CoDR: Computation and Data Reuse Aware

COMPUTER SCIENCE
& ENGINEERING

UNIVERSITY OF MICHIGAN

1. Introduction |

n this work, we alleviate the computation resources and mem-
ory space required for the Deep Neural Networks (DNNSs) infer-
ence. Figure 1 shows three complementary computation reuse
techniques proposed in [2, 1, 4]. CoDR presents a novel CNN
dataflow that employs scalar-matrix multiplication to pave the way
for the Universal Computation Reuse that exploits weight sparsity,
repetition, and similarity simultaneously. Next, we customize Run-
Length Encoding (RLE) scheme for the data values required for this
technique. Finally, since weights are compressed, accesses to the
on-chip weights are less costly than the accesses to the activations.
Thus, we design the loop ordering of the CoDR dataflow to reduce
the number of costly accesses to the input and output features.

@%N% C:100% L, ©
e o} , ®
[0C S| [0001112449] a /| [11-
0 i w4 <>
2 3 6 1 - . 8 5 7 / ,
\2 % % ¢ Sort

%.

/CORN . ™\ /CoDR .)
C: 61% ¥ (b) C: 5% l, (i)

\ 020306050708/ m

Figure 1: CoDR eliminates ineffectual (Densify), repet/tlve (Un/fy),
and similar (Differential) weights. C is the ratio of computation after
applying each operation to the GoogleNet model [7].

‘ 2. Computation Reuse |

2.1 Weight Sparsity

Figure 1c shows that SCNN [1] exploits weight sparsity (94% in the
8-bit VGG 16 model [6]) by removing zero weights (red colors).

2.2 Weight Repetition

While DNN inference requires millions of weights, unique weights
are bounded by the data bit-length. This results in computation re-
dundancy (39% in the 8-bit GoogleNet [7] weights) which is exploited
by CORN [5] and UCNN [2] using Unification (same colors).

2.3 Differential Computation

Zero and redundant weights drop significantly to less than 10.0% in
the 16-bit fixed-point weights. As an alternative, Differential com-
putation operates on the differences of the weights rather than the
absolute operands. ANN [4] exploits differential computation.

2.4 Universal Computation Reuse

We introduce universal computation reuse that employs three com-
plementary computation reuse techniques, i.e., Densification, Unifi-
cation, and Differential Computation simultaneously (Figure 1i).

‘ 3. Data Reuse |

3.1 Scalar-Matrix Multiplication Dataflow

Figure 2 shows that CNN layer inference can be calculated by two
operations. (a) 3D convolutions is conventionally used by CNN
accelerator. Instead, (b) CoDR employs Scalar-matrix Multiplica-
tion as it breaks the dependency between the individual weights
and enables us to exploit the correlation in the linear weights (c).

3.2 Dataflow Loop Ordering

Since CoDR employs novel RLE schemes to compress the weights,
accesses to the weights (1.69 bit/weight) are less costly than access
to the input or output features (8 bit/feature). CoDR reduces the
number of on-chip accesses to the input and output features by us-
ing an input and output stationary dataflow whose loop ordering is
illustrated in Figure 4a. In contrast, UCNN [2] and SCNN [1] in-
crease the number of costly accesses to the features.

Design Automation Conference, Work-in-Progress Session, San Francisco, December 2021.

CNN Accelerator

Alireza Khadem, Haojie Ye, Trevor Mudge
Computer Science and Engineering, University of Michigan

Ann Arbor, Michigan, USA

{arkhadem, yehaojie, tnm}@umich.edu

4 S WelghtFllter[IL e (a)‘/ 1 N
(1] | 2] s 70] 2]
1 7 7
[4]
0 8| 8 13
7/
. Input Features’)| 14| 9 | 20
4 A

Output

0
0 Features
0

v
Co
) V2166
0
g1 7] 0] 7|9 |Ro
0)
Weight Filter [2] CK (b)\s 8 J

11| [21| [31| (4] | [51| [61[[7]] [8] 1] 21] Bl 1| 1] 1] 171] 81) ! - :
@3] oj2]1]o0]olo 2_) Oo] 115 ol B o [oD:(C) Linear WEIght9

Figure 2: (a) 3D convolution and (b) scalar-matrix multiplication.

3.3 Run-Length Encoding

RLE Encoder compresses three types of data: weight A values,
output indexes, and the count of unique weight repetitions.

4 i) ! encoded(WelghtAs)—)
L (01 01 108 000001010

X ”,—V 2b|ts 8 bits
-7 t f

-T low-precision full-precision
_ J

'[encoded(Repetitions) =

[11 01 10 01]
2 bits

—
=
—
—
—
—-—
. -
—
—

\ \ ! encoded(Indexes) =
79 - [017 114 1 10000 01010 101 101]
_ | STy 2 bitsJ 4 bits J

2 - T !

low-precision full-precision
[3 2], . P P)

Figure 3: Customized run-length encoding of the Figure 1i example.

‘ 4. CoDR Architecture |

4.1 High-level Architecture

Figure 4a illustrates CoDR architecture that contains input, weight,
and output SRAM cells, and Processing Units (PUs). Since all PUs
work on the same region of the input/output features, an input reg-
ister file (RF) shared between all PUs caches input features.

4.2 Processing Unit Architecture

A PU (Figure 4b) has Multiplier and Accumulator Processing Ele-
ments (MPE and APE) for scalar-matrix multiplication and accumu-
lation (Figure 4c), and an interconnection network to connect them.

4)

/ Bt Input (3) (4 Output
g‘\\ @ < SRAM
2| ////// | & /e @

AK - T
é’_/’ § | /T C/l/ \ @ Ro M
C
T , » & TN Tco
,'E,I/ 7 - ///)/ N M
 / —|&"| T
7 °g i T (Input J F@ %O
POy)E l\l TR| / _ SRAM _ S X7 4 % /

PU #3} [PU #4
& /
A

£ 4 4

®
=
=]
(o]

_|
g
= "0

m
\\
nterconnection

Network
%

7+ 2

o
g
_|
8

O}:I_L

>l

(e

S=g

N

nigue weight As
Indexes

@9 (Weight SRAM]

LIVE]F om We ghtSRAM‘ | From In ptRF‘

] ~ \ ~N
. | PU#1 [(b) PU Architecture | | [(a) High-level Archltecture<
-1 i .
[T Dasee e } MPE . | From Interconnection Network
» Repetition Count » ==0 > Reg. "
Sign
Shift En. r Ext. 0l
[2 1]

> Scalar-Matrix | Matrix-Matrix

SO XN

Multiplier |

v

i 59 10 5
2 i ey = 3 Matrix-Matrix : Y
Shift No. Accumulator : ‘ Partial Results ’
] I
[0] Y MUX MLP Arra !
| | s . ! Output RF
> Indexes [4 1] v ! | p
| | .
[2 1] Reg.
Weight RF L) +

=

> Unique Weight A ——[8 1]— Adder

4y 1hduj wou4

From Weight SRAM

(6]
w

Selector

| ! Pooling & AF
Partial : APE
|

Results

xapu| —

\ 4
To Output SRAM

-
-

To Interconnection Network [Logic | Multiplexer | Register

(c) MPE/APE Architecture]

Figure 4: (a) High-level, (b) PU, (c) MPE and APE architecture.

UNIVERSITY OF

MICHIGAN

5. Evaluation |

We compare CoDR with two compressed CNN accelerators: SCNN
[1] and UCNN [2]. We evaluate three CNN models [3, 6, 7] with dif-
ferent weight densities (D) and number of unique weights (U).
Customized RLE encoder compresses the weights by 1.69x and
2.80x more than UCNN [2] and SCNN [1]. Besides, CoDR dataflow
reduces SRAM accesses by 5.08x and 7.99x by decreasing the
number of costly accesses to the input and output. Finally, Fig-
ure 5 shows that CoDR consumes on average 3.76x and 6.84x less
energy relative to UCNN [2] and SCNN [1].

15 OALU

Crossbar
Buffer
SRAM
B DRAM

=
N

(o)

(@)

Energy (m))

w
I

U'I

6%
41

D: 73% : 73% :37%

U: 4 U:8 U: 16

\l

o
)
o
O
D:
U:

o W UCNN

o
()
o
O
D
U

I\)

Figure 5: Energy consumption analysis across different weight den-
sities and number of unique weight of the GoogleNet model [7].

6. Conclusion |

n this work, we study three complementary computation reuse opti-
mizations for the CNN accelerators and introduce Universal Compu-
tation Reuse that exploits weight sparsity, repetition, and similarity
simultaneously. We propose a dataflow that employs scalar-matrix
multiplication to apply Universal Computation Reuse to the convolu-
tional layers. CoDR dataflow makes use of data reuse to minimize
the on-chip memory access. We reduce the cost of each weight
memory access by customizing run-length encoding based on the
weight values. The loop ordering of the CoDR dataflow also re-
duces the total number of accesses to the input and output features
by keeping them stationary in the processing elements. Our eval-
uation over three CNNs with different weight densities and number
of unique weights shows that compared to two recent compressed
CNN accelerators with the equivalent area of 2.85 mm?, CoDR re-
quires 1.69x and 2.80x less DRAM access, reduces SRAM access
by 5.08x and 7.99x, and consumes 3.76x and 6.84x less energy.

References |

1]J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. En-
right Jerger, and A. Moshovo, “Scnn: An accelerator

for compressed-sparse convolutional neural networks,” ACM
SIGARCH Computer Architecture News, 2017 .

[2] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. Fletcher,
“Ucnn: Exploiting computational reuse in deep neural networks
via weight repetition,” in 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA).

[3] A. Krizhevsky, |. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems 25, 2012.

[4] H. Mahdiani, A. Khadem, A. Ghanbari, M. Modarressi, F. Fattahi-
Bayat, and M. Daneshtalab, “ANN: Power-efficient neural net-
work acceleration using differential weights,” IEEE Micro, 2019.

[5] H. Mahdiani, A. Khadem, A. Yasoubi, A. Ghanbari, M. Modar-
ressi, and M. Daneshtalab, “Computation reuse-aware accelera-

tor for neural networks,” Hardware Architectures for Deep Learn-
ing, 2020.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” arXiv preprint, 2014.

[71C. Szegedy, Wei Liu, Yangqging Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going
deeper with convolutions,” in 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015.

