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ABSTRACT

Persistent memory (PM) technologies aim to revolutionize storage

systems, providing persistent storage at near-DRAM speeds. Alas,

programming PM systems is error-prone, as the misuse or omission

of the durability mechanisms (i.e., cache flushes andmemory fences)

can lead to durability bugs (i.e., unflushed updates in CPU caches

that violate crash consistency). PM-specific testing and debugging

tools can help developers find these bugs, however even with such

tools, fixing durability bugs can be challenging. To determine the

reason behind this difficulty, we first study durability bugs and

find that although the solution to a durability bug seems simple,

the actual reasoning behind the fix can be complicated and time-

consuming. Overall, the severity of these bugs coupled with the

difficultly of developing fixes for them motivates us to consider

automated approaches to fixing durability bugs.

We introduce Hippocrates, a system that automatically fixes

durability bugs in PM systems. Hippocrates automatically per-

forms the complex reasoning behind durability bug fixes, relieving

developers of time-consuming bug fixes. Hippocrates’s fixes are

guaranteed to be safe, as they are guaranteed to not introduce new

bugs (łdo no harmž). We use Hippocrates to automatically fix 23

durability bugs in real-world and research systems. We show that

Hippocrates produces fixes that are functionally equivalent to de-

veloper fixes. We then show that solely using Hippocrates’s fixes,

we can create a PM port of Redis which has performance rivaling

and exceeding the performance of a manually-developed PM-port

of Redis.

CCS CONCEPTS

·Hardware→Memory and dense storage; · Software and its

engineering → Formal software verification; Automatic pro-

gramming.
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1 INTRODUCTION

Persistent memory (PM) technologies aim to revolutionize the

storage-memory hierarchy [49, 53]. PM technologies such as Intel

Optane DC [16, 24] are roughly 8× less expensive than DRAM [1]

and offer disk-like durability with access latencies that are only

2ś3× higher than DRAM latencies [32, 41, 60, 68]. PM can be ac-

cessed using the conventional load and store instructions and thus

offers persistence without needing heavyweight file-system opera-

tions. Since becoming commercially available, popular applications

(memcached [17] and Redis [15]) and companies (e.g., VMware and

Oracle [26]) have begun using PM.

Alas, programming PM systems is error-prone [7, 11, 22, 45, 46,

48, 49, 59, 63, 66, 67]. Updates to PM are cached in volatile CPU

caches, and developers must explicitly flush cache lines to guarantee

that updates reach PM. Moreover, cache-line flushes are weakly

ordered on most architectures (i.e., cache-line flushes do not follow

store order), so developers must insert memory fences to order

updates as necessary for crash consistency. The misuse of either

of these mechanisms results in durability bugs and compromises

correctness.

To help developers fix durability bugs, a number of useful tools

have been built to find such bugs in PM systems [43, 44, 50, 51, 55].

Some tools use developer annotations and existing test suites to

find bugs in arbitrary PM programs (e.g., PMTest [44], XFDetec-

tor [43], and Persistency Inspector [51]), while others find bugs in

specific PM applications and frameworks (e.g., Yat [37] for PMFS

[Persistent Memory File System] [19] and pmemcheck [55] for ap-

plications using PMDK [Persistent Memory Development Kit] [14]).

Agamotto [50] uses symbolic execution to thoroughly discover

durability bugs in PM storage systems without the need for devel-

oper annotations or test suites.

However, even with effective PM-specific bug finding tools, fix-

ing durability bugs in PM systems is challenging. In this paper,

we first analyze 26 bugs reported by Intel’s own bug finding tool,

pmemcheck, and manually fixed by developers. We find that these

bugs are arduous to manually debug and fix, even with the help of a

state-of-the-art bug finding tool like pmemcheck. The PM bugs in our

study took on average weeks (23 days) and up to months (66 days)

to fix and required numerous attempts (13 commits on average) to

correctly fix. We find that these PM bug fixes are complicated due

to a tradeoff between performance and simplicity. Simple intrapro-

cedural fixes insert a flush or fence in-line with the store that is
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missing one, making it very easy to reason about the durability of

the application. However, if the intraprocedural fix often accesses

volatile data (e.g., adding flushes within memcpy), the performance

of the application may suffer dramatically. Instead, a developer will

employ a more complicated interprocedural strategy, in which they

add flush operations to other functions in the call stack that result

in the missing flush.

One appealing solution is to consider automated fixing tech-

niques for PM durability bugs, since PM durability bugs are numer-

ous (Agamotto [50] found 84 new bugs in only 5 PM applications

and libraries) and time consuming to fix. Automated bug fixing

tools are increasingly being deployed in industry (e.g., at Janus

Rehabilitation [21] and Facebook [47]). Existing general purpose

program repair tools use heuristics and/or tests suites to modify

programs [39, 40, 58]. These tools are best effort, i.e., produced

patches may neither fix the bug nor be bug-free, which makes them

a poor fit for PM applications. Many of these applications use PM

for crash consistency; a buggy patch could lead to irreversible data

loss. In contrast, tools which target more specific classes of bugs

(e.g., to automate concurrency bug fixing, such as CFix [34]), have

been able to provide stronger guarantees.

Our main insight based on our analysis of 26 bugs and their fixes

is that PM durability bugs can often be fixed safely, meaning the

fixes are guaranteed to not incur new correctness bugs (i.e., the

fixes łdo no harmž). We observe that many durability bug fixes

either require adding memory orderings to the program or flushing

specific cache lines. We find that durability bugs can be fixed with

three kinds of fixes which are guaranteed to not create new bugs: (1)

intraprocedural fence insertion; (2) intraprocedural flush insertion;

and (3) persistent subprogram creation, which implements inter-

procedural fixes. Intuitively, these fixes only modify the program

by adding memory orderings, which we show cannot violate the

original program’s memory ordering behavior (ğ4).

Based on our insights, we develop Hippocrates, an automated

PM bug fixing tool guaranteed to łdo no harm.ž Hippocrates uses

the output of PM bug finding tools to create safe fixes, thereby

fixing durability bugs without introducing new bugs. Hippocrates

also uses a safe heuristic which automatically performs the complex

reasoning needed to compute an effective location for an interpro-

cedural fix. We show that this heuristic is also guaranteed to łdo

no harm.ž

We use Hippocrates to automatically fix all 23 of the durability

bugs we find when using pmemcheck to test PMDK [14], P-CLHT

(from RECIPE [42]), and memcached-pm [17]. We manually verify

that Hippocrates is able to correctly fix all the bugs using the bug

finding tool that originally found the bugs (pmemcheck). For the 11

PMDK bugs we reproduced and fixed, we compare developers’ fixes

and Hippocrates’s automated fixes and find that in most cases

(8/11), Hippocrates’s fixes are functionally identical to developer

fixes. In the remaining cases (3/11), Hippocrates’s fixes are func-

tionally equivalent, but the fixes inserted by the PMDK developers

are slightly more machine-portable (i.e., PMDK’s fix determines

which flush instructions are available on the CPU at run-time).

We also show the effectiveness of Hippocrates’s interprocedural

fix heuristic with a case study of Redis-pmem [15], a developer-

created port of Redis designed to use PMDK. We test Redis-pmem

against Redis-Hippocrates, a version where all flushes have been

inserted by Hippocrates instead of by a developer, and show that

Redis-Hippocrates matches or exceeds the performance of Redis-

pmem (up to 7% increase in throughput on YCSB workloads).

Overall, we make the following contributions:

• We provide an analysis of bugs found with a state-of-the-

art PM bug finding tool and their associated fixes, which

motivates our design of Hippocrates.

• Based on the insights of our analysis of existing durability

bug fixes, we develop Hippocrates, a novel automated PM

bug fixing tool. Hippocrates uses safe fixes in conjunction

with a safe heuristic to safely modify PM programs to elimi-

nate bugs that have been detected by PM bug finding tools.

• We demonstrate that Hippocrates is able to fix all 23 bugs

we reproduce while not introducing new bugs. Hippocrates

also generates fixes which do not incur unnecessary over-

head, rivaling and exceeding the performance of manually-

developed durability mechanisms.

In the rest of this paper, we provide background on PM pro-

gramming and discuss the challenges of automatic PM bug fixing

(ğ2); we then discuss our analysis of PMDK bugs and our insights

(ğ3); we describe the design of Hippocrates’s automated fixes and

sketch proofs of their correctness (ğ4); we discuss details of Hip-

pocrates’s implementation (ğ5); we evaluate the effectiveness and

performance of Hippocrates (ğ6); finally, we discuss related work

(ğ8) and conclude (ğ9).

2 BACKGROUND AND CHALLENGES

2.1 Persistent Memory Programming

In order to take advantage of byte-addressable PM, developers

must modify existing programs to use user-level persistence mech-

anisms. These mechanisms are cache line flushes (or non-temporal

stores) and memory fences. The x86 ISA provides 3 cache line flush

instructions (CLFLUSH, CLFLUSHOPT, and CLWB) and 2 memory fence

instructions (MFENCE, which orders all memory operations including

loads, and SFENCE, which only orders store-like instructions and

cache line flushes) [27, 28]. ARM provides similar instructions with

similar semantics (e.g., flush DC CVAP and fence DSB [3, 56]). Devel-

opers need to ensure that updates destined for PM are flushed from

the CPU cache, as the updates are volatile until they leave the CPU

cache and reach PM. Furthermore, instructions that flush the CPU

cache are generally weakly-ordered (i.e., can be reordered after sub-

sequent memory instructions, with the exception of CLFLUSH) with

respect to other memory instructions (as are non-temporal stores),

so explicit memory-fences must be issued to force the execution of

cache flush instructions at specific points.

Misuse or omission of persistence mechanisms in PM program-

ming can lead to durability bugs. A durability bug occurs when

an update to PM is not made properly durable, i.e., the update is

not flushed from the volatile CPU cache or an update is not prop-

erly ordered. Durability bugs in PM can be briefly classified as

due to: a lack of a cache-line flush instruction (a łmissing-flush

bugž), a lack of a memory fence (a łmissing-fence bugž), or both (a

łmissing-flush&fence bugž). When any of these bugs are present in

a program, a crash that occurs may cause updates to be missing or

partially applied, causing data inconsistencies.
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In this work, we specifically examine durability bugs. While

there are other classes of persistency bugs (e.g., performance bugs

resulting from overuse of cache flush instructions), recent studies

show that PM durability bugs are numerous [50] and existing PM

bug finding tools target durability bugs (e.g., pmemcheck, Yat, PMTest,

and Agamotto). Moreover, durability bugs are the only class of

bugs that many existing tools can detect automatically (i.e., without

source annotations). We defer further discussion of other bug types

to ğ7.

2.2 Existing Approaches for Finding Durability
Bugs

The challenges and severity of durability bugs in PM systems have

spurred many works in automatic detection of PM bugs. PM dura-

bility bugs are difficult to detect as they are only observable after a

failure has occurred and data has been rendered inconsistent. This

is because the durability of updates to PM relies on the state of

the CPU cache (i.e., whether or not cache lines have been flushed),

which is not directly observable in current CPU architectures. This

means that bug-finding tools for PM have to rely on some other

mechanism in order to detect bugs (e.g., trace validation [44], binary

instrumentation [43, 51, 55], or a symbolic memory model [50]; see

ğ8 for further discussion).

One of the advantages of these PM testing tools is that they are

all capable of generating a trace of all PM operations that occur over

the execution of the application under test, along with the actual list

of detected errors encountered during execution. This information

is an important feature that allows us to consider automated PM

bug-fixing solutions.

2.3 Automated PM Bug Fixing Challenges

One compelling technique for alleviating the challenges of building

and debugging PM applications is automated bug fixing. Automated

bug fixing tools are becoming an increasingly popular approach,

including in industry [21, 47]. Many of these systems are targeted

at general-purpose program repair and aim to fix any class of bugs

by using heuristics [39, 40, 58] (see ğ8). However, these approaches

are not ideal for solving durability bugs as the fixes produced by

these approaches may neither fix the bug nor be bug-free. This

is problematic for PM applications, as unsafe fixes may result in

crash consistency violations, resulting in irreversible data loss or

corruption.

In contrast to general bug-fixing approaches, tools which target

more specific classes of bugs have been able to provide stronger

guarantees. For example, CFix [34] and AFix [33] (which target

concurrency bugs, see ğ8) are both able to generate fixes which

either do not create new bugs, or, reduce the likelihood of creating

bugs. While the guarantees provided by AFix and CFix are not for-

mal, they employ a more principled and rigorous testing approach

which inspires this work.

3 STUDY OF DURABILITY BUGS AND FIXES

We want to investigate how PM bugs are fixed in order to consider

methods for safely fixing these bugs automatically. To this end, we

first study the difficulty of fixing real bugs in PM systems (ğ3.1),

Issue #s
Average 
Commits

Average 
Days from 
Open to 
Close

Max Days 
from Open 
to Close Kind

440, 441, 444 - -
Core library/
tool bug

442, 446, 447, 
448, 449, 450, 
452, 458, 459, 
460, 461, 463, 
465, 466 17 33 66

Core library/
tool bug

940, 942, 943, 
945 - - - API Misuse
535, 585, 949, 
1103, 1118 2 15 38 API Misuse
Average 13 28 66

Figure 1: The 26 PMDK bugs that we analyze. The first 17

are bugs with root causes within PMDK library code. The

remaining 9 bugs are caused by API misuse within PMDK’s

unit tests.

which motivates our desire to create an automated bug fixing solu-

tion. We then study the fixes for these bugs (ğ3.2), which provide

insights on how we can go about automatically fixing these kinds

of bugs. We then present our overall conclusions and insights from

this study (ğ3.3).

Study Targets. In this section, we present a study of durability

bugs and their associated fixes in Intel’s PMDK (Persistent Memory

Development Kit), which is a mature collection of libraries and

tools for accessing Intel PM devices used in real-world systems

such as Redis-pmem [15] and memcached-pm [17]. We study all

the 26 bugs in PMDK that were found using PMDK’s bug detection

tool, pmemcheck [55], and subsequently fixed. We chose these bugs

because they are well-documented and validated in PMDK’s issue

tracker [25, 30], and pmemcheck provides rich information about

detected bugs in the form of execution traces.

3.1 Study of Bugs

Of the 26 bugs we study, 17 have their root cause within the core

PMDK libraries (e.g., libpmemobj) or core PMDK tools (e.g., utilities

for managing object pools). These bugs are particularly severe as

they could lead to data corruption for any application built on top

of PMDK’s persistent object API. The remaining 9 bugs are caused

by the misuse of PMDK’s API. These API misuse bugs further

demonstrate the difficulty of persistent memory programming.

Moreover, the bugs we study seem to have been arduous to debug

and fully fix. In particular, these bugs take a long time to reproduce

using pmemcheck (as stated by one bug reporter and as confirmed

by us in our own testing), which hampers the development and

validation of a fix that fixes the bug. We also observe that these

bugs were not fixed quickly; each bug required an average of 13

commits to create a passing build, taking an average of 23 days (up

to 66) to close the issue.
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3.2 Study of Bug Fixes

To better understand how developers fix durability bugs, we further

study fixes implemented by PMDK developers for the bugs we

analyze. To that end, we study the associated commits for all of

the 26 bugs. We find that although the verbal descriptions of the

fixes are all very similar (e.g., ładd missing persistsž), the actual

fixes of each bug vary in their implementation. We broadly classify

these fixes into two categories: intraprocedural fixes, which insert

flushes and fences in-line with stores to PM, and interprocedural

fixes, which insert flushes and fences in a separate function context.

We provide real examples and describe the difference between these

two fix categories below and then discuss why they are challenging

to implement.

Intraprocedural fixes. We provide an example of an intraproce-

dural fix in Listing 1. These durability fixes are where persistence

mechanisms are inserted within the same function (intraproce-

durally) as the memory-modifying instruction. In Listing 1, the

original modification on line 2 was made durable by inserting a

flush and fence immediately after the update to oid, rather than in

a different function.

1 if (if_free != 0) {
2 *oid = NULL; //oid is a pointer to PM
3 // FIX: insert missing flush and fence
4 CLWB(oid);
5 SFENCE;
6 }

Listing 1: A missing-flush&fence bug with an

intraprocedural fix, adapted from PMDK Issue #1103.

Interprocedural fixes. We provide an example of an interproce-

dural fix in Listing 2. These durability fixes are where persistence

mechanisms are inserted outside of the function context (interpro-

cedurally) of the memory-modifying instruction(s). In Listing 2,

the original modifications occur within the memcpy function, but

the fix (pmem_persist, which flushes and fences all cache lines in

the address range) is deferred until memcpy returns. Interprocedural

fixes are also employed for non-library functions as well (e.g., an

internal checksum function) and can occur multiple frames above

the original PM modification (i.e., the original PM update occurs in

many nested function calls below the fix).

1 if (/* condition */) {
2 memcpy(pmem_addr, vol_src, nbytes);
3 // FIX: insert missing flush and fence
4 pmem_persist(pmem_addr, nbytes);
5 }

Listing 2: A missing-flush&fence bug with an

interprocedural fix, adapted from PMDK Issue #463.

Challenges of inserting fixes. While the scope of these modifica-

tions can be small, it is challenging for developers to ensure their

fixes simultaneously achieve crash-consistency and good perfor-

mance. Specifically, the reasoning behind determining whether a fix

should be intraprocedural or interprocedural is challenging as this

has serious implications on performance (see ğ6.3). For example,

inserting intraprocedural fixes into memcpy would make reasoning

about durability easier, but would incur performance penalties for

invocations of memcpy on volatile data (residing in DRAM) as well as

limiting memory parallelism with the increased number of memory

fences. An interprocedural fix (such as in Listing 2) can be more

efficient, but can be trickier to place correctly in the program such

that crash consistency requirements are not violated (i.e., ensur-

ing an interprocedural fix occurs before an operation which may

cause system shutdown). These tradeoffs and technical challenges

explain why fixing durability bugs is difficult, even though the fixes

themselves can be very small. This is also an important tradeoff

in practice, as over half (16/26, 62%) of the bugs in our study were

fixed with interprocedural fixes.

3.3 Key Insights

Our primary insight that drives our design is that for PM bugs,

we can create safe fixes (i.e., the fixes do not introduce new bugs)

which are best-effort with respect to performance, rather than

making fixes which are best-effort with respect to correctness (like

general-purpose automatic bug-fixing tools we discuss in ğ2.3). All

PM durability bugs can be fixed using only intraprocedural fixes,

which are easy to reason about automatically because they are

made of relatively simple operations (i.e., flush and fence insertion).

Interprocedural fixes can then be used as a means for improving

performance; when they cannot be safely employed automatically,

a safe intraprocedural fix can be used instead.

4 ALGORITHMS AND DESIGN OF
HIPPOCRATES

Based on our insights, we design Hippocrates, an automated bug

fixing tool targeted at safely fixing PMdurability bugs.Hippocrates

strives to achieve these design principles:

Ease of use. An automated bug fixing tool should require little

developer effort to use. To this end, Hippocrates does not require

any input from the developer other than the output of an automated

PM bug finding tool.

Do no harm. An automated bug fixing tool should not introduce

any new bugs which may impact program correctness. To this end,

Hippocrates only introduces bug fixes that are guaranteed to not

introduce new bugs.

Performance of fixes. An automated bug fixing tool should strive

to achieve best-effort fixes with regard to performance. To this

end, Hippocrates employs heuristics that strive to place fixes in

optimal locations while provably not impacting the correctness of

the inserted fixes.

Offline overhead. Additionally, an automated bug fixing tool

should complete its operations in a reasonable amount of time

so that it can be used as part of the development cycle for main-

taining systems. Existing automated bug fixing solutions are able

to produce fixes overnight.

4.1 Overview

The system overview of Hippocrates is shown in Fig. 2. Hip-

pocrates expects a PM-specific execution trace where each event

in the trace includes the source line where the event occurred, the

stack trace at the time of the event, and PM-specific information

(e.g., the size and location of PM being modified or flushed, or that
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Figure 2: An overview of Hippocrates.

the instruction is a memory fence, or that a bug has been detected).

Many PM-specific tools are capable of generating this information;

pmemcheck provides a trace with this information by default, and

other tools like PMTest and Agamotto can be easily modified to

provide the same level of information. This trace is then given to

Hippocrates (Step 1) in combination with the application under

test so Hippocrates can fix bugs. Hippocrates then uses the trace

to locate the original operation which caused each bug detected

by the bug finder (e.g., the unflushed store which causes a missing

flush bug) (Step 2). Hippocrates then computes all required fixes

(Step 3), applies the fixes, and compiles the modified application

(Step 4).

Hippocrates goes through a three-phase process to compute

fixes (Step 3): first, it computes the simplest possible fix using only

intraprocedural fixes; second,Hippocrates performs łfix reduction,ž

where fixes that would create a redundant flush or fence are merged;

and third, it performs a heuristic transformation to determine if

fixes should be łhoisted,ž i.e., if any intraprocedural fixes (i.e., fixes

in-line with the PM modification) can and should be converted into

an interprocedural fix (i.e., in a caller function).

We now discuss the generation of fixes in Hippocrates and

provide proof sketches for their correctness.

4.2 Hippocrates’s Bug Fixes and Proof
Sketches

Based on the analysis of our bug study, we identify three code

transformations to fix a broad range of durability bugs: (1) the in-

traprocedural insertion of memory fence instructions, used to fix

missing fence bugs; (2) the intraprocedural insertion of CPU cache

flush instructions, used to fix missing flush bugs; and (3) interpro-

cedural durability fixes, used to fix missing flush and missing fence

bugs when intraprocedural fixes would result in poor performance.

These transformations are composable, e.g., a missing-flush&fence

bug can be fixed by applying both an intraprocedural flush fix and

an intraprocedural fence fix. We first discuss each one of these fixes

and sketches of their correctness proofs, before discussing how

Hippocrates selects which kind of fix to apply (ğ4.3).

Notation. To present our proof sketches, we use a notation sim-

ilar to prior work [36]. All symbols indicate individual memory

instructions or atomic units of memory instructions, i.e., 𝑋 and 𝑌

are separate instructions or blocks of atomic memory instructions

1 void foo(char *pm_addr) {
2 pm_addr[0] = ...
3 CLWB(pm_addr);
4 // FIX: insert a memory fence
5 SFENCE();
6 // Without the fence, the system may lose data
7 ***CRASH***
8 }

Listing 3: An example missing-fence bug.

(e.g., an Intel TSX transaction [29] is treated as a single atomic unit).

We denote an update to persistent memory as 𝑋 (i.e., a store to 𝑋 ),

a flush to persistent memory as 𝐹 (𝑋 ) (i.e., a cache-line flush which

flushes 𝑋 ), a fence instruction as𝑀 , and any other instruction as

𝐼 . The notation 𝑋 → 𝑌 denotes ł𝑋 happens-before 𝑌 .ž Similarly,

𝑋 ↛ 𝑌 denotes ł𝑋 does not happen-before 𝑌 .ž The happens-before

relationship is transitive [36]. For all instructions, if 𝑋 is executed

before 𝑌 in a given thread, 𝑋 → 𝑌 .

Definitions. We define flushes and fences based on the seman-

tics of flush and fence instructions implemented in current CPU

architectures [3, 27, 28], as proposed in previous work [31].

A cache-line flush (or just flush) 𝐹 (𝑋 ) is an instruction which

writes update 𝑋 to PM at some point in time after 𝐹 (𝑋 ) is executed,

potentially evicting 𝑋 from the cache hierarchy.

Amemory fence (or just fence)𝑀 is an instructionwhich performs

two actions: (1) it causes all memory updates in 𝑀’s thread of

execution to become visible across all threads in a shared memory

system (i.e., for all updates𝑊 such that𝑊 → 𝑀 and all readers

𝑅 which execute on any thread after the point in time when𝑀 is

executed, 𝑅 will read𝑊 ); and (2) for all instructions 𝐼 and updates𝑋 ,

such that there exists a flush operation, 𝐹 (𝑋 ), with 𝑋 → 𝐹 (𝑋 ) →

𝑀 → 𝐼 ,𝑀 causes 𝑋 to be written to PM before 𝐼 (i.e.,𝑀 creates a

durability ordering, see below).

An update 𝑋 to PM has an associated durability event 𝑋𝐷 . 𝑋𝐷

is ordered before another instruction 𝐼 if and only if 𝑋 is flushed

and fenced before 𝐼 , formally, 𝑋𝐷 → 𝐼 ⇐⇒ there exists a flush

𝐹 (𝑋 ) and fence 𝑀 such that 𝑋 → 𝐹 (𝑋 ) → 𝑀 → 𝐼 . We define

the ordering of 𝑋𝐷 → 𝐼 to be a durability ordering. Informally, if

𝑋𝐷 → 𝐼 , that means that 𝑋 is durable before 𝐼 .

We define a bug as the possibility of incorrect program behavior.

For our use case, which does not consider real-time constraints,

incorrect behavior is limited to generating incorrect outputs. A

bug is new, if and only if the possibility of new incorrect behavior is

introduced into the program.

We define a fix as safe, if it can be inserted into a programwithout

incurring any new bugs. As flush and fence instructions do not

modify the program state (i.e., the values contained in registers

or memory), the safety of PM fixes only requires reasoning about

modifications to the program’s memory ordering and durability

behavior.

4.2.1 Intraprocedural Memory Fence Insertion. We show an exam-

ple of a missing-fence bug fixed by an intraprocedural memory

fence insertion in Listing 3. Without the SFENCE instruction inserted

on Line 5, the CLWB instruction would not be ordered before the sys-

tem crashed, potentially leading to data loss or data inconsistencies

(see ğ2.1). Inserting a fix for this kind of bug can always be done

safely; we provide a proof sketch below.
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1 void foo(char *pm_addr) {
2 pm_addr[0] = ...
3 // FIX: insert a flush
4 CLWB(pm_addr);
5 // Without the flush, the system may lose data
6 SFENCE();
7 ***CRASH***
8 }

Listing 4: An example intraprocedural cache-line flush

instruction insertion.

Definition. Formally, a bug𝐵(𝑋 )fence, indicating amissingmem-

ory fence, occurs when a program requires 𝑋𝐷 → 𝐼 for durability,

but there does not exist a fence,𝑀 , such that 𝑋 → 𝐹 (𝑋 ) → 𝑀 → 𝐼 .

Lemma 1 It is safe to insert a memory fence 𝑀 into a program.

We prove this by contradiction. Assume that inserting a fence 𝑀

causes a new bug in a program. By definition,𝑀 has two actions: (1)

it causes all memory updates in𝑀 ’s thread of execution to become

visible across all threads in a shared memory system; and (2) for all

instructions 𝐼 , updates 𝑋 , such that there exists a flush operation,

𝐹 (𝑋 ), with 𝑋 → 𝐹 (𝑋 ) → 𝑀 → 𝐼 ,𝑀 causes 𝑋 to be written to PM

before 𝐼 . The new bug must be caused by one of these two actions,

which we handle below:

(1) In this case, the bug must be caused by the updates in 𝑀’s

thread of execution becoming visible across all threads in a shared-

memory system after the execution of 𝑀 . Formally, the bug is a

result of a memory update on 𝑀’s thread of execution (𝑊 ) and a

memory read on a different thread (𝑅), such that𝑊 → 𝑀 , 𝑅 occurs

after𝑀 and 𝑅 observes𝑊 (i.e., 𝑅 reads𝑊 ). In an execution without

𝑀 , 𝑅 may still observe 𝑊 . For example, after executing 𝑊 , but

before executing 𝑅, enough time passes (e.g., due to the execution

of other instructions) such that𝑊 becomes visible. Thus,𝑀 does

not introduce the possibility of 𝑅 observing𝑊 , so the bug cannot

be caused by memory updates becoming usable across threads.

(2) In this case, the bug is caused by a new durability ordering.

Formally, the bug is caused by an instruction, 𝐼 , and an update 𝑋

such that 𝑋 → 𝐹 (𝑋 ) → 𝑀 → 𝐼 . In an execution without 𝑀 , 𝑋𝐷

may still occur before 𝐼 due to cache evictions. Therefore, inserting

𝑀 does not introduce the possibility of 𝑋𝐷 → 𝐼 , so this is not the

cause of the bug.

Thus, the bug cannot be caused by (1) or (2), so𝑀 cannot cause

the new bug, which is a contradiction. E

Theorem 1. If 𝐵(𝑋 )fence exists and𝑀 is a memory fence inserted

into the program such that 𝑋 → 𝐹 (𝑋 ) → 𝑀 → 𝐼 , then the insertion

of𝑀 safely fixes 𝐵(𝑋 )fence.

𝑀 fixes 𝐵(𝑋 )fence by definition and is safe to insert by Lemma 1.

Therefore, inserting𝑀 safely fixes 𝐵(𝑋 )fence. fl

4.2.2 Intraprocedural Flush Insertion. Listing 4 shows an intrapro-

cedural cache-line flush fix, in which a CLWB is inserted (Line 4) to

write the modification of pm_addr[0] to PM.

Definition Formally, a bug 𝐵(𝑋 )flush, indicating a missing flush,

occurs when a program requires 𝑋𝐷 → 𝐼 for crash-consistency, but

there does not exist a flush, 𝐹 (𝑋 ), such that 𝑋 → 𝐹 (𝑋 ) → 𝑀 → 𝐼 .

Lemma 2 It is safe to insert a flush 𝐹 (𝑋 ) into a program.We prove

this by contradiction. Assume that inserting flush 𝐹 (𝑋 ) causes a

new bug in a program. By definition, 𝐹 (𝑋 ) only performs one action:

𝐹 (𝑋 ) writes update 𝑋 to PM at some point in time after 𝐹 (𝑋 ) is

1 void update(char *addr, int idx, char val) {
2 addr[idx] = val;
3 }
4 void modify(char *addr) {
5 update(addr, ..., ...);
6 }
7 // New function generated by Hippocrates
8 void update_PM(char *addr, int idx, char val) {
9 addr[idx] = val;
10 CLWB(&addr[idx]);
11 }
12 // New function generated by Hippocrates
13 void modify_PM(char *addr) {
14 update_PM(addr, ..., ...);
15 }
16 void foo(char *vol_addr, char *pm_addr) {
17 for (int i = 0; i < INT32_MAX; i++)
18 modify(vol_addr);
19 modify(pm_addr);
20 // The above call is replaced with:
21 modify_PM(pm_addr);
22 SFENCE();
23 ***CRASH***
24 }

Listing 5: An example interprocedural fix as implemented

byHippocrates as a persistent subprogram transformation.

The functions labeled łnewž (and

colored in blue) are generated by Hippocrates during the

persistent subprogram transformation. Line 19 is replaced

with line 21 during the transformation.

executed, potentially evicting 𝑋 from the cache hierarchy, so the

new bug must be caused by 𝑋 either being written to PM or evicted

from the cache hierarchy after 𝐹 (𝑋 ). However, without executing

𝐹 (𝑋 ), 𝑋 may still be evicted from the cache, and thus also written

to PM, due to memory pressure. Thus, 𝐹 (𝑋 ) does not introduce the

possibility of 𝑋 getting written to PM or being evicted from the

cache, so 𝐹 (𝑋 ) does not cause the bug. This is a contradiction. E

Theorem 2. If 𝐵(𝑋 )flush exists and 𝐹 (𝑋 ) is a flush inserted into the

program such that 𝑋 → 𝐹 (𝑋 ) → 𝑀 → 𝐼 , then the insertion of 𝐹 (𝑋 )

safely fixes 𝐵(𝑋 )flush.

𝐹 (𝑋 ) fixes 𝐵(𝑋 )flush by definition and is safe to insert by Lemma

2, so 𝐹 (𝑋 ) safely fixes 𝐵(𝑋 )flush. ■

4.2.3 Intraprocedural Flush and Fence Insertion. Listing 1 shows

an example of a missing-flush&fence bug. These bugs are a com-

position of the two earlier classes (i.e., a missing-flush bug and

a missing-fence bug); we show that they can be safely fixed by

applying both intraprocedural fix techniques.

Definition Formally, a bug 𝐵(𝑋 )flush&fence, indicating a miss-

ing flush and fence, occurs when a program has both 𝐵(𝑋 )flush
and 𝐵(𝑋 )fence bugs, i.e., the program requires 𝑋𝐷 → 𝐼 for crash-

consistency, but there does not exist a flush 𝐹 (𝑋 ) nor a fence 𝑀 ,

such that 𝑋 → 𝐹 (𝑋 ) → 𝑀 → 𝐼 .

Theorem 3. If 𝐵(𝑋 )flush&fence exists and 𝐹 (𝑋 ) is a flush and𝑀 is a

fence that are both inserted into the program such that𝑋 → 𝐹 (𝑋 ) →

𝑀 → 𝐼 , then the insertion of 𝐹 (𝑋 ) and𝑀 safely fixes 𝐵(𝑋 )flush&fence.

Inserting 𝐹 (𝑋 ) and 𝑀 such that 𝑋 → 𝐹 (𝑋 ) → 𝑀 → 𝐼 , fixes

𝐵(𝑋 )flush&fence by definition and is safe by Lemma 1 and Lemma 2.

Therefore, inserting 𝐹 (𝑋 ) and𝑀 such that 𝐹 (𝑋 ) → 𝑀 safely fixes

𝐵(𝑋 )flush&fence. ■

406



Hippocrates: Healing Persistent Memory Bugs without Doing Any Harm ASPLOS ’21, April 19ś23, 2021, Virtual, USA

4.2.4 Interprocedural Fixes. Intraprocedural fixes are often expen-

sive. Consider Listing 5, a program in which all PM updates (i.e., the

write made by update through the call to modify) must be durable

before Line 23. Fixing this bug intraprocedurally (in update(...)) is

tempting, but leads to performance issues since update frequently

operates on volatile memory. Specifically, modify(vol_addr) on

line 18 results in a call to update(vol_addr, ..., ...), which

modifies volatile memory. So, adding a CLWB and SFENCE directly in

update(...)will lead to durability mechanisms being unnecessarily

used on non-PM regions of memory. Instead, an interprocedural

fix (i.e., outside of update) is desirable. Yet, generating an interpro-

cedural fix can be challenging; for example, an interprocedural fix

that modifies foo must determine the PM updates made by modify,

which depends on the semantics of modify (e.g., local variables used

to calculate PM addresses, etc.). For example, a correct interprocedu-

ral fix must identify the value of addr[idx] in line 2 in order to flush

all modified cachelines, but the value of idx passed to update from

modify (line 5) may depend upon user input and be challenging or

even impossible to calculate statically. In practice, developers use

their own semantic knowledge of their software to bridge this gap.

However, applying the same approach to Hippocrates breaks the

ease-of-use design principle since it would require substantial input

from developers.

To obtain the performance benefits of interprocedural fixes with-

out requiring developer annotations, Hippocrates introduces the

persistent subprogram transformation. This operation reuses the se-

mantic information which already exists in the subprogram (defined

as a function and all nested functions called by it) to identify which

modifications need to be made durable. A persistent subprogram

transformation duplicates a subprogram, inserts flushes after every

store that modifies persistent memory, and places a single memory

fence after the call site to the modified subprogram. The resulting

persistent subprogram guarantees that all the PM modifications

are flushed while minimizing the number of memory fences. Fur-

thermore, since the flushes are based on the subprogram’s original

semantics, the persistent subprogram only flushes cache lines that

are modified.

For example, modify_PM (Line 13) is the persistent subprogram

of modify. The subprogram creates and calls update_PM, a copy

of update in which all PM modifications are immediately flushed

(Line 10). In addition, a fence is added to the end of modify_PM so that

updates becomes durable. By copying the subprogram, modify_PM()

reuses the semantics of modify (e.g., local variables used to calculate

PM addresses, etc.) to ensure that all modifications are durable.

Hippocrates reuses subsets of a persistent subprogram to re-

duce the impact of persistent subprogram transformation on code

size. For example, consider if update was also called in a function,

permute (not shown). If Hippocrates performs a persistent subpro-

gram transformation on permute, the resulting persistent subpro-

gram (permute_PM) would need to be modified to call a persistent

version of update (update_PM). Since a persistent version of update

was created in an earlier persistent subprogram transformation (i.e.,

when modify_PM was created), Hippocrates modifies permute_PM

so that it directly calls the existing update_PM rather than creating

another persistent version of update for permute_PM to call (e.g.,

Hippocrates does not have to create update_PM_2). In our testing

(ğ6.3), we find that the overall code size increase is negligible (only

0.05% increase in the end binary on average).

Hippocrates attempts persistent subprogram transformations

for durability bugs that require 𝑋𝐷 → 𝐼 where 𝑋 (the modification

to PM) is in a separate function context from 𝐼 (the instruction by

which 𝑋 must be durable). For example, in Listing 5, all modifica-

tions must be made durable before Line 23 (i.e., 𝐼 is the victim of a

system crash). Hippocrates uses a heuristic (described below) to

determine which function in the call stack should be the start of the

persistent subprogram. Hippocrates considers functions on the

call stack between the function containing 𝑋 (in this case, update)

and the function on the call stack called by the function containing

𝐼 (in this case, the function being called by foo is modify) to be

candidates for the start of the persistent subprogram. Hippocrates

does not select the function containing 𝐼 (foo) nor functions which

call the function containing 𝐼 (any callers of foo) because a separate

intraprocedural fence𝑀 would need to be inserted before 𝐼 (such

that 𝑋 → 𝐹 (𝑋 ) → 𝑀 → 𝐼 would still hold), which would limit the

performance benefits of the transformation. In this case, if foowere

the start of the persistent subprogram, a fence would be needed

before the crash and at the end of foo, which adds more fences than

is needed and is undesirable for performance. Hippocrates uses

the bug finder trace (see ğ4.1) to identify 𝐼 .

We now demonstrate the safety of this transformation.

Theorem 4. If𝐵(𝑋 )𝑄 is a bugwhere𝑄 ∈ {fence, flush, flush&fence}

indicating the program requires 𝑋𝐷 → 𝐼 , for some instruction 𝐼 out-

side of the function containing 𝑋 , 𝐹 (𝑋 ) and 𝑀 are flush and fence

operations inserted into the subprogram such that 𝑋 → 𝐹 (𝑋 ) →

𝑀 → 𝐼 , then a persistent subprogram transformation safely fixes

𝐵(𝑋 )𝑄 .

By duplicating the function and replacing the call site with a call

to the duplicated function, the memory ordering behavior, durabil-

ity orderings, and all other semantics are unaltered, rendering the

initial duplication safe. Inserting fence 𝑀 at the end of the dupli-

cated function and flush 𝐹 (𝑋 ) after 𝑋 are both safe (by Lemma 1

and Lemma 2). Furthermore, these both fix 𝐵(𝑋 )𝑄 by the definition

of the bug: for 𝑄 = fence,𝑀 fixes 𝐵(𝑋 )𝑄 ; for 𝑄 = flush, 𝐹 (𝑋 ) fixes

𝐵(𝑋 )𝑄 ; and for𝑄 = flush&fence, 𝐹 (𝑋 ) and𝑀 such that 𝐹 (𝑋 ) → 𝑀

fix 𝐵(𝑋 )𝑄 . Therefore, the persistent subprogram transformation

safely fixes 𝐵(𝑋 )𝑄 . ■

4.3 Optimization of Hippocrates’s Fixes

After Hippocrates determines all bug locations and inserts in-

traprocedural fixes (Step 3, Phase 1 in Fig. 2),Hippocrates performs

łfix reductionž by combining redundant bug fixes (Phase 2) based on

source code location and operation. For example, two fixes which

introduce flush instructions 𝐹1 (𝑋 ) and 𝐹2 (𝑋 ) which both flush 𝑋

can be safely reduced to a single fix which creates flush 𝐹 (𝑋 ), as this

will still satisfy 𝑋 → 𝐹 (𝑋 ) → 𝑀 → 𝐼 . Likewise, fixes which create

memory fences 𝑀1 and 𝑀2 where 𝑋 → 𝐹 (𝑋 ) → 𝑀1 → 𝐼 and

𝑋 → 𝐹 (𝑋 ) → 𝑀2 → 𝐼 can be safely reduced to a single fix which

creates fence𝑀 , as this will still satisfy𝑋 → 𝐹 (𝑋 ) → 𝑀 → 𝐼 . After

all possible fix reductions are made,Hippocrates determines which

fixes should be łhoistedž (Phase 3), i.e., should instead be imple-

mented as interprocedural fixes using the safe heuristic described

below.
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Heuristic description. The heuristic uses a whole-program, in-

terprocedural alias analysis to determine whether to transform

an intraprocedural fix into an interprocedural fix, and if so, to

determine which level in the function call stack to make the trans-

formation. The heuristic aims to identify the persistent subprogram

transformation that is least likely to operate on volatile data in

order to avoid using persistency mechanisms on volatile dataÐthe

same intuition behind avoiding an intraprocedural fix in memcpy

(ğ3.2). Listing 6 provides an example of the calculation for Listing 5.

The heuristic first marks all pointers as łPMž or łnot PMž based

on whether or not the pointer in the source code is associated with

a PM modification event in the bug finder trace. For each bug, the

heuristic constructs a list of candidate fix locations. The possible

fix locations consist of (1) the original PM-modifying instruction

and (2) the call sites of all functions in the call stack of the original

PM-modifying instruction. If Hippocrates performs a fix at (1) the

original PM-modifying instruction, it will use an intraprocedural

fix (i.e., by adding a flush/fence after the PM-modifying instruction).

Otherwise (2) the system implements an interprocedural fix (i.e.,

performing a persistent subprogram transformation on the function

called by a call site and updating the call site to call the transformed

function). In Listing 6, the list of considered sites for the missing

flush bug on line 3 consists of lines 15, 7, and 3.

The heuristic computes a score for each fix location in the list

of possible fix locations. For the pointer argument to the PM-

modifying instruction (1) or for each pointer argument to a call

site (2), the heuristic calculates the score as the number of PM

aliases (i.e., number of aliases to pointers marked as łPMž) minus

the number of non-PM aliases (i.e., number of aliases to pointers

marked as łnot PMž). A low score for a particular call site indicates

that the call site frequently passes non-PM arguments to the called

function, and it is thus more likely that a persistent subprogram

transformation would operate on volatile memory. So, the heuristic

chooses the fix location that has the highest score as the location

to apply the interprocedural fix.

Note that the heuristic assigns a score of −∞ to call-sites that

do not pass any arguments along with all parents of this call site in

order to prevent unnecessary persistent subprogram transforma-

tions. Intuitively, if a function has no parameters, it is either directly

allocating PM or PM is being modified through global pointers; in

either of these cases, performing a persistent subprogram trans-

formation on the parameterless function or its parents provides

no potential reduction in performance penalties (i.e., accidental

durability mechanisms on volatile data) and therefore serves no

purpose.

In Listing 6, the heuristic calculates a score for each candidate fix

location. In line 3, addr aliases both vol_addr and pm_addr from foo,

so the line has 1 PM and 1 non-PM alias and a score of 0. For the call

site on line 7, the heuristic considers all pointer arguments, in this

case only addr, which has 1 PM alias, 1 non-PM alias, and a score

of 0. Finally, the call to modify on line 15 has 1 PM alias (through

pm_addr), 0 non-PM aliases, and a score of 1. Since the call to modify

on line 15 has the highest score, the heuristic performs a persistent

subprogram transformation on modify and updates line 15 to call

the updated function, resulting in the transformed program shown

in Listing 5.

1 void update(char *addr, int idx, char val) {
2 // non-PM alias: 1, PM alias: 1 = score: 0
3 addr[idx] = val;
4 }
5 void modify(char *addr) {
6 // non-PM alias: 1, PM alias: 1 = score: 0
7 update(addr, ..., ...);
8 }
9 void foo(char *vol_addr, char *pm_addr) {
10 for (int i = 0; i < INT32_MAX; i++)
11 // (This call contributes +1 non-PM alias)
12 modify(vol_addr);
13 // (This call contributes +1 PM alias)
14 // non-PM alias: 0, PM alias: 1 = score: 1
15 modify(pm_addr);
16 ***CRASH***
17 }

Listing 6: An example heuristic calculation performed on

Listing 5 to determine where to place the interprocedural

fix.

Proof sketch of heuristic correctness. Since the persistent subpro-

gram transformation is a safe operation guaranteed to fix bugs

(Theorem 4), the heuristic can insert a persistent subprogram at

any point in the call stack as long as the durability ordering re-

quirement for 𝐼 is satisfied. The heuristic will only choose from fix

locations which satisfy the durability ordering requirement for 𝐼 .

Therefore, the heuristic will insert safe and correct interprocedural

fixes. The heuristic may also insert intraprocedural fixes. Intrapro-

cedural fixes inserted by these heuristic are safe and guaranteed to

fix the bug (Theorems 1, 2, 3). The heuristic therefore inserts safe

intraprocedural and interprocedural fixesÐas these are the only

fixes produced by the heuristic, the heuristic inserts safe fixes. ■

5 IMPLEMENTATION

Hippocrates is implemented primarily as an LLVM [38, 61] com-

piler pass (comprising 3300 SLOC [65]) which locates the sources of

the bugs, computes the appropriate fixes, and applies them (Fig. 2,

Steps 2ś4). Step 1 (parsing bug finder output) is performed by

Python scripts, which account for 1100 SLOC (including some

Python scripts used for orchestrating linking and running PMDK

unit tests). We use an implementation of Andersen’s alias anal-

ysis [2, 9] for the whole-program alias analysis we perform to

compute our heuristic.

5.1 Collecting Traces and Identifying Bug
Locations

Manually parsing the output of bug traces is challenging due to

the size of these tracesÐfor example, the pmemcheck traces in the

Redis experiment are over 350MB in size. This contributes to the

difficulty of manually fixing PM durability bugs. Automating this

process (Fig. 2, Step 1), however, is fairly straightforward.

Hippocrates relies on complete and accurate traces to identify

bug locations in the LLVM bitcode , so we disable optimizations and

function inlining; this limitation only applies to trace generationÐ

a binary that includes Hippocrates fixes can be fully optimized.

Furthermore, compiling applications without optimizations for gen-

erating the PM bug trace is a non-issue with regards to performance,
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as the currently-available PM bug-finding tools are designed as of-

fline testing tools due to their high overhead (ranging from 33% [44]

to 400× [43]).

The main engineering challenge is mapping from source lines

to LLVM IR using debug information (Fig. 2, Step 2); however,

Hippocrates only requires this information for instructions that

operate on PM, which simplifies the task. In practice, we use whole-

program LLVM (WLLVM [57]) and are able to compile our appli-

cations into native machine code and into LLVM bitcode without

having to make any modifications to the applications.

In principle, Hippocrates can accept input from any PM bug find-

ing tool; it currently supports pmemcheck and PMTest. Hippocrates

requires an input trace that contains the type, binary location, and

call stack of each PM operation. pmemcheck provides this by default;

we found it easy to port PMTest to provide the same information

and expect the porting effort for other PM bug detection tools, such

as Agamotto, to be similarly easy.

5.2 Implementation of Fixes

As Hippocrates is implemented in LLVM and computes its fixes

on LLVM bitcode (Fig. 2, Step 3), all fixes are generated (Fig. 2,

Step 4) as LLVM intermediate representation (IR). Decompiling

(mapping assembly/IR instructions back to lines of higher-level

language code) is a difficult problem, however there are tools [35]

which can convert LLVM IR back into C source code. This problem

is made easier for Hippocrates, as the generated fixes are simple;

Hippocrates inserts flush and fence instructions and duplicates

functions, which are easy changes to automatically perform on

source code.

6 EVALUATION

In this section, we evaluate the effectiveness and usefulness of Hip-

pocrates. We start by validating the effectiveness of Hippocrates

(i.e., łCan Hippocrates fix bugs?ž); we then qualitatively evalu-

ate the accuracy of Hippocrates’s fixes (i.e., łAre Hippocrates’s

fixes similar to a developer’s fixes?ž); we then evaluate the per-

formance of Hippocrates’s fixes (i.e., łDoes Hippocrates create

efficient fixes?ž); finally, we discuss the offline overhead of running

Hippocrates (i.e., łHow expensive is running Hippocrates?ž).

Evaluation Targets. We evaluate Hippocrates by testing repre-

sentative state-of-the-art PM-applications and libraries. First, we

test Hippocrates on PMDK [14] libraries from Intel, as PMDK

is the most active and well-maintained open-source PM project,

which means it has a large set of validated bugs and fixes that we

can use to assess the accuracy of Hippocrates. We additionally

evaluate Hippocrates using three real-world PM applications to

test the scalability and performance of Hippocrates’s fixes. We

select memcached-pm [17], a PMDK-port of memcached, a popu-

lar high-performance memory caching server, that is maintained

by Lenovo. We also test RECIPE’s P-CLHT index [62], a state-of-

the-art persistent and recoverable index representing a research

prototype1. Both memcached-pm and P-CLHT contain bugs which

are detectable by pmemcheck, so we use them to evaluate the ef-

fectiveness of Hippocrates on larger systems. Finally, we test

1RECIPE contains multiple persistent indices. However, we only test the P-CLHT index
because the other indices are not persistent.

Redis-pmem [15], a PMDK-port of Redis, a popular in-memory

database and memory caching service, that is maintained by Intel.

pmemcheck does not detect any bugs in Redis-pmem, so we use Redis-

pmem as a baseline to compare the performance of Hippocrates’s

fixes against a manually-developed bug-free implementation. We

selected these targets as they are representative of the state-of-

the-art PM-applications and libraries and have been tested in prior

work [43, 44, 50].

Evaluation Workloads. We evaluate Hippocrates’s effectiveness

and accuracy on PMDK using the failing unit tests associated with

the issues identified in our initial study of durability bugs and

fixes (ğ3). We test P-CLHT using an example application used in

RECIPE’s evaluation, which manipulates the basic structure of the

index through standard insertion, deletion, and lookup operations.

We use YCSB [13], a popular key-value store set of workloads, to

test the Redis-pmem and memcached-pm server daemons.

Experimental Setup. We run all of our experiments on a server

with a Intel® Xeon® Gold 6230 CPU @ 2.10GHz. The server is

equipped with 4 Intel Optane DC NVDIMMs, each with 128GB

capacity. The server is also equipped with 256 GB of DRAM.

6.1 Effectiveness

From our original study of 26 PMDK bugs, we attempt to reproduce

the documented bugs by using the specified revision of PMDK

specified in the initial bug report alongwith an up-to-date version of

pmemcheck. Using thismethodology, we are able to reproduce 11 bugs

of the bugs in our study. To augment our evaluation, we also find 2

previously undocumented bugs in P-CLHT [42] and 10 previously

undocumented bugs in memcached-pm. We are able to find all 23

of these bugs using pmemcheck, as all of these systems use PMDK

libraries for their persistence mechanisms (libpmem, libpmemobj)

and PMDK is properly instrumented to allow for pmemcheck to detect

durability bugs.

Hippocrates automatically repairs all 23 bugs we find and re-

produce. We validate Hippocrates’s fixes by re-running pmemcheck

against the repaired programs to determine that they no longer con-

tain durability bugs. We further re-run the 11 bugs through PMDK’s

unit test framework and confirm that all unit tests succeed.

Effectiveness of the heuristics. Wealso compare the Full-AAheuris-

tic to the Trace-AA heuristic. Both of these heuristics produced the

same set of fixes on all the systems we test, resulting in identical

end binaries and thus resulting in fixes with identical performance.

6.2 Accuracy

We present a qualitative comparison between Hippocrates’s fixes

and developer fixes for the PMDK unit tests we were able to repro-

duce in Fig. 3. 8 of the 11 fixes (73%) were functionally identical

to the PMDK developer fixes (issues #447, #458, #459, #460, #461,

#585, #942, and #945). In all of these cases, Hippocrates applies an

interprocedural fix which functions identically to the developer fix,

where the developers either used a persistent version of a function

or inserted a specialized flush function to implement the interpro-

cedural fix. We discuss the differences in the other 3 fixes (27%)

below.
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Issue #s
Hɪᴘᴘᴏᴄʀᴀᴛᴇs 
fix Developer fix

Qualitative fix 
comparison

452, 940, 943
Intraprocedural 
flush (clwb)

Interprocedural 
flush

Functionally 
equivalent; PMDK's 
fix is more portable

447, 458, 459, 
460, 461, 585, 
942, 945

Interprocedural 
flush+fence

Interprocedural 
flush+fence

Functionally 
identical

Figure 3: Qualitative comparison of Hippocrates fixes and

PMDK developer fixes.

Load A B C D E F
Workload

0

5000

10000

15000

20000

25000 RedisH− intra Redis-pm RedisH− full

Figure 4: Performance of the three persistent versions of Re-

dis with 95% confidence intervals. Hippocrates is able to

provide fixes which are on-par with manual approaches.

Direct versus indirect flushing. For issues #452, #940, and #943,

Hippocrates generates an intraprocedural flush fix, whereas PMDK

developers insert a libpmem flush function. Hippocrates’s fix pro-

duces correct functionality, as the data that needs to be flushed

is within the size of a single cache line, however the fix gener-

ated by PMDK developers is potentially more machine-portable,

as libpmem flush functions determine which kind of cache line

function instructions are available at runtime. Hippocrates could

be modified to insert more generic fixes with some engineering

effort, but some high-performance applications may prefer direct

fixes instead.

6.3 Performance of Fixes

We want to ensure that Hippocrates does not incur any undue

performance degradation. Through our testing, we found that

pmemcheck did not detect any bugs in Redis-pmem [15], indicating

that this port of Redis had been thoroughly tested and debugged by

developers. This makes Redis-pmem a good baseline to compare

Hippocrates’s fixes against a system with all manually-developed

durability mechanisms.

We perform a case study of Redis-pmem to compareHippocrates’s

abilites to the hand-tuned fixes of PMDK developers. We first re-

move all flushes in Redis-pmem. We leave memory fences, however,

in order to preserve semantic ordering information which is re-

quired for proper crash consistency. We then run pmemcheck over

this non-persistent version of Redis to generate a bug trace which

can be consumed by Hippocrates. We then run Hippocrates

over this trace to generate a version of Redis-pmem which has

PMDK 
(Unit Tests)

P-CLHT
(RECIPE)

memcached-
pm Redis-pmem

Combined
KLOC 37 48 54 203
Time 6s 2s 2.2s 5m09s
Memory 345MB 148MB 147MB 870MB

Figure 5: Offline Overhead of Hippocrates.

all of its persistence mechanisms auto-generated by Hippocrates

(RedisH-full). We confirm that pmemcheck does not detect any durabil-

ity bugs in RedisH-full (as is the case with our Redis-pmem baseline).

We also create a persistent version of Redis which fixes the

persistence problems of the non-persistent Redis without using

Hippocrates’s heuristic (RedisH-intra). By disabling Hippocrates’s

heuristic, Hippocrates only applies intraprocedural fixes. While

such fixes are sufficient for fixing durability bugs, they may also

impact performance. Hippocrates applies 50 fixes to make Redis

persistent. In RedisH-intra, all of these fixes are intraprocedural.

In RedisH-full, 12/50 (24%) of the fixes are interprocedural (10 are

implemented 1 function above the PM modification and 2 are 2

functions above).

To compare the performance of these three persistent versions

of Redis, we run each version with YCSB workloads [13] using a

popular YCSB driver [12]. We use an entry and operation count

of 10 thousand and run 20 trials for each workload. We report the

throughput for all standard workloads (AśF) plus the time for the

łloadž operation (which sets up the initial state of the database for

the other workloads). We show the results of this case study in

Fig. 4.

RedisH-full provides equal or slightly better performance than

Redis-pmem (7% higher throughput on the łloadž operation, which

is the workload with the most durability operations, with the other

workloads having equal performance within the 95% confidence

intervals). This demonstrates that the fixes provided by RedisH-full
are comparable to manual developer strategies for creating durable

PM applications. Hippocrates’s ability to provide this quality of

fixes is due to its analysis that enables the use of interprocedural

fixes, as RedisH-full is between 2.4ś11.7× faster than RedisH-intra.

6.4 Hippocrates’s Overhead

Runtime Overhead. We measure the overhead of Hippocrates

on all of our target systems and present the results in Fig. 5. This

overhead is the offline overhead, meaning that it is only experienced

during offline testingÐHippocrates itself does not incur additional

overhead (other than the overhead of the durability mechanisms it

creates, see ğ6.3). This overhead is for fixing all bugs present in each

system. Hippocrates has low spatial and temporal overhead (at

most taking around 5 minutes to run and less than 1GB of memory),

which allowsHippocrates to be easily integrated into a developer’s

workflow.

Impact on Binary Size. One potential consequence of the persis-

tent subprogram transformation is increased code bloat due to func-

tion duplication, which could potentially lead to worse instruction

cache (i-cache) performance. To mitigate this effect, Hippocrates
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performs persistent subprogram transformation once for each func-

tion and reuses transformations across interprocedural fixes if pos-

sible. The Redis experiment (ğ6.3) shows that Hippocrates creates

minimal code bloat: Hippocrates introduces only 105 new lines of

LLVM IR to flush-free Redis (an increase of 0.013%), which results

in a binary that is only 4kB larger than the manually-developed

Redis-pmem (an increase of 0.05%). The performance results from

the Redis experiment (ğ6.3) suggests that the performance benefits

from interprocedural fixes outweigh the effect of additional i-cache

pressure.

6.5 Results Summary

In our evaluation, we showed that Hippocrates is effective, fixing

all of the 23 bugs we found and reproduced using pmemcheck (ğ6.1).

Hippocrates is also accurate, fixing 8/11 PMDK unit test bugs in

ways functionally identical to developer fixes, while fixing 3/11 bugs

in functionally equivalent ways (ğ6.2). Hippocrates’s fixes also

yield good performance, equalling or exceeding the performance

of manually-developed durability mechanisms (ğ6.3). Finally, we

show that Hippocrates has low offline and size overhead (ğ6.4).

7 DISCUSSION

Here we discuss some qualitative details about Hippocrates’s ca-

pabilities.

Fixing other kinds of PM bugs. Hippocrates only targets PM

durability bugs (i.e., missing flush/fence bugs). By only targeting

durability bugs,Hippocrates can take input from thewidest variety

of PM bug finding tools and fix these critical correctness bugs.

Many PM bug finders report PM performance bugs (i.e., extrane-

ous flush/fence bugs). However, fixing performance bugs (i.e., by

removing flushes/fences) requires information about all possible

execution paths (e.g., a flush may be extraneous in one execution

and required for correctness in another). Existing PM bug detection

tools cannot explore all execution paths of a large application, so it

would be impossible to safely fix PM performance bugs except for

in the simplest cases (e.g., redundant flush instructions in the same

basic block). We therefore avoided trying to automatically fix PM

performance bugs to avoid compromising Hippocrates’s łdo no

harmž design philosophy.

Some PM bug finders can also report PM ordering bugs (e.g.,

PMTest, XFDetector, and Agamotto), which are crash consistency

bugs caused by the improper ordering of durable updates in PM (e.g.,

𝐴 is persisted before 𝐵, but 𝐵 should have been persisted before 𝐴,

and so if the program crashes after persisting 𝐴, the program is left

in an inconsistent state). Fixing such bugs often requires reordering

sequences of memory updates (e.g., moving the store to 𝐵 before

𝐴), which can have unintended side effects (e.g., memory races in

concurrent programs). Safely fixing these PM ordering bugs would

require PM bug finders to output information about the safety of

reordering memory operations (no existing PM bug finder can do

this) or would require developers to provide safety specifications to

Hippocrates to encode this information. These approaches violate

Hippocrates’s design goals (providing safe fixes and providing

automatic fixes, respectively), so Hippocrates does not support

fixing such bugs.

Automatically providing durability. The results of the Redis ex-

periment (ğ6.3) raise the question of whether or not Hippocrates

can automatically provide durability to applications. Hippocrates

not only łdoes no harmž, but Hippocrates’s fixes are provably

correct (Theorems 1, 2, 3, and 4). However, Hippocrates cannot

currently provide automated durability because Hippocrates can

only fix bugs that are identified by an automated PM bug detec-

tion tool; current tools struggle to scale to entire programs and

provide limited support for identifying all missing-fence durability

bugs. Hippocrates can still provide some automation, howeverÐif

a developer only specifies ordering points (i.e., memory fences),

Hippocrates can automatically inject cache line flushes when used

in conjunction with a PM bug finder such as pmemcheck. This method

of automation is essentially how we performed our experiment on

Redis-pmem (ğ6.3).

8 RELATED WORK

PM Programming Frameworks. As programming for PM using

CPU primitives can be especially tedious and error-prone, prior

work has examined many different frameworks and APIs for mak-

ing PM programming easier and more intuitive. These range from

specialized libraries (such as PMDK [14], NVM-Direct [4], and Pan-

golin [67]), to modified memory allocators (like Mnemosyne [64]

and NV-Heaps [10]) to PM-specific language extensions (such as

NVL-C [18] and NVM-Direct’s preprocessor [4]). Various works

also focus on logging mechanisms [6, 8, 20, 23] in PM to provide

low-overhead memory consistency. However, these works do not

prevent durability bugs, as APIs can be misused or can contain

internal bugs (as we show in ğ3).

PM Debugging Tools. As discussed in ğ2.2, the challenges of de-

bugging PM durability bugs has spurred many recent works in

PM-specific bug detection [59]. PMTest [44] is a trace-validation

framework, where each PM operation produces a trace event which

is asynchronously validated to detect a durability bug. Some other

tools are based on binary instrumentation. pmemcheck [55] is a binary

instrumentation tool designed by Intel for PMDK, which is based

on valgrind. Persistency Inspector [51] is another tool developed

by Intel, based on proprietary binary instrumentation included in

Intel Parallel Studio XE. XFDetector [43] is a fault-injection tool

based on Intel PIN, which is specifically tailored at finding crash

consistency bugs caused by buggy PM update orderings. Finally,

Agamotto [50] is a symbolic-execution tool based on KLEE [5].Ag-

amotto builds a symbolic model of PM on top of KLEE to provide

thorough and automated discovery of PM durability bugs across a

variety of PM applications and PM libraries.

General-Purpose Automated Program Repair. Many systems are

able to perform general-purpose program repair and solve any

class of faults by using heuristics [39, 40, 58]. In particular, genetic

programming (or Genetic Improvement [54]) is an increasingly

popular method for automatic program repair. GenProg [39, 40], for

example, uses a genetic programming method to mutate programs

to generate fixes for off-the-shelf programs. Janus Manager [21]

and SapFix [47] use genetic programming at industry scale, with

SapFix supporting many of Facebook’s core systems.
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Automated Concurrency Bug Repair. Work on automatically re-

pairing concurrency bugs originally inspired us to look for more

provably-correct ways to fix PM bugs. AFix [33], for example, specif-

ically targets atomicity violations, and is able to correctly fix a

majority of the bugs it targets and reduce the occurrence of bugs

in all other cases. CFix [34] targets a wider variety of concurrency

bugsÐCFix accepts bug reports from a variety of concurrency bug

finders [52] and produces fixes which are rigorously tested in a

principled manner to provide some correctness guarantees.

9 CONCLUSION

Persistent memory (PM) technologies aim to revolutionize the

storage-memory hierarchy with disk-like durability at near-DRAM

access latencies. However, even with specialized PM-bug finding

tools, fixing durability bugs is challenging. We studied 26 PM bugs

and their fixes and found that PM durability bugs can be fixed with

fixes that are guaranteed to be safe. Based on our insights, we devel-

oped Hippocrates, an automated PM bug fixing tool guaranteed

to łdo no harm.ž We used Hippocrates to automatically fix all

23 durability bugs we found and reproduced. We further showed

that Hippocrates creates durability fixes that rival and exceed the

performance of manually-developed durable code.
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A ARTIFACT APPENDIX

A.1 Abstract

We provide the public repository for Hippocrates, which is avail-

able on GitHub. Hippocrates’s artifact includes instructions for

building and running Hippocrates, as well as scripts and instruc-

tions used to reproduce the core results from our paper.

A.2 Artifact Check-List (Meta-Information)

• Program: python3.6, llvm-8

• Compilation: WLLVM, clang-8, clang++-8

• Run-time environment: Ubuntu 20.04.1 LTS

• Hardware: One Intel x86 machine with Intel Optane DC Persis-

tent Memory Modules.

• Experiments: Fixing PMDK, RECIPE, and memcached-pmem

bugs; Redis-pmem performance analysis

• Howmuch disk space required (approximately)?: 2 GB on

a PM file system partition

• How much time is needed to prepare workflow (approxi-

mately)?: <1 hour

• How much time is needed to complete experiments (ap-

proximately)?: ∼10 hours

• Publicly available?: Yes (GitHub repository: https://github.c

om/efeslab/hippocrates/)

• Code licenses (if publicly available)?: MIT License

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.446

4894

A.3 Description

The artifact contains all of Hippocrates’s source code as well as

the instructions required to build and run Hippocrates and its

dependencies. The README.md file at the root of the repository

contains all of the instructions used in the Artifact Evaluation

process.

A.3.1 How to Access. Hippocrates is available at our public GitHub

repository (see appendix A.2). The archived version, which was

used in the Artifact Evaluation process is available from Zenodo

(see appendix A.2).

A.3.2 Hardware Dependencies. Running the performance exper-

iments (ğ6.3) requires access to Intel Optane DC Persistent Mem-

ory modules. This hardware is not required to build and run Hip-

pocrates, but it is required for accurate performance results.

A.4 Installation

Users first install all external dependencies (Python dependencies

are located in the requirements.txt file in the root directory of the

archive and all other dependencies are located in install-deps.sh).

Users then install all submodule dependencies and then compile

Hippocrates and all of the test applications. The detailed instruc-

tions for this process are in the main README under the łartifact

functional criteriaž (located here: https://github.com/efeslab/h

ippocrates/blob/artifact-evaluation/README.md#artif acts-

functional-criteria).

A.5 Experiment Workflow

Users first install and build Hippocrates and all dependencies. The

test applications are compiled usingWLLVM so that a native binary

and LLVM bitcode are generated. The test applications are then

run under pmemcheck to generate traces and PM bug information

(this is later used by Hippocrates to fix the PM bugs found in the

programs). The trace and the LLVM bitcode from the application are

used by Hippocrates to generate new LLVM bitcode with added

fixes for all the detected bugs. The new bitcode is then compiled

into a native binary. Detailed instructions are provided in the main

README.

A.6 Evaluation and Expected Results

The artifact provides instructions and utilities for reproducing the

main components from Hippocrates’s evaluation (ğ6):

• Fixing all previously reported bugs (ğ6.1)

• The Redis-pmem performance experiments (ğ6.3)

• Hippocrates’s overhead (ğ6.4)
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Detailed instructions for reproducing this instructions are in-

cluded in the main README under the łresults reproducedž sec-

tion (https://github.com/efeslab/hippocrates/blob/artifact-

evaluation/README.md#results-reproduced). These instructions

are also available in the same location in the Zenodo archive.

A.7 Notes

We are endeavoring to maintain Hippocrates as an open-source

tool. Any issues that are found with the available artifact or any

needed clarifications can be submitted as GitHub issues on our

repository (https://github.com/efeslab/hippocrates/issues).
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