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1. Introduction |

n this work, we alleviate the computation resources and mem-
ory space required for the Deep Neural Networks (DNNSs) infer-
ence. Figure 1 shows three complementary computation reuse
techniques proposed in [2, 1, 4]. CoDR presents a novel CNN
dataflow that employs scalar-matrix multiplication to pave the way
for the Universal Computation Reuse that exploits weight sparsity,
repetition, and similarity simultaneously. Next, we customize Run-
Length Encoding (RLE) scheme for the data values required for this
technique. Finally, since weights are compressed, accesses to the
on-chip weights are less costly than the accesses to the activations.
Thus, we design the loop ordering of the CoDR dataflow to reduce
the number of costly accesses to the input and output features.
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Figure 1: CoDR eliminates ineffectual (Densify), repet/tlve (Un/fy),
and similar (Differential) weights. C is the ratio of computation after
applying each operation to the GoogleNet model [7].

‘ 2. Computation Reuse |

2.1 Weight Sparsity

Figure 1c shows that SCNN [1] exploits weight sparsity (94% in the
8-bit VGG 16 model [6]) by removing zero weights (red colors).

2.2 Weight Repetition

While DNN inference requires millions of weights, unique weights
are bounded by the data bit-length. This results in computation re-
dundancy (39% in the 8-bit GoogleNet [7] weights) which is exploited
by CORN [5] and UCNN [2] using Unification (same colors).

2.3 Differential Computation

Zero and redundant weights drop significantly to less than 10.0% in
the 16-bit fixed-point weights. As an alternative, Differential com-
putation operates on the differences of the weights rather than the
absolute operands. ANN [4] exploits differential computation.

2.4 Universal Computation Reuse

We introduce universal computation reuse that employs three com-
plementary computation reuse techniques, i.e., Densification, Unifi-
cation, and Differential Computation simultaneously (Figure 1i).

‘ 3. Data Reuse |

3.1 Scalar-Matrix Multiplication Dataflow

Figure 2 shows that CNN layer inference can be calculated by two
operations. (a) 3D convolutions is conventionally used by CNN
accelerator. Instead, (b) CoDR employs Scalar-matrix Multiplica-
tion as it breaks the dependency between the individual weights
and enables us to exploit the correlation in the linear weights (c).

3.2 Dataflow Loop Ordering

Since CoDR employs novel RLE schemes to compress the weights,
accesses to the weights (1.69 bit/weight) are less costly than access
to the input or output features (8 bit/feature). CoDR reduces the
number of on-chip accesses to the input and output features by us-
ing an input and output stationary dataflow whose loop ordering is
illustrated in Figure 4a. In contrast, UCNN [2] and SCNN [1] in-
crease the number of costly accesses to the features.
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Figure 2: (a) 3D convolution and (b) scalar-matrix multiplication.

3.3 Run-Length Encoding

RLE Encoder compresses three types of data: weight A values,
output indexes, and the count of unique weight repetitions.
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Figure 3: Customized run-length encoding of the Figure 1i example.

‘ 4. CoDR Architecture |

4.1 High-level Architecture

Figure 4a illustrates CoDR architecture that contains input, weight,
and output SRAM cells, and Processing Units (PUs). Since all PUs
work on the same region of the input/output features, an input reg-
ister file (RF) shared between all PUs caches input features.

4.2 Processing Unit Architecture

A PU (Figure 4b) has Multiplier and Accumulator Processing Ele-
ments (MPE and APE) for scalar-matrix multiplication and accumu-
lation (Figure 4c), and an interconnection network to connect them.
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Figure 4: (a) High-level, (b) PU, (c) MPE and APE architecture.
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5. Evaluation |

We compare CoDR with two compressed CNN accelerators: SCNN
[1] and UCNN [2]. We evaluate three CNN models [3, 6, 7] with dif-
ferent weight densities (D) and number of unique weights (U).
Customized RLE encoder compresses the weights by 1.69x and
2.80x more than UCNN [2] and SCNN [1]. Besides, CoDR dataflow
reduces SRAM accesses by 5.08x and 7.99x by decreasing the
number of costly accesses to the input and output. Finally, Fig-
ure 5 shows that CoDR consumes on average 3.76x and 6.84x less
energy relative to UCNN [2] and SCNN [1].
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Figure 5: Energy consumption analysis across different weight den-
sities and number of unique weight of the GoogleNet model [7].

6. Conclusion |

n this work, we study three complementary computation reuse opti-
mizations for the CNN accelerators and introduce Universal Compu-
tation Reuse that exploits weight sparsity, repetition, and similarity
simultaneously. We propose a dataflow that employs scalar-matrix
multiplication to apply Universal Computation Reuse to the convolu-
tional layers. CoDR dataflow makes use of data reuse to minimize
the on-chip memory access. We reduce the cost of each weight
memory access by customizing run-length encoding based on the
weight values. The loop ordering of the CoDR dataflow also re-
duces the total number of accesses to the input and output features
by keeping them stationary in the processing elements. Our eval-
uation over three CNNs with different weight densities and number
of unique weights shows that compared to two recent compressed
CNN accelerators with the equivalent area of 2.85 mm?, CoDR re-
quires 1.69x and 2.80x less DRAM access, reduces SRAM access
by 5.08x and 7.99x, and consumes 3.76x and 6.84x less energy.
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