be a finite simple graph. Then |¢¢) is a stabilizer state for the stabilizer
group generated by the operators g,, for allv € V', given by

9o = Xy H Zy
(u,w)ER



To see why this is true, consider the following example:

Example 2.1. Consider the line graph G = (V, E) represented in the diagram below, where
V ={1,2,3} and F = {(1,2),(2,3),(3,2),(2,1)}.

® O, ®

By definition, the graph state for this graph is |¢g) = CZ12C0Z23H®3|03). This can be

explicitly expressed in the following manner:

Let [¢) := H®3|03) denote the state produced by applying the Hadamard gates on the initialized
qubits. By definition of the Hadamard gate, this can be written as

1

1 1

[) := H®3|03) = NeE > " bibobs = ﬁ(\ooo) 41001) +[010) +]011) 4 [100) + [101) +|110) +[111)).
b;=0

Recall that the gate CZ;; only affects the qubits at vertices ¢ and j and flips the sign of a qubit
state if both of these qubits are in the state 1. Applying the gates C'Z15 and then C'Zs3, we obtain

1

CZy|y) = (1000) + 1001) + |010) — |011) + [100) + |101) + |110) — |111))

=

8
B
V8

Now we prove the claim above for this particular graph:

C Z15C Zas|t)) = —=(]000) + |001) + [010) — |011) + [100) + [101) — |110) + [111)) = |¢c)

Claim 2.2. |¢¢) is a stabilizer state with stabilizer group generated by
g1 = X112y, go = XoZ1Z3, and g3 = X3Z».

Proof: We show that (i) gv|pa) = |¢q) for all v € V, and (ii) any element in the group generated
by the g, is a stabilizer of |¢¢).

(i) We show that g1, g2, and g3 defined above are stabilizers of the graph state. For clarity, we

underline the product of gates being rewritten in each step and reference the property used.

g1loc) = X1 250 Z15C Z53J1), by 1 9210c) = X221Z3C Z12C Zss|v), by 1
= 25 X1CZ15C Z3|t), by 7 = 2321 X2CZ15C Zo3|¢), by 8
= 7929C Z19X1C Zo3|1h), by 2 = Z3212:C 212 X5C Zp3[¢), by 2
= CZ19X1CZa3|0), by 1 = Z3CZ12X9C Zo3|1p), by 7
= CZ15C Zp3 X1 |0)), by 4 = 73CZ1973C Zo3X2]9), by 1
= CZ12C Zo3|t)) = |bc) = Z323C 2150 Zy3Xs|p), by 2

= CZlQCZQgXQ"I/J>, by 4

= CZ12CZyslh) = |oa)



g3léc) = X322C 72120 Za3|¢), by 1
= Z3CZ15X3C Za3|¢), by 6
= CZ1222X3C Za3|)), by 8
= CZ122275CZ>3X3]), by 2
= CZ12CZy3 X3]0)), by 4

= CZ12CZy3|Y) = |da)
Hence g1|¢c) = |9a), 92196) = |9c), and gs3|oa) = [¢a).

(ii) Let gi,...gi, € (91,92, 93) be an element in the group generated by the stabilizers above, where
i; € {1,2,3}. Since each g;, leaves |¢¢) invariant, it follows that the product composed of
these stabilizers leaves the graph state invariant. Hence, any element in (g1,¢g2,93) is a

stabilizer of |¢¢). n

Definition 2.2. Let z € {0,1}* be a bit-string. For a bit z; of z, define m; := (=1)%. Let G be a

line graph with end-vertices v and v, and L be the set of vertices that lie between u and v. Then

Leyen :={0 € L |§(,u)=0 (mod 2) =d(¢,v)}

denotes the set of vertices at an even distance from both u and v. Similarly, denote the vertices at

an odd distance by L,q4q. For this L, define my, := HjeLodd m;.

We note that from this point onward, unless explicitly said otherwise, addition expressed with

“+” represents addition modulo 4, while “®” represents the usual addition modulo 2.

3 Hidden Linear Function Problem

In their paper, Bravyi, Gosset, and Konig examine a specific search problem and show that
a specific case of this particular problem can be solved with certainty by a quantum circuit with
constant depth. They also show that for any classical circuit there is a problem of this type whose
solution with probability greater than 7/8 requires a depth logarithmic in the size of the instance

of the problem. The problem of focus is the Hidden Linear Function Problem defined below [2]:

Definition 3.1. The Hidden Linear Function Problem (HLFP) is a search problem stated as
follows: given a quadratic form q : Fy — Z4 defined by

n
Q(‘T) =2 Z Aa,,@xaxﬁ + Zbixiv
1<a<b<n i=1

where z1, ...z, € {0,1} are binary variables and A, g € {0,1},b; € {0,1} are specified by a matrix
A and vector b, find a binary vector z € {0,1}" such that q(z) = 227« for all z € £,, where
Ly={zeFy | q(zdy)=q(x) +4q(y) (mod 4) for all y € F3}.



Bravyi, Gosset, and Konig show that the restriction of the quadratic form g(x) to the set
L, is always a linear form, meaning that there exists a vector z € F} that satisfies ¢(x) = 227x.
Hence the HLFP asks for a solution to this problem, for the given g(x) specified by A and b. The
2D-Hidden Linear Function is a particular case of the HLFP, in which the matrix A has a specific

structure:

Definition 3.2. The 2D Hidden Linear Function Problem (2D-HLFP) is a special case of the
HLFP, where the inputs have a specific structure: Let G = (V, E) be the graph describing an
N x N grid. Define A € {0, 1}/l to be the N? x N? adjacency matrix of G, where Ay = 0 unless
(u,v) € E, and b € {0,1}IV]. Given a quadratic form ¢ specified by A and b as

Q(l') =2 Z Auvl‘ul"u + Z bvxva

(u,v)EE veV

find a vector z € {0,1}IV] such that g(z) = 227z for all z € £,. We call this a size-N instance of
the 2D-HLFP.

Note that here the number of input bits is |[V| + |E| = N? + 2N(N — 1) = 3N? — 2N.

The following result formally states the significance of this problem in showing the separation

between classical and quantum shallow circuits (which we state without proof):

Theorem 3.1. For every instance N > 2, there exists a quantum circuit Qn of depth d = O(1)
which deterministically solves size-N instances of the 2D-HLFP.

This quantum circuit Qp is presented in the following section.

4 Quantum Circuit for HLFP

In this section we present the quantum circuit that deterministically solves instances of the
2D-HLFP for a given size N[2]. In the circuit below, the controlled gates determined by the inputs
of the HLFP A and b are the following:

N
cz(4):= [[ ©z;" and S(b) :=X) S
j=1

1<i<j<N

The circuit below deterministically solves all size-N instances of the 2D-HLFP [2]:

________ Uy .

o i E 0

A 5 E 4)
0") —— HE&N CZ(A) - S(b) EN A

__________________

Figure 1: Quantum Circuit for size-N instance of 2D-HLFP



The CZ(A) and S(B) gates above can be expressed as constant-depth quantum circuits com-
posed of the gates presented in section 2. Since there are a fixed number of gates in this circuit, it

follows that the depth remains constant for any instance of size N [2].

We make the following remark about the run-time of this circuit: Since any set of gates that
operate on distinct sets of qubits do not interfere with each other, these gates can be operated
in parallel simultaneously in the circuit. This simultaneous operation can be considered as one
step in the computation. Hence, the run-time of such a step is given by the run-time for a single
gate, which is fixed. In this way, the gates in the circuit can be partitioned into a small number of
disjoint sets such that the gates in each set can be operated simultaneously. Because the number
of such sets is independent of the size of the input N, the total run-time does not depend on N.

Thus, this circuit runs in constant time.

5 Nonlocality

One of the properties of qubits that differentiate them from classical bits is quantum nonlo-
cality. This is a phenomenon in which measurement results of entangled quantum states cannot
be reproduced by completely local functions where every output bit depends only on one input bit
and some randomness. With this property, qubits in the output may depend on multiple input

qubits that may be physically distant (even light-years away) from each other.

A fundamental example of the way nonlocality produces the separation between the capabilities

of quantum and classical circuits is given by the Greenberger—Horne—Zeilinger state below [2]:

Example 5.1. Consider the 3-qubit state

1
V2
A set of stabilizers for this state is P := {X1XoX3, —X1Y2Y3, —Y1 XoY3, —Y1Y2X3}. (This can

easily be shown using our set of observations as in the proof of Claim 2.2 above).

IGHZ) := —(|000) + [111)).

Now let b = bibgbs € {0,1}3 be a bit-string and suppose that each qubit j of |[GHZ) is measured
in the X-basis if b; = 0 or the Y-basis if b; = 1, giving the measurement outcomes m € {—1,1}.
Then using the four stabilizers in P, we see that the measurement statistics satisfy the following

constraint:
If by & by d b3 =0, then ib1+b2+b3m1m2m3 =1.

Each of the four cases (b = 000,011,101,110) of this condition cannot be solved by any local

classical measurement, however, where each m; depends on just one of the bits by. [10] O

Now we illustrate the geometric nonlocality properties of single-qubit measurements on the
1-dimensional graph state corresponding to an even-length cycle graph [2]. Due to the peculiar
properties of qubits, the measurement outcomes of a circuit with this property cannot be simulated

by shallow classical circuits that are 1-dimensionally geometrically local [2].



The key idea behind the cycle graph below is the following: fix any three vertices in the
quantum circuit, and consider the triangle graph they determine. In examining the way these
qubits affect each other’s states, we see that these satisfy a certain constraint not necessarily
present in a classical circuit. Using the following example, we illustrate the concept of quantum
nonlocality and state results that describe the significance of nonlocality in proving the advantage

of quantum shallow circuits over classical ones:

Example 5.2. Let G = (V| E) be the cycle graph represented by the diagram below, with m :=
|[V| =6 = |E|. We let u,v, and w denote the vertices that are pair-wise at an even distance from
each other, and label the other vertices by a,b, and ¢. This graph can be thought of as a triangle
determined by the vertices u,v, and w. Denote the sets of vertices to the right, left, and bottom
of the triangle by R, L, and B, respectively. Notice that in this particular case, there are only odd

vertices (a, b, c) and no even vertices.

Figure 2: 6-Vertex Cycle Graph
The graph state corresponding to this graph is given by

|¢G> = CZuaCZavCvaCwaCchCZcuH®6‘06>-

Let b := bybyby, € {0,1}3 and define
T(b) :={z € {0,1}™ | (2|H®™ S} 50w She | pe) # O}

to be the set of possible measurements of the qubits arranged in this graph formation. Here the
qubits in the graph state are measured in the X-basis (where the columns of X determine the basis
vectors |0) and |1)) and w, v, w are measured in the X- or Y-basis according to b: if b; = 0, then

qubit ¢ is measured in the X-basis, otherwise it is measured in the Y -basis.

One of the manifestations of quantum nonlocality is the constraint given in the claim below
from the Bravyi-Gosset-Konig paper. Informally, this states that for any length-3 string b and
measurement z, the sum of the measurements of the bits of z corresponding to the set RU B U L
must be even. In addition to this, if the string b has an even Hamming weight, a stronger constraint

holds. We explicitly prove the general claim for the case where G is the graph in Figure 2:

10



Claim 5.1. Let b = b,b,b,, € {0,1}2 and z € T(b). Then mrmpmy = 1.

Moreover, if by @ by @® by = 0, then i« tbotbwm m momepmlembimb = 1.
) ; rRMpmy

Proof: (for Example 5.2) We prove both parts of the claim as follows:

(i)

To show: mrmpmp, = 1.
Let Odds := Rygq U Logq U Bogq- For this graph G, the only vertices are {a,b,c}. Define
X(0dd) := [l ;c0aq X; and g(Odd) := [;c0q4q 9;- In this case, X(Odd) = X, XX, and

9(0dd) = gagvge = (XaZvZw)(XpZu2y) (X ZywZy), by definition
= X, Xy X 2272 7>

o2, by properties of Pauli gates
= X, XpX..

Since the g; are stabilizers of the graph state |¢q), it follows that g(Odd) = X, XX, is a stabi-
lizer for |¢g). Then, X, Xy X.|éc) = |¢g). Now consider the measurement (2| H®%X, X} X.|pq).
Since the Hadamard gate produces a measurement in the X-basis and by the properties of

the X gate, this can be rewritten as follows:

<Z‘H®6XaXch|¢G> = <zm‘XaXch‘¢G>
(_1)Za+zb+zc <ZCE‘¢G>

= (—1)7 5 (2| H o)

By the result above, (z|H¥5X, X}, X |¢q) = (2|H®®|¢q), so it follows that (—1)%t?zotze =1,

Rewriting, we obtain

(=1t = (=1)*(=1)*(=1)* = mempme = mympmp = 1.

To show: If b, © b, ® by, = 0, then Pa TP bwm, m m,mpmbymiymbe = 1.

For this part, we make use of some of the stabilizer states of the graph G. In particular, we

rely on the following lemma:
Lemma 5.1. The following operators are stabilizers of the graph state |¢q):
XXX, =X Yo Y Xo Xe, =Y X0 Y Xo Xp, and — Y, Y, X Xp Xe.
Proof of Lemma: (see Appendix) O

If b =1b, ® b, @ by, = 0, then there are four cases to consider: b = 000,011,101, or 110. For
each of these cases, we consider the properties of the measurement of z € 7 (b). We use the
lemma above to derive conditions from the stabilizers that correspond to each of these cases,

similar to part (i).

11



b = 000: In this case, the qubits in positions u, v, and w are all measured in the X-basis. By
definition, S%«S% S% = 1. Hence, we can use the stabilizer X, X, X,, to rewrite the

measurement of z:
(2| H?® X, X, Xo|d0q) = (—1)™% (2| H®Y|pg) by X gate definition.

By the lemma, (2| H®® X, X, X\y|6c) = (z|H®S|d¢), so it follows that (—1)%w#aw = 1.
Rewriting, we obtain:
b b bw 0

Thus, 0 tbwm, mymymempmpme = i®mymym, = 1.

b =011: In this case, the qubits in position u is measured in the X-basis and v and w are
measured in the Y-basis. By definition, Sl«S% Sb» = S, S,. Hence, we use the

stabilizer — X, Y, Y, X, X, to rewrite the measurement of z:

(2| H®®8, S0 (— X0 Yo Y Xo Xo)|0a) = — (2| HZ® X, (S, Yy) (SwYw) Xo Xc|0c)
2| H®O X (X0 Su) (XwSw) XaXe|de), by 7
2| H® X, X Xy X0 XcSoSwlda), by 1

_1)zu+zv+2w+za+zc <Z’H®6SUS'LU ’¢G>

{
{
{
(

By the lemma, (z2|H®5S,S,(—X.Y,YuXaXe)|ba) = (2| H®5S,Su|da), so it follows
that —(—1)#t#vtzwtzatze — 1 Rewriting, we obtain:

(et (1) () (1) (1) (D)

= MyMyMyMgMe = MyMypMymimp = —1.

bu bv bul

Thus, ib“+b”+bwmumvmmemR mpgm;’ = i2

mymymymrmp = (—1)(—=1) = 1.

Since the cases b = 101 and b = 110 are almost identical to the case b = 011, we omit the

details for these cases here (see Appendix for details).

Hence condition (ii) holds for all b that satisfy the hypothesis. .

12



6 Conclusion

In the previous sections, we illustrate how the quantum circuit with its corresponding graph
state has certain properties that are not necessarily found in classical circuits [2]. We referred to
the GH Z state as a key example of this and later examined the role of the graph state in showing
that quantum circuits must satisfy certain constraints as a result of nonlocality. In the original
paper, the authors use the nonlocality constraints of Claim 5.1 to show that the input and output

bits of a classical circuit are not necessarily correlated in the same way.

The goal of the classical circuit analysis is to find a cycle in the classical circuit similar to
that in Example 5.2, for which the identities in Claim 5.1 cannot be satisfied with certainty. In the
N x N grid corresponding to the classical circuit that solves the 2D-HLFP, three vertices u, v, w can
be found that do not exhibit the nonlocality properties. The cycle graph determined by these three
vertices determine the matrix A and vector b that define a subset of instances of the 2D-HLFP [2].
This is the key idea to showing that classical circuits are not able to solve the 2D-HLFP with the

certainty and constant-depth of their quantum counterparts.

13



7 Appendix

In this section we include the last two cases of the proof of Claim 5.1 for completeness. We

also give a detailed proof of Lemma 5.1 used to prove part (ii) of Claim 5.1 for Example 5.2.

Proof of Claim 5.1 (cases b=101 and b=110):

b=101:

b=110:

In this case, the qubits in positions u and w are measured in the Y-basis and v is mea-
sured in the X-basis. By definition, S%Sb»Sb = §,S,,. Hence, we use the stabilizer
—Y, X, Y, X, Xp to rewrite the measurement of z:

(2| HZ0 8,80 (= Yu XY XaXp)|0a) = — (2| HZ X, (84 Yy ) (SwYa) XaXp|dG), by property 1

|HEO X, (XuSu)(XwSuw) XaXs|é), by property 7

|H® X, X, X, X0 X15,S0|dc), by property 1
1)Futavtzutzata (| [fO0G S o), by X gate definition.

—(z
—(z
—(z
—(=

By the lemma, (z|H®%S,S,(—YuX,YuXoXp)|da) = (2| H®®S,Sw|oq), so it follows that
—(=1)7utzvtzwtzatz = 1 Rewriting, we obtain:

(<t (1) (1) () (1) (1)

= MyMyMyyMgMp = My MyMyymrmp = —1.

Thus, ib“+b“+b“’mumvmmeml§‘ml§m%“ = 2myMyMmymemy, = (=1)(-1)=1.

In this case, the qubits in positions u and v are measured in the Y-basis and w is mea-
sured in the X-basis. By definition, S8l Sb» = §,S,. Hence, we use the stabilizer
-Y,Y, X, Xp X, to rewrite the measurement of z:

(2| HZ0 8,8, (— Yo Yo Xou X Xo) ba) = — (2| HZ®(S,Y0) (S0 Ya) Xu Xp Xl )

2| H®(XSy) (X0Sy) XXy Xe|bg) by property 7

2|H®® X, X, Xy X XS0 Sy |dG) by property 1
1)zutavtzetatze | H0G S |oq) by X gate definition.

—
—
—
—(=

By the lemma, (z|H®%S,S,(—Y.,Y, X0 X X,)|bg) = (2|H®®S,S,|bq), so it follows that
—(=1)#ut#t2wtztze = 1 Rewriting, we obtain:

e G VN CE I C I

= My MyMypyMpMe = My MypMyyMrmp = —1.

Thus, ib“+b“+bwmumvmmeml}’%‘m%’m%“ = ?mymymympemp = (=1)(-1)=1.
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Proof of Lemma 5.1: We show that each of the four operators X, X, X,,, — X, Y, Y, X, X,

_YuXvaXaXba

and —Y,Y, X, Xp X, are stabilizers of the graph state |¢g) using the properties of the Pauli gates,
S gate and CZ gates. As in Example 2.1, we denote |¢) := H®®|06). For clarity, we underline the

set of operators rewritten or moved in each step. Note that throughout the process of rewriting,

the goal is to move the X gates to the right (since they leave the state |¢) fixed) and the Z gates

to the left.

(i) To show: XX, Xu|oc) = |pc)-

XuXoXuloa) =

Xu X XwCZyoCZoyCZ o C Zpy C Zape C Zoy |00) =

XuCZyoy XoCZayCZyy XoyCZiyCZpeCZey|Y) =

24CZya Xy £4CZay XoCZyy ZyCZyy XowCZyeCZey|th) =

23 Zy CZuaCZay Zy CZup Xy CZpy Ze CZwe X XuCZeu|t)) =
)
)
)

2} Ze CZuaC ZawC ZupC ZiyC Zowe ZeC ZewXuXuwXolth) =
ZigCZuaCZavCvaCwaCchCZcu|¢ =

CZua CZav CvaCwa CchCZcu W)

(ii) To show: —X,Y, YW X Xc|0c) = |0G)-

— XY Yo Xo X |og) =

~ XYY Xo XeCZ0uC Z 4y C ZiyC ZiyC Ze O Zew |0)) =

Y, Yo Xu X0 C ZaC Z 1y C Zoy C Zys X O Ze O Zew |00) =

Y, Yo X ZuC Z10 X0 C Zay C Z ot C Ziy Zo C Zne X eC Zoe|10) =
~Y Y Zu(—1) ZuXuC Zua ZvC ZavXaC ZubC ZinsC Zuwe Z0aC Ziew Xcth) =
YoZy YuZwZuZaC ZwaXuC ZayC ZuC Ziyy C Zonse ZuC Zew X a|1h) =
iXy 1 X0 ZuZ0C ZyaC ZawC ZyC ZinyC Ze Xus ZC Zoe 1) =
(1) Z4Z0C Z1a X0C Z gy C Zoty X C Zps C Zope(—1) Zy XuCZeu V) =
Z220C Zua ZaC ZiawXoC Zvy ZC Zipy XsC Zwwe ZeC ZeuXu|th) =
22 20 ZcC ZuaC Ziaw ZyC Zupy X o C Zipy ZC Zonse XuwC Lo 1h) =

23 22C Z4aC ZiayC ZyC Ziyy C Zoe C Zow X X |1h) =

CZuaC ZayC ZipC Zyy C ZipeC Zeu|th) =

15

= |¢a)

[ore)



(i) To show: =Y, XY,y XoXp|da) = |dc)-
=Y, XY Xo Xo |00

)=
Yo XY Xa X5C ZuaC ZawC ZubC Zipny C ZoeC Zoeu|1h) =

Yo Y XaC Zua XoCZay X4C ZspC ZC ZseC Zeu|)) =

Y Y ZuC Zua X 0 ZaC Zas X0y ZC Zogp X C Zoy C Zonpe C Zooa | 1)) =

~YuYu ZuC Zua(—1) Za XaCZaw(—1)Zy XoCZyy ZuwC Ziyy XoC ZapeC Zen 1) =
Yo Y ZuZo Zoy ZaC Zua ZoC Zaw X ZoC Zun XoC Zins C ZupeC Zieu X ) =

Y YuZu Z2 ZwZaZoC ZuaC ZayC ZotC Zins C ZupeC Z e XaXo[90) =

~YuZu Yo ZwZaZuC ZsaC ZayC ZeyC Zipns C ZapeC Zieu|00) =
)=

)=

)=

)=

) =

)=

)=

~i Xy 1 XwZaZbC ZuaC ZawC Z b C Ziyy C ZipeC Zoey 9
~(-1)Z0Z6XuC Z4aC Z oy C Zty X C Zyis C Zoy e C Zoe |0
207 20C Za Xu.C ZayC Zy Z.C Zyo X o C Zae O Ziew |00
2225 C Z4aC ZiawC ZyC Ziyy ZeC Zwe X XuC Zeu|th
ZeC ZuaC ZawC ZpC ZipnsC Zuse ZeC Ze X uXos 1)
23C Z4aC ZawC Zu,C Ziyy C Zuse C Zieu |1
C Z3aC Z 4o C Zoy C Ziyy C Zye C Z |
(iv) To show: —Y,Y, XuwXpXc|oa) = |0a).

=YY, XX Xc|oa) =
Y Yo Xuw Xy Xe CZyuaC ZayC ZiyC ZinyC ZiyeC Ze |00) =
—YYoC Z0uaCZ o X4 C Zoy XoC Ziy XoCZyeC Ze|t)) =

)

)

~YuYoC ZuaC Zaw ZC Zoy X Zy C Zo X ZosC Zrre XeC Zogu|10) =

Y Yoy Zy Zy ZsC ZaC Zas C Zpy X4 C Zivy XuwC Ze ZuC Zens X
—YuYo ZuZo Zoy ZC ZsaC Zoas C Zooty Zewy C Zos Xy ZeC Zrpe X C Zoes 1) =
~YuYoZy Zy Z2Z2,2eC Z1C ZayC ZiC Ziy C ZieC Zew Xo X)) =
—YuZu Yo Zu 74 2eC ZaaC Za C ZotyC Zyy C Zony e C Lo 1) =
—(1Xu)(iX0) 20 ZeC ZusaC ZoguC ZeC ZigsC ZueC Zon | ) =
(1) 20 ZXuC Zua XuCZaw CZyC ZinsC ZugeC Lo |10) =
707 24C Za X, ZaC Zaw X C ZC ZiyC ZoeC Ziu ) =
) =
) =
)=
) =

222,2.C Z,4aC Zaw ZyC Z oy XoC ZC Zse XuC Zeul
23 2:C ZuaC ZawC Zt,C ZiysC Zase ZeC Ziew Xu X 1))
22C Z4aC ZawC Zup C Ziyis C ZapeC Ze |1

CZ3aC ZaC ZyC Ziny C ZoseC Zoe |
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8 Terminology

e ACP - the complexity class of all polynomial-size circuits of constant-depth with unbounded

fan-in gates.

e Depth - (of a circuit) the greatest number of gates along any (qu)bit wire of the circuit; this

determines the longest path between the input and output of the circuit.
e Entanglement - a phenomenon in which the states of multiple qubits depend on one another.

e Fan-in - (of a gate) the maximum number of inputs the gate can accept; (of a circuit) the

maximum fan-in of the gates in the circuit.

e Hamming weight - (of a bit-string) the number of non-zero bits in the string.

e NCY - a subclass of ACY, containing all polynomial-size circuits of constant-depth with

bounded fan-in gates.

e Nonlocality - a form of correlation present in the measurement statistics of entangled quantum

states that cannot be reproduced by local hidden variable models [2].

e QNC" - the quantum analog of NC?; the compelxity class of all quantum polynomial-size

circuits of constant-depth with bounded fan-in gates.
e Qubit - Shortened form of ”quantum bit”, the basic unit of quantum information.

e Shallow quantum circuits - circuits corresponding to quantum parallel algorithms that run in

constant time, take a classical bit string as input, apply a constant-depth quantum circuit
composed of 1- and 2-qubit gates, and output a random bit string obtained by measuring
each qubit in the standard basis [2].

e Superposition - a qubit’s property of being able to exist in multiple states at the same time;

|p) = c1]|a) + 2| B) is a superposition of the states |«) and |5) with amplitudes ¢, ¢y € C.
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