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1 Introduction

The ability to undo operations is a standard and useful feature in most interactive single-user
applications. For instance, the availability of an undo facility in editors is useful for reversing
erroneous actions [19]. It can also help reduce user frustration with new systems [14], particularly
if those systems allow users to invoke commands that can modify system state in complex ways.
The availability of undo can also encourage users to experiment, by acting not only a safety net but
also by allowing users to try out di�erent approaches to solving a problem via backtracking [39].

In recent years, there has been a growing interest in the area of computer-supported cooperative
work, or groupware, the goal of which is to provide support for collaborative work among users in
a shared workspace [2, 3, 11, 25, 36]. An undo facility can be important in groupware systems for
several reasons. Groupware systems, whether used by an individual or by a group, should provide
abilities, including undo, comparable to similar single-user tools. Another reason is that having an
ability to undo in a group environment may provide freedom to interact and experiment in a shared
workspace. A shared document is often used as a group white-board during (possibly distributed)
meetings. If the current state of the document contains important information, people may have
inhibitions about making changes because the work is not solely theirs. Knowing that their work
can be undone without undoing other users' work may encourage group members to freely express
their ideas in the document.

Compared to single-user applications, performing undo in groupware applications provides tech-
nical challenges in following areas: selecting the operation to be undone, determining what operation
will result in a correct undo, and dealing with dependencies between di�erent users' operations.
First, in a group environment, there may be parallel streams of activities from di�erent users.
When work on a shared document occurs in parallel, users usually expect an undo to reverse their
own last operation rather than the globally-last operation, which may belong to another user. An
undo framework for groupware systems needs to allow selection of operation to undo based on
who performed it. Second, once the correct operation to be undone is selected, the operation to
execute to e�ect an undo has to be determined. Simply executing the inverse of the operation to
be undone may not work because of modi�cations done by other users to the document. Finally,
if multiple users interleave their work in the same region of a document, it may not be possible to
undo one user's changes without undoing some of the other users' changes. In this case, there are
dependencies between the changes which need to be taken into account during an undo.

Many groupware applications have been built that support multi-user work on a shared docu-
ment, e.g, Grove [9], ShrEdit[26], CES [17], and MACE [28]. None, as far as we are aware, provide
an undo facility that addresses all the above issues. Those applications that do support undo
usually only provide a global undo facility rather than a per-user undo facility. MACE [28] does
support a simple form of per-user undo, allowing users to undo their own modi�cations made to
a section provided they acquire a lock on the section prior to making modi�cations and do not
release the lock prior to the undo.

This paper presents a framework for implementing undo in groupware applications that ad-
dresses the above-mentioned technical issues. The framework is quite general, being applicable to
a variety of documents types, such as text, graphics, and multimedia. The proposed techniques
have been incorporated into DistEdit [21, 22], a group text-editor toolkit, and into a version of
SASSE [5], a group editor. The basic ideas of our undo framework were presented in an earlier
version of this paper [32]. This paper makes several additional contributions. First, it includes a
detailed discussion of properties that editing operations should satisfy in order to help provide cor-
rect undo behavior to users. Second, it includes a comparison with various group undo techniques
that have been suggested recently. Third, it addresses design and e�ciency issues that occur in im-
plementing the framework. Finally, it includes our experience in using the proposed undo facilities
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in the DistEdit toolkit.
Several groupware applications, such as Quilt [13] and Prep [27], support asynchronous sharing,

where group members work on a shared document at di�erent times. Our undo framework can be
applied to these applications as well | users can make tentative changes to a document, knowing
that their changes can be undone at a later time if needed, even if other users also subsequently
modify the document.

The proposed undo framework can also be applied to single-user editors for undoing changes
selectively. For example, the framework is used in DistEdit to provide a region-undo facility that
allows users to undo only changes made to a selected region of a document. Other possible appli-
cations include undoing modi�cations made during a certain time interval, by a set of users, or by
a combination of these selection conditions.

The rest of the paper is organized as follows. Section 2 discusses the related background work
in the area. Section 3 discusses our approach to providing undo capabilities in group environments.
Section 4 describes the application requirements and the document model needed in order to use
our undo framework. Section 5 describes our selective undo algorithm and contains proofs for
several useful properties of the algorithm. Section 6 suggests ways to improve the performance of
the algorithm for many common situations. Section 7 describes some methods used in DistEdit
for selecting operations to undo. Section 8 describes our experience with DistEdit's undo facili-
ties, problems that arose, and ways of addressing those problems. Finally, Section 9 presents our
conclusions and directions for future work.

2 Related Work

There are several basic methods for providing undo capability, most of them designed for single-user
systems. Almost all of them require maintaining a history list, the sequence of operations that have
been carried out so far to modify the state of the document. The operations on the history list
are stored in the order in which they were performed. For instance, suppose the history list is as
follows:

A B C D

Then, starting from the state prior to A, and performing the operations A, B, C, D in sequence
should lead to the current state.

Furthermore, most undo schemes assume, as does the scheme in this paper, that the operations
that modify the state of the document are reversible; i.e., for every operation A, we can determine
an inverse operation A that will undo the e�ect of A. In general, the inverse of an operation A may
depend on state of the document prior to A [15]. For example, on a text document, if a DelChar(10)
operation is done, which deletes the character at position 10, then in order to determine its inverse,
we must know the character that was deleted. The operations stored in the history list should
contain su�cient data so that their inverses can be easily determined. For instance, the above
operation might be stored as DelChar(10, c) on the history list, where c is the deleted character.

Below, we summarize the primary methods for doing undo in single-user systems. A more
detailed discussion of these techniques can be found in [39], and one formalization of undo and
redo facilities can be found in [41]. We also discuss undo techniques that have been proposed for
groupware systems.

2.1 Single-step undo

Several early editors, including Lampson's Bravo for the Alto [23] and Hammer et al's ETUDE
editor/formatter [18], provided single-step undo. Single-step undo is also available in many current
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systems, including most Macintosh and Windows applications, as well as editors such as vi. Single-
step undo allows undo of only the last operation. For instance, suppose the history list is as
follows:

A B C D E

Single-step undo allows undoing of operation E, but not a subsequent undo of operation D. Usually
the redo of the last undo is also allowed (often implemented as an undo of the last undo) so that,
in the above example, E can be redone.

2.2 Linear undo model and US&R model

The Interlisp system [38], COPE [4], and Aloe [24] are examples of systems that use the linear undo
model. The linear undo model allows the undoing of a sequence of operations by using a pointer
that tracks the next operation to be undone. Operations can then be redone, after possibly doing
some new operations. For example, given the history list,

A B C D E

operations E and D can be undone (in sequence), then a new operation F done, and then D redone,
resulting in the following history list:

A B C F D
"
E

The pointer indicates that the next operation to be undone is D, and E is the next operation
that could be redone. Note that, in this model, inverse operations are not explicitly stored in the
history list. Thus, reverting back to the original state (without the F ) is not possible. One could
undo F , but then D and E must be done manually.

The Undo, Skip, Redo (US&R) model [40] supports redo like the linear undo model but also
allows skipping of some operations during the redo. Instead of a linear list, the US&R model keeps
a tree data structure for maintaining history so that it becomes possible to restore state to any
point in the history (unlike the linear undo model). In the above example, F would be stored on
a di�erent branch of the tree from the sequence D E so that F could be undone and then D and
E could be redone if the user so desired.

A limitation of both the linear undo model and the US&R model is that, in order to undo one
operation X several steps back in the history, all subsequent operations must �rst be undone and
then redone (skipping X during the redo). If not implemented carefully, this can be potentially
disruptive in a group environment; other users may see their work undone for at least a short while
with no apparent reason. Furthermore, the models do not address the issue that simply re-doing
operations may lead to incorrect or unexpected results if an earlier operation is skipped.

2.3 History undo

The history undo scheme, used in the Emacs editor [35], also allows undoing of a sequence of
operations, but, unlike the linear undo and the US&R schemes, it appends the inverse operations
to the end of the history list. The inverse operations in the history list are treated like any other
operations, allowing them to be undone later if desired. For instance, given the history list,

A B C D E

suppose that E is undone. Then, in history undo, the history list will be as follows, where E is the
operation that reverses the e�ects of E and the pointer indicates the next operation to be undone:

A B C D
"
E E

If one now breaks out of the undo mode by doing some operation other than an undo, say F , the
history list will become:

A B C D E E F
"
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At this point, doing two more undo operations will result in:

A B C D E
"
E F F E

History undo has the nice property that it is possible to go back to any previous state, and the
need for tracking dependencies among operations does not arise since operations are never skipped.

2.4 Work in databases

Strategies used for implementing undo in editors di�er somewhat from those used for aborting
transactions in databases. In databases, the modi�cations to data due to a transaction usually
become visible to other transactions only after the transaction has committed. In addition, a
transaction cannot be aborted once it is committed. In contrast, an editing operation can be
undone by users at any time, even after the e�ect of the operation has been seen by other users.
This complicates the design of undo algorithms because dependencies between the operation being
undone and later operations can arise.

Furthermore, databases typically use a checkpoint and recovery strategy for aborting transac-
tions and for dealing with failures [16]. Such schemes are typically not used for implementing undo
because in editor-type applications it is usually more e�cient to execute the inverse of operations
to get back to an earlier state.

2.5 Work on optimistic concurrency control

The capability to undo/redo operations has been used in optimistic concurrency control schemes
for maintaining consistency of replicated data. For instance, Karesenty and Beaudouin-Lafon [20]
describe an algorithm that uses the undo/redo capability to ensure consistency among replicated
copies of a document during group editing. The following example illustrates the use of undo/redo
in their scheme. Suppose that one of the sites in a groupware system executes an operation B after
receiving the broadcast of an operation A, which was issued at another site. However, a third site
receives the broadcast of operation B �rst, executes it, and then receives the broadcast of operation
A. Their algorithm will allow out-of-order execution of A at the third site if A and B commute
or if execution of A makes executing B unnecessary. Otherwise, it will \undo" A, execute B, and
then \redo" B to correct the execution order. The undo/redo here is internal to the system and is
used only for ensuring consistency. No undo/redo capability is provided to end-users. In particular,
support for undoing operations that were executed in the correct execution order is not provided.

2.6 Group-undo schemes

There has been substantial interest in the design of undo facilities for groupware systems recently.
Independently and about the same time as our work [32, 33], undo schemes for collaborative systems
were proposed by Berlage and Genau [6], Chaudhary and Dewan [7], and Abowd and Dix [1]. We
provide a comparison with these schemes below.

Berlage and Genau [6] and Chaudhary and Dewan [7] suggest undoing any operation in the
history list simply by executing its inverse, provided the inverse is executable in the current state.
This approach essentially assumes that any operation in the history list can be undone simply by
executing its inverse from the current state, irrespective of the following operations on the history
list. Unfortunately, not taking into account dependencies among operations can lead to unexpected
or hard-to-predict undo behavior in certain situations. To see some of the problems that arise when
operations have dependencies among them, consider the following simple example. Let's say that
a graphical document contains a circle of size 6 and that the following two operations are done,
leading to a circle of size 4:
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� Operation 1: double the radius of the circle

� Operation 2: set the radius of the circle to 4

Assume that the inverses of the above operations are chosen to be:

� halve the radius of the circle

� restore the radius of the circle to 12 (the size prior to doing operation 2)

Suppose a user wishes to undo operation 1. Using the above undo scheme, the inverse of operation
1 is executed, resulting in a circle of radius 2. Since the circle was never of size 2, this may be a
result that is di�cult for the user to understand. Another problem with the scheme is that the
result of undoing a set of operations may depend on the order in which the operations are undone.
In the above example, one can end up with a circle of size 12 or a circle of size 6, depending on
the order in which the above two operations are undone. Note that one of the possible results
is di�erent from 6, the initial size of the circle. The framework and algorithms described in this
paper are more general and take into account the possibilities of con
icts and dependencies among
operations.

Abowd and Dix [1] recognize the need to deal with dependencies among users' operations and
suggest a basic framework similar to that described in this paper for dealing with dependencies.
The focus in their work has been on trying to understand formally the behavior desired of undo
in a group environment. We provide algorithms for implementing group undo schemes and report
our usage experience. Furthermore, we provide formal properties that the undo framework should
satisfy in order for the undo to work correctly in a group environment.

3 Our Approach | Selective Undo

To provide undo facilities in groupware applications, we now present an approach called selective
undo and describe algorithms for implementing it. The approach is based on history undo, but we
allow operations to be undone selectively and deal explicitly with location shifting and dependencies
among users' operations. In our experience, history undo is simple and intuitive for most users.
However, if desired, the techniques given in the paper can also be applied to the linear and the
US&R models.

We use data structures similar to those used in history undo; in particular, upon an undo,
the inverse of an operation is appended to the end of the history list. However, in a groupware
application, since the last operation done by a user is not necessarily globally last (other users may
have done operations subsequently), we need to allow undoing of a particular user's last operation
from the history list. For example, consider the following history list, where Ai's refer to operations
done by one user, say Ann, and Bi's refer to operations done by other users:

A1 B1 A2 B2 B3

Now, suppose Ann wishes to undo her last operation, A2. Normal history undo mechanisms in
single-user systems do not support such a task because they would require undoing B2 and B3 as
well. In the US&R model, it is possible to undo the last three operations and then redo B2 and B3,
but as pointed out in the previous section, that can be disconcerting to other users of the system
and may not even be correct if there are dependencies between A2 and B2/B3. Note that Ann may
not be aware that operations B2 and B3 have been carried out on the document, and other users
may not be aware of changes made by Ann. Using the algorithms presented in this paper, it is
possible to undo A2 without undoing/redoing B2 and B3.
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In the above example, the operation to be undone, A2, is selected based on the identity of the
user. More generally, the operation to undo could be selected based on any other attribute, such
as region, time, or anything else. To allow such selection, each operation on the history list is
tagged with appropriate selection attributes, such as user id and time of the operation. We term
our scheme selective undo, since the operation to be undone is not necessarily the last one, but is
selected using some attributes attached to the operation.

To selectively undo an operation, we cannot simply execute the inverse of the operation because
subsequent operations could have shifted the location at which the operation was originally per-
formed. For example, suppose the following two text operations are applied to the starting state
abcd: InsChar(4;0 x0) followed by InsChar(1;0 y0). The �rst operation inserts `x0 at position 4 and
the second operation inserts `y0 at position 1, resulting in the state yabcxd. Assume that these
operations were done by di�erent users. Now the user who did the �rst operation does an undo.
We cannot simply perform the �rst operation's inverse, DelChar(4), because the second operation
has moved the `x0 to location 5. Our scheme takes this possibility of location shifting into account
so that, in this example, the �rst operation will be undone by executing DelChar(5).

We also take into account the possibility of dependencies, or con
icts. In the above example,
B2 may have modi�ed the same region of the document as A2; so it may not be possible to undo
A2 without �rst undoing B2. Our framework detects when an operation cannot be undone because
of later dependent operations that have not been undone.

In any undo scheme, it is important that undo behave according to users' expectations. Our
experience indicates that a naive implementation of selective undo can easily behave unexpectedly
or even give incorrect results. We provide formal properties that the undo framework should satisfy
in order to help ensure that undo behaves correctly and according to users' expectations.

4 Document Model and Application Requirements

4.1 Document model

Our undo framework assumes an application model in which all changes to a document are per-
formed using a set of primitive operations. As operations are performed, they are archived in a
history list to provide the basis for undo. The operations must be reversible and capable of being
re-ordered when no dependencies between the operations exist.

All applications maintain a current state of the document that is being edited. This state
can be represented in di�erent data structures, and our framework places no restrictions on the
representation.

Primitive operations, or just operations, are the only means by which the state of a document
can be altered. Operations can have parameters which specify exactly what the operation is to
accomplish and where it is to be performed. For instance, a Delete operation would have parameters
to indicate what is to be deleted.

An operation applied to a state results in a new state. Any given state is simply the result of
a sequence of zero or more operations applied to the starting state. We use the letter S to denote
the state prior to application of an operation. A � indicates that the operation is being applied.
For example,

S �M �N

denotes the state resulting from application of operationM followed by operation N on a document
in state S. Sometimes, we will also use A �B to denote the compound operation that �rst applies
A and then applies B.

We assume the existence of an identity operation, I , which leaves the document state unchanged.
In other words, for any document state S,
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S � I = S

The following de�nition is useful later on in the paper:

De�nition: Two sequences (lists) of operations are said to be equivalent if they produce the
same state, given the same initial state.

For example, a sequence of operations M N is equivalent to a sequence of operations P Q if, for
any initial state S,

S �M �N = S � P �Q

4.2 Con
ict, re-ordering, and reversibility of operations

To allow an arbitrary operation on the history list to be undone, our model requires that the
application supply functions which can detect dependence between operations, re-order independent
operations, and create inverse operations. In a synchronous group environment, similar functions
are usually needed anyway to ensure predictable results when parallel streams of activities are going
on. For instance, if two users are working simultaneously in a document, dependence checking
may involve making sure that their changes do not overlap, e.g., through the use of locks [22].
Mechanisms for reordering two parallel, independent operations are also needed because the order
in which the two operations will be executed may be unpredictable [10]. The editor must be
prepared to accept the two operations in either order with the same resulting e�ect.

The functions that the application must provide for selective undo are:

� Conflict(Operation; Operation) �! Boolean

� Transpose(Operation; Operation) �! (Operation; Operation)

� Inverse(Operation) �! Operation

It is assumed that operations that result from these functions are also primitive operations |
or can be expressed in terms of primitive operations (see Section 7.3 for extensions needed for
multi-operation undo). This allows the operations that result from applying the above functions
to be treated just like other operations in the history list. Below, we provide descriptions and
properties for Con
ict, Transpose, and Inverse functions.

4.2.1 Con
ict function

Operations on a document can have dependencies among them that may prevent them from being
reordered. Suppose, for example, that a graphics document is being edited. Operation A creates a
circle in the document, and operation B resizes that circle. Clearly, operation B cannot be executed
prior to the execution of operation A.

The Conflict(A;B) function supplied by the application must return true if the adjacent oper-
ations A and B performed in sequence cannot be reordered, and false otherwise1. The importance
of the notion of con
ict is that it imposes an ordering on operations A and B. If Conflict(A;B)
is true, then the order of operations A and B cannot, in general, be changed without a�ecting the
results. Furthermore, in general, operation A cannot be undone, unless the following operation B

is undone too.
In the discussion that follows, we will say that A con
icts with B when Conflict(A;B) is true.

We will say that A and B are independent or non-con
icting if Conflict(A;B) is false.

1A con
ict between two operations carried out by two users does not imply that the work done by the users is not
cooperative. The notion of con
ict de�ned above is simply a formal notion to determine whether two operations can
be reordered. It does not indicate in any way whether the users are cooperative or non-cooperative.
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4.2.2 Transpose function

If an operation A does not con
ict with an operation B, we require that it be possible to reorder
or transpose A and B. That is, after possibly making some adjustments to the operations, it must
be possible to perform them in the reverse order and still obtain the same result. The Transpose
function is used to reorder operations. For any two adjacent operations A and B, if A does
not con
ict with B, Transpose(A;B) must return (B0; A0), a reordering of the two operations;
otherwise, Transpose(A;B) is unde�ned.

For notational convenience, we will introduce an additional function, RShift(A;B), de�ned
as follows: if Transpose(A;B) = (B0; A0), then RShift(A;B) = A0. Otherwise RShift(A;B) is
unde�ned.

We require that the following properties be satis�ed by the Transpose and RShift functions:

Transpose Property 1: If Transpose(A;B) = (B0; A0) then S �A �B = S �B0 �A0.

Transpose Property 2: If Transpose(A;B) = (B0; A0), then B0 is the operation that would have
been executed, instead of B, if operation A had not been executed earlier. Furthermore, A0 is
the operation that would have been executed, instead of A, if operation B0 had been already
executed.

Transpose Property 3: If Transpose(A;B) = (B0; A0) then Transpose(B0; A0) = (A;B).

Transpose Property 4: For all operations A, Transpose(A; I) = (I; A), where I is the identity
operation.

Transpose Property 5: If Transpose(A;B) = (B0; A0), then

RShift(RShift(C;A);B) = RShift(RShift(C;B0); A0)

Property 1 allows reordering of operations in the history list and guarantees that the resulting
state will be the same. Property 2 allows us to meaningfully undo A, leaving only the e�ect of B,
by transposing them and executing A0. Properties 3, 4, and 5, in a careful design, should follow
from Property 2 (see [34]). However, we state them because Properties 3, 4, and 5 can be checked
formally for a given de�nition of the Transpose function. Property 3 says that if A and B can be
reordered into B0 and A0, it is reasonable to be able to reorder B0 and A0 into A and B. Property 4
asserts that reordering an operation with respect to a null (identity) operation should not result in
the modi�cation of the operation. Property 5 says that reordering two operations (A and B) using
the Transpose function should not a�ect how an earlier operation (C) is reordered with respect to
the combination of the two operations.

Note that Transpose Properties 1, 3, 4, and 5 are automatically satis�ed for the special case
when, for any two operations A andB, Conflict(A;B) implies Conflict(B;A), and Transpose(A;B) =
(B;A) whenever A does not con
ict with B.

For group text-editors, such as those based on DistEdit, operations A0 and B0 are usually
identical to operations A and B, except that the position data is di�erent. For other applications,
operations A0 and B0 are usually identical to operations A and B.

4.2.3 Inverse function

Let us denote Inverse(X) by X . We will assume that the Inverse function satis�es the following
properties, where I is the identity operation:

Inverse Property 1: X �X is equivalent to I in terms of its e�ect on the state, i.e., S�X �X = S.
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Inverse Property 2: Reordering any operation, say A, with respect to X � X should give re-
sults equivalent to reordering the operation with respect to I (Transpose Property 4). More
formally, if Transpose(A;X) = (X 0; A0), then Transpose(A0; X) = (X 0; A).

Inverse Property 1 ensures that a sequence X �X is equivalent to the identity operation with
respect to its e�ect on the state of the document. Property 2 ensures that X �X behaves like an
identity operation when the two together are transposed with other operations. So, if given the
sequence A�B�B, A is reordered with respect to the sequence B�B, we will get the result B0�B0�A,
where Transpose(A;B) = (B0; A0). This property make the de�nition of Inverse consistent with
Property 4 of the Transpose function.

The following de�nitions are used later in the paper:

De�nition: A list of operations, L1, is said to be transpose-reducible to an equivalent list of
operations, L2, if any of the following cases hold:

� L2 can be obtained from L1 by reordering two neighboring operations on L1 using the
Transpose function

� L2 can be obtained from L1 by eliminating an operation and its inverse when the two
operations are next to each other

� L1 is transpose-reducible to a list L3 and L3 is transpose-reducible to L2

De�nition: Given that a list of operations, L1, is transpose-reducible to a list of operations, L2,
an operation A0 on the list L2 is said to correspond to an operation A on the list L1 if A
on the list L1 becomes A0 as a result of transpose-reducing L1 to L2.

It follows from Transpose Property 1 and Inverse Property 1 that if L1 is transpose-reducible
to L2, then L1 is equivalent to L2, i.e., both lists result in the same �nal state if their operations
are applied to the same initial document state.

4.3 Document model examples

Example 1: Document Model applied to Text Editing

Consider a text editor supporting the following two primitive operations:

� InsChar(position; char) to insert a character at the speci�ed position; and

� DelChar(position) to delete a character at the speci�ed position.

Positions are de�ned as the absolute position in the text, with the �rst character in the document
having the position 1. Line breaks are represented by newline characters, and treated like any
other characters. Other representations of position, such as line and column number, could also
have been used, but the absolute positions we have chosen seem simpler.

Note that the model does not dictate the actual data structure which is used to store the
document state. The current state could be represented as a linked list of lines, as a single array
of characters, or as any other data structure. The application is responsible for correctly applying
operations so that its internal data structure represents the correct state.

We will denote operations to be stored in the history list as follows:

� InsChar(position; char)

� DelChar(position; char)
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Note that the character deleted is also stored in the history list as part of theDelChar operation
so that we can easily derive its inverse. The above two operations happen to be inverses of each
other.

Next, we need to establish when two editing operations con
ict and how to reorder them
when they do not con
ict. One possibility is to consider two editing operations to con
ict if they
a�ect the same or neighboring characters. This de�nition is based on the assumption that, for
the purpose of reordering and undo, users view the insertion and deletion of a character as a
modi�cation of sequence relations with neighboring characters. So, if two operations a�ect the
same sequence relation, they are considered to have a dependency between them and cannot be
reordered. Furthermore, any reordering should be consistent with the above assumption. Under
this assumption, following is the de�nition of the Transpose function for various combination of the
above two operations:

Transpose(InsChar(p1; c1); DelChar(p2; c2)) =

8<
:

(DelChar(p2 � 1; c2); InsChar(p1; c1)) if p2 > p1 + 1;
(DelChar(p2; c2); InsChar(p1 � 1; c1)) if p2 < p1 � 1;
undefined otherwise

Transpose(InsChar(p1; c1); InsChar(p2; c2)) =

8<
:

(InsChar(p2 � 1; c2); InsChar(p1; c1)) if p2 > p1 + 1;
(InsChar(p2; c2); InsChar(p1 + 1; c1)) if p2 < p1;
undefined otherwise

Transpose(DelChar(p1; c1); InsChar(p2; c2)) =

8<
:

(InsChar(p2 + 1; c2); DelChar(p1; c1)) if p2 > p1;
(InsChar(p2; c2); DelChar(p1 + 1; c1)) if p2 < p1;
undefined otherwise

Transpose(DelChar(p1; c1); DelChar(p2; c2)) =

8<
:

(DelChar(p2 + 1; c2); DelChar(p1; c1)) if p2 > p1;
(DelChar(p2; c2); DelChar(p1 � 1; c1)) if p2 < p1 � 1;
undefined otherwise

The Con
ict function is true wherever the Transpose function is unde�ned. In the de�nition of
the Transpose function, notice the change in position arguments so that Transpose Property 1 is
satis�ed. It can be veri�ed that Transpose Properties 3, 4, and 5, and both the Inverse properties
are also satis�ed. Transpose Property 2 cannot be formally veri�ed, but is assumed to be satis�ed,
given that our function de�nitions are consistent with the above assumption of users' view of the
editing operations.

Example 2: Document Model Applied to Graphics Editors

Let's assume that two of the commands that are stored on the history list of a graphical editor
are

� DrawCircle(x,y, radius, CircleID): Draw a circle at position (x; y) of the speci�ed radius.
CircleID is the object identi�er returned by the command and is stored in the history list to
permit easy reversal and transpose.

� ChangeRadius(CircleID, NewRadius, OldRadius): Change the radius of the circle CircleID to
NewRadius. OldRadius is stored so that inverse is easy to compute.

In this case, the Con
ict and Transpose functions are straightforward:

� Con
ict: Con
ict(A,B) is true if and only if A and B refer to the same circle, i.e., their
CircleID's match.

11



� Transpose: Transposing the two operations simply requires interchanging the two operations
if they refer to di�erent circles; else the Transpose is unde�ned.

Note that graphical operations, unlike those in text editors, will not usually require parameter
changes as long as they use absolute (x; y) coordinates rather than coordinates relative to positions
of other objects. If relative positioning among objects is desired in a graphical editor, then addi-
tional operations, which use relative coordinates, should be provided so that they can be correctly
transposed.

4.4 Discussion of the model

The notion of con
ict in our model has similarities to the notion of con
ict used in concurrency
theory of database transactions [12, 30, 31, 37] in that we also de�ne con
ict in terms of the ability
to reorder operations. One di�erence is that we allow for operations to be modi�ed when reordering
them; in current database theory, operations are not modi�ed when they are reordered. Another
di�erence is that the con
ict model in databases is primarily used to enhance concurrency during
transaction execution. We use the con
ict model to provide safe undo of operations.

The concept of reordering or transforming operations has been also used in groupware systems
to ensure consistency of replicated document state when operations are done locally �rst and
then broadcast [10]. The transformations in [10] take two parallel operations, say A and B, and
determine the operation to execute if one of them has already been executed. Our Transpose
function, in contrast, transforms one ordering of operations into another, equivalent, ordering.

Note that our framework leaves the task of determining when two operations con
ict, and how
they should be transposed so that Transpose and Inverse properties are satis�ed, up to the appli-
cation designer. This task is, in general, non-trivial and, as we did in the text-editing example,
requires making assumptions about user's expectations from selective undo [34]. To further illus-
trate the point, consider the situation where one user modi�es the abstract of a paper and another
user, after reading the abstract, carries out a change elsewhere in the document. The application
designer has to determine whether to de�ne a con
ict between an operation in the �rst set of mod-
i�cations and an operation in the second set of modi�cations. The answer to some extent depends
on whether users expect to be able to undo the �rst set of modi�cations without being forced to
undo the second set of modi�cations. Abowd and Dix [1] explored this issue and recommended
the design principle that the system should not prevent users from undoing operations if they can
achieve the same e�ect through normal editing. In this example, if a user issues commands to
undo the modi�cations to the abstract, according to the principle, the system should undo those
changes, since the user could have undone those changes through normal editing. As discussed in
Section 8, our experience with using the framework in DistEdit supports the above principle.

5 Selective Undo Algorithms

This section presents two versions of our undo algorithm: a limited selective undo algorithm to
demonstrate the basic concepts, followed by the full selective undo algorithm. Both algorithms
assume that an operation has already been chosen to be undone, based on the identity of the user
or some other criterion.

If an operation A is undone, we assume that users want their document to go to a state that
it would have gone to if operation A had never been performed, but all other operations had been
performed. For example, suppose that on a document in state S, operations A and B are performed
in sequence, and then A is undone. By Transpose Property 2, assuming Transpose(A;B) =
(B0; A0), if A had never been performed, the system would have performed operation B0 in place
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of B. Therefore, after undoing A, we want a selective undo algorithm to result in the document's
state being S � B0. If the history list from A onward after undoing A is transpose-reducible, and
thus equivalent, to B0, we have achieved the desired undo e�ect.

More generally, if a set of operations are undone by using a selective undo algorithm, the
resulting history list should be transpose-reducible to a list that would have resulted if none of the
undone operations had been performed2.

Furthermore, suppose a list L1 is transpose-reducible to a list L2. Then, undoing an operation
A on L1 should give the the same result as undoing the operation that corresponds to A on L2.
The full selective undo algorithm presented in this section meets these requirements.

One desirable feature in an undo algorithm is that it be possible to truncate the history list at
any time without losing the ability to undo operations that remain on the history list. Most editors
remove old operations from the history list, in order to keep the amount of memory consumed by
the history list bounded. The algorithms presented below have this feature.

The algorithms presented in this section are independent of whether all sites in a group use a
common, centralized history list or every site maintains its own copy of the history list. However, if
multiple history lists are used, care must be taken to ensure that the history lists remain consistent
with each other. For some tradeo�s in using a single history list versus using multiple history lists,
see [33].

5.1 Limited selective undo algorithm

To demonstrate the principles of our undo technique, we �rst describe a limited version of the
algorithm and present an example.

The algorithm works as follows: the transpose function is used to repeatedly shift the operation
to be undone until it reaches the end of the history list. If it cannot be shifted to the end due to
a con
ict along the way, it cannot be undone. If the operation can be shifted to the end, we can
simply execute the inverse of the shifted operation to undo it. By shifting the operation, we have
e�ectively determined the operation that must be executed in the current state in order to cancel
the e�ect of the selected operation, which was executed in an earlier state.

An example will help demonstrate the algorithm. Assume that we want to undo A given the
history list:

A B C

Suppose A con
icts with B. Then Conflict(A;B) will be true, and the undo will fail, as it should.
If A does not con
ict with B, the result after one iteration will be:

B0 A0 C

where (B0; A0) = Transpose(A;B). Note that the history list need not be actually altered because
only the new A0 is used in the next iteration. We show the altered list here for clarity.

Next, if Conflict(A0; C) is true, the undo will fail. Otherwise, another shift will occur, resulting
in:

B0 C0 A00

where (C 0; A00) = Transpose(A0; C). It follows from Transpose Property 2 that B0 and C0 are the
operations that the system would have executed, instead of operations B and C, if operation A had
not been executed earlier. Now that A has been shifted to the end of the list, A00 can be performed
giving the list:

B0 C0

2From now on in the paper, when we talk about a list that would have resulted if none of the undone operations
had been performed, we are implying that such a list must include all other operations, possibly in a modi�ed form
so as to be consistent with Transpose Property 2.

13



Note that performing A00 in the present state correctly cancelled A, giving the document state,
S �B0 � C0, the state that would have resulted if operation A had never been performed; the undo
has succeeded!

The list in the above form, containing modi�ed operations, is not very useful for doing further
undo operations. In particular, operations A and A00 do not appear on the list above. It is, therefore,
preferable to maintain a history list that contains the actual sequence of operations, as follows:

A B C A00

The above history list is transpose-reducible, and thus equivalent, to B0C0.
This algorithm, though based on the correct idea of shifting operations to the end of the list,

can fail if some operations were undone earlier. For example, suppose that the history list contains
A B C, where A con
icts with B but neither con
icts with C. A user, wanting to undo both A

and B, �rst undoes B, resulting in a history list that contains A B C B0. Then, the user attempts
to undo A. The limited selective undo algorithm determines that A con
icts with B, and is unable
to shift A to the end of the history. However, since B is undone, the user should have been able to
undo A.

5.2 Selective undo algorithm

We now give a selective undo algorithm that is not limited by prior undo operations (Figure 1).
The algorithm is similar to the limited selective undo algorithm, but it uses a more sophisticated
con
ict-checking technique.

To avoid the prior undo limitation, we must track which operations have already been undone.
We do this by placing a pointer into the history list that links an operation to its corresponding
undo operation. Thus, upon undoing B from the sequence A B C, the history list would appear as
follows, with the oval line beneath the sequence indicating a do-undo pointer:

A B C B0


 	

The undo algorithm works by making a copy of the end of the history list, from the operation to
undo onward. The operation to undo is shifted using transpose until it reaches the end of the list.
Before each shift, we check whether a con
ict exists with the following operation. If a con
ict is
found with an operation that has been later undone (i.e. there is really no con
ict), then that oper-
ation and its undo are removed from the copied history list by the procedure RemoveDoUndoPair.

The RemoveDoUndoPair procedure, given an operation X that is later undone by Y , shifts
X until it is adjacent to Y and then removes both operations. This is valid because X 0 and Y

must be inverses of each other, where X 0 is the operation that results from shifting X. X will not
con
ict with another operation Z in the history between it and Y , unless Z itself has been undone
(otherwise, X could not have been undone in the �rst place). In the case of such an intervening Z,
RemoveDoUndoPair is called recursively to �rst eliminate Z from the history list.

5.2.1 An example of selective undo

Let us say that the history list at some point is as follows:
A B C D

Assume that B con
icts with C, and there are no other con
icts. If the operation C is undone,
the history list will be as follows, where C0 is the operation that results from shifting C past D:

A B C D C0
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type HistoryRec = record

op: Operation;
next: ^HistoryRec;
undoneBy: ^HistoryRec; /* for pairing do/undo */

end

proc Undo(UndoItem: ^HistoryRec)
HistTemp: ^HistoryRec; /* temporary list */
PrevPtr, HistPtr: ^HistoryRec; /* node pointers */
ShiftOp: Operation;
NewItem: ^HistoryRec;
/* Make a copy of the history list from the UndoItem onward */
HistTemp := CopyTailofList(UndoItem);
/* Shift UndoItem forward, removing all paired do/undo operations */
ShiftOp := HistTemp^.op; PrevPtr := HistTemp; HistPtr := HistTemp^.next;
while HistPtr <> nil do

if Con
ict(ShiftOp,HistPtr^.op) or (HistTemp^.undoneBy = HistPtr) then
if (HistPtr^.undoneBy <> nil)

RemoveDoUndoPair(HistPtr); HistPtr := PrevPtr^.next;
else return (\Sorry. Con
icts with", HistPtr);
endif

else /* Transpose returns two operations; store the 2nd in ShiftOp */
( ,ShiftOp) := Transpose (ShiftOp,HistPtr^.op);
PrevPtr := HistPtr; HistPtr := HistPtr^.next;

endif

endwhile

/* Perform executes the operation, appends it to the end of the history list,
and returns a pointer to the appended node */

NewItem := Perform(Inverse(ShiftOp)); UndoItem^.undoneBy := NewItem;
return (\Undo successful");

endproc

proc RemoveDoUndoPair(doPtr: ^HistoryRec)
while doPtr^.next <> doPtr^.undoneBy do

if Con
ict(doPtr^.op, doPtr^.next^.op) then
/* if there is a con
ict, it must have been undone, so can be removed */
RemoveDoUndoPair(doPtr^.next);

else /* Transpose the two operations, logically and physically */
(doPtr^.next^.op, doPtr^.op) := Transpose(doPtr^.op, doPtr^.next^.op);
ListSwap(doPtr, doPtr^.next);

endif

endwhile

/* The operation is now adjacent to its undo; remove them both */
ListDelete(HistTemp, doPtr^.next); ListDelete(HistTemp, doPtr);

endproc

Figure 1: The Selective Undo Algorithm
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Now, suppose operation B is to be undone. The algorithm will �rst copy HistoryList from B

onwards into TempHistoryList so that the original list is not a�ected by shifting operations. Since
B con
icts with C, and C has a do-undo pointer, RemoveDoUndoPair is called to remove the C
and C0 pair. The resulting (temporary) history list from B onward will be as follows:

B D0

where (D0; C0) = Transpose(C;D).
Assuming that B does not con
ict with D0, B will be shifted past D0 giving the operation B0

where (D00; B0) = Transpose(B;D0). Now that B has been shifted to the end of the list, it can
be successfully undone using the operation B0. This operation is carried out and appended to the
original history list, with the appropriate do-undo pointers added, giving the result:

A B C D C0 B0

� �� 


It can be veri�ed that the above list is transpose-reducible, and thus equivalent, to AD00, where
D00 is the operation that would have been executed, instead of D, if operations A and B had never
been performed (this follows from Transpose Property 2). Thus, the undo has succeeded, giving
the desired state.

5.3 Properties of the selective undo algorithm

It is important to understand the e�ect of our assumptions regarding the de�nitions of Transpose,
Con
ict, and Inverse functions on the behavior of undo when using the selective undo algorithm.
Below, we state some properties of the algorithm that follow from the de�nitions of Con
ict,
Transpose, and Inverse functions and discuss the implications of those properties on the behavior
of undo.

Lemma 1: If A does not con
ict with B and Transpose(A;B) = (B0; A0), then A0 does not con
ict
with B and Transpose(A0; B) = (B0; A) .

Proof: This is essentially a restatement of Inverse Property 2. By that property, if Transpose(A;B) =
(B0; A0), then Transpose(A0; B) = (B0; A). Since Transpose(A0; B) is de�ned, A0 does not
con
ict with B. 2

Lemma 1 ensures that given non-con
icting operations A and B where B has been undone,
A can be undone by shifting it past B and B. Note that our selective undo algorithm calls
RemoveDoUndoPair only when there is a con
ict. It is therefore important that if A is shifted past
B, it can also be shifted past B. If this lemma didn't hold, the selective undo algorithm could fail
to do even simple single-user history undo. Fortunately, the lemma is automatically satis�ed when
Transpose and Inverse functions are de�ned as required.

Lemma 2: If A does not con
ict with B and Transpose(A;B) = (B0; A0), then B does not con
ict
with A0 and Transpose(B;A0) = (A;B0).

Proof: This lemma follows from Transpose Property 3 and Inverse Property 2. By Transpose Prop-
erty 3, Transpose(A;B) = (B0; A0) implies that Transpose(B0; A0) = (A;B). Using Inverse
Property 2, that in turn implies that Transpose(B;A0) = (A;B0). Since Transpose(B;A0) is
de�ned, B does not con
ict with A0. 2

The importance of Lemma 2 is that operation B in the sequence A B A0 can be undone by
shifting it past A0. This shifting, without taking into account the earlier shifting of A past B, is
exactly what is done in the selective undo algorithm.
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Lemma 3: If A does not con
ict with B and Transpose(A;B) = (B0; A0), then B does not con
ict
with A and Transpose(B;A) = (A0; B0).

Proof: Since Transpose(A;B) = (B0; A0), by Inverse Property 2, it follows that Transpose(A0; B) =
(B0; A). Using Lemma 2, this implies that B does not con
ict with A and Transpose(B;A) =
(A0; B0). 2

Lemmas 2 and 3 collectively imply that, given the sequence A B, if operations A and B can
be undone in either order, the results will be the same irrespective of the order in which they are
undone. This is a crucial result for undo since we should get the same result irrespective of the
order in which a set of operations are undone.

Lemma 4: If A does not con
ict with B and Transpose(A;B) = (B0; A0), then A0 does not con
ict
with B0.

Proof: Since Transpose(A;B) = (B0; A0), it follows fromTranspose Property 3 that Transpose(B0; A0) =
(A;B). Then, using Lemma 3, it follows that A0 does not con
ict with B0. 2

Note that if A does not con
ict with B, then the sequence A B can be undone by either by
executing B �A or by executing A0 �B0. Lemmas 3 and 4 together imply that, in such a case, the
two undo operations can also be undone in either order, since they are guaranteed not to con
ict.
If these lemmas didn't hold, users might encounter the strange behavior that they can undo two
operations in either order but cannot later undo the inverse operations (redo operations) in either
order.

Lemma 5: The algorithm will not undo an operation twice, unless the undo operation itself has
been undone before the second undo.

Proof: Let's assume that operation A has been undone by an operation A0, after possibly executing
other operations. Suppose that a request is now made to undo A, after possibly executing
additional operations. Clearly, there must exist a do-undo pointer from A to A0. Furthermore,
in order to undo A, the algorithm at some point must shift A past A0. However, such a shift is
not possible unless A0 has also been undone, because an operation is never transposed with a
con
icting operation or with an operation pointed to by its do-undo pointer (see the condition
for the �rst if-statement in Figure 1). Thus the lemma follows.

Lemma 5 is important because a user could inadvertently select an operation to undo that has
already been undone. So, given the history list A A with a do-undo pointer from A to A, the lemma
ensures that A will not be transposed with A and, thus, will not be undone unless A is undone
�rst.

Lemma 6: Given an operation A such that no undo has been done after A, the undo of A results
in a history list that can be transpose-reduced to the list that would have resulted if A had
never been performed.

Proof: Let's assume that there are n operations after A on the history list. We will prove the
lemma by induction on n. First, the lemma clearly holds if n = 0, i.e., when A is the last
operation on the history list, since executing A results in a history list that can be transpose-
reduced to one without A and its inverse.

Let the induction hypothesis be that the lemma holds for n = i. We need to show that it
holds for n = i + 1. Let the the operations that are executed after A be B1; : : : ; Bi + 1.
Therefore, prior to the undo of A, the history list from A onward is as follows:
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A B1 � � � Bi+1

Since it is given that none of the operations B1; : : : ; Bi+1 are a result of undo commands, the
undo of A is done by shifting A past the following operations. If A is shifted past B1 by using
Transpose, we get the equivalent list:

B0

1 A
0 B2 � � � Bi+1

where Transpose(A;B1) = (B0

1; A
0). From Transpose Property 2, it follows that undoing A

in the original history list is equivalent to undoing A0 in the above equivalent list. However,
by induction hypothesis, undo of A0 will result in a history list that can be transpose-reduced
to one that would have resulted if A0 had not been performed. Thus, the lemma holds for
i+ 1. 2

Lemma 7: Transpose-reducing the history list, prior to doing an undo using the selective undo
algorithm, does not a�ect the operation that will be executed to e�ect the undo.

Proof: Let Ai be the operation to be undone on the history list A1; : : : ; Ai; : : : ; An. The selective
undo algorithm will attempt to shift Ai past Ai+1; : : : ; An to determine the operation that
will undo Ai. Consider each potential step, and its e�ect, of any other method that transpose-
reduces the history list before shifting Ai forward:

� Transposing two operations that occur before Ai: This obviously has no e�ect on Ai or
later operations, and thus on the operation that will result from shifting Ai past later
operations.

� Transposing Ai�1 with Ai: Suppose Ai�1 and Ai are transposed, resulting in (A0

i
; A0

i�1).
In that case, by Transpose Property 3, Transpose(A0

i
; A0

i�1) = (Ai�1; Ai). Thus, the
result of shifting the resulting operation A0

i
past A0

i�1; Ai+1; ::; An will the same as the
result of shifting Ai past Ai+1; : : : ; An.

� Transposing Ai with Ai+1: Suppose Ai and Ai+1 are transposed, resulting in (A0

i+1; A
0

i
).

Clearly, the result of shifting Ai past Ai+1; : : : ; An is the same as the result of shifting
A0

i
past Ai+2; : : : ; An.

� Transposing two operations that occur after Ai: Using Transpose Property 5, it can be
easily shown by an inductive argument that this will not a�ect the operation that will
result from shifting Ai to the end of the list.

� Removing an operation and its inverse from the list when they are neighbors: It is
reasonable to assume that Ai cannot be the operation being removed, because then
it cannot be shifted to the end of the list for the purpose of undo. By Inverse Property
2, an operation and its inverse together behave as I with respect to the Transpose
function. Therefore, removal of an operation and its neighboring inverse will not a�ect
the shifting of an earlier operation in the list. It obviously cannot a�ect the shifting of
a later operation on the list. Thus such a removal will not a�ect the operation that will
result from shifting Ai to the end of the list.

We have shown that the operation resulting from shifting Ai to the end of a list is the same
as the operation that will result from shifting Ai (or A0

i
, if Ai was transposed) to the end

of the list after applying one of the above steps. By induction on the number of steps, it
easily follows that applying any number of above steps does not change the operation that
will result from shifting Ai to the end of the list, and thus does not change the operation that
will undo Ai. 2
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Lemma 7 is quite powerful. For instance, it implies that the result of undoing A in the sequence

B A C B0 C0 D� �� 


will be the same as undoing A0 from the following transpose-reduced, and thus equivalent, sequence:

A0 D0

where A0 and D0 are the operations that would have been executed on the document, instead of A
and D, if operations B and C had never been performed.

Lemma 7 also implies that, in order to undo an operation A, we can disregard operations
executed prior to A. In the above example, the lemma implies that we do not lose the ability to
undo A, even if the history list is truncated to exclude all operations prior to A.

Theorem: The selective undo algorithm works correctly. That is, undoing operations always
results in a history list that is transpose-reducible to a list that would have resulted if the
undone operations had never been performed.

Proof: We will prove this by induction. Let there be n undo operations performed so far on the
document. Lemma 6 implies that the theorem holds for n = 1. As induction hypothesis,
assume that the theorem holds for n = i. We will now show that it holds for n = i+ 1.

Let A be the operation that is undone on the (i+ 1)st undo. Consider the history list prior
to this undo. By induction hypothesis, at this point, the history list is transpose-reducible
to a list L that would have resulted if all the i undone operations and their inverses (except
possibly for A and the operation it cancelled, if A resulted from an undo) had not been
performed. Let operation A on the history list correspond to operation A0 on the list L.
From Lemma 7, it follows that the operation that will be used to undo A from the history
list will be the same as the operation that will undo A0 from the list L. Let the undo result in
the execution of an operation U . Consider the list L appended with U . Clearly, on the list L,
there can be no undo operations between A0 and U . Therefore, by Lemma 6, the list L U can
be transpose-reduced to a list L2 in which A

0 and U do not occur. This, however, implies that
the history list appended with U can be transpose-reduced to L2, by �rst transforming the
original history list to L, and then transpose-reducing L U to L2. Thus the theorem follows.
2

6 Performance Improvements in the Selective Undo Algorithm

The worst-case time complexity of the above selective undo algorithm for undoing an arbitrary
operation on the history list is O(n2), where n is the number of operations after the selected
operation on the history list. This assumes that the operation to undo has already been selected
and that reversing an operation and transposing two operations takes O(1) time. The non-linear
complexity is due to the call on the RemoveDoUndoPair procedure, which, to remove n nested do-
undo pointers, takes O(n2) time. In this section, we discuss the situations in which the algorithm
can be made more e�cient.

6.1 E�cient undo using undo blocks

Each history undo operation in a single-user editor, such as Emacs, can be executed in constant
time, independent of the length of the history list; to undo an operation, the system simply needs
to execute the operation's inverse and advance the pointer that identi�es the next operation to
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undo (see Section 2.3). It would be desirable to ensure that a group editor's undo is as e�cient
when the editor is used with only one user editing, as is often the case in practice [5, 29].

The selective undo algorithm, as described above, is O(n2) for single-user history undo. Our
experience with the use of undo in the DistEdit-based Emacs editor indicates that occasionally n

can become su�ciently large for the delay in the selective undo to become noticeable, particularly
when compared to the history undo of single-user Emacs. Fortunately, however, it is easy to
enhance the algorithm so that it takes constant time for single-user history undo. The basic idea
is to introduce the notion of undo blocks. An undo block is a sequence of operations on the history
list that is equivalent to an identity operation. Some examples of undo blocks are the following:

D E E D� �� 


C D E E D C� �� 
� �

When only one user is editing the document, one ends up with undo blocks of the above kind (a
sequence of operations followed by their inverses).

Undo blocks are easy to maintain during the selective undo algorithm. An undo-block tag can
be associated with an operation to mark that everything between it and its corresponding undo
operation is an undo block (for instance, D would be tagged in the �rst example above). When an
operation, say C in the second example above, is undone, the operation is assigned an undo-block
tag if either

� it is the last operation on the history list, or

� the operation immediately after it, say D in the above example, is also tagged, and its inverse,
D, is the last operation on the history list.

The key characteristic of an undo block is that it can be ignored as far as the undo of operations
prior to the undo block is concerned. Therefore, when creating a temporary copy of the history list
(see the �rst step of the algorithm in Figure 1) one can skip over any undo blocks. In particular,
for the single-user situation, only the operation to be undone would exist on the temporary history
list, leading to a constant time undo.

There is no reason why undo blocks should not be maintained even during group work. The
space/time cost to maintain them is little compared to the potential improvement in response time
as a result of not having to invoke RemoveDoUndoPair as often.

6.2 Pure transpose functions

Undo blocks help make the selective undo algorithm e�cient in some common situations. However,
the worst-case complexity of the algorithm remains O(n2) if few undo blocks occur, as could happen
when several users are working simultaneously on the document. It turns out that it is possible
to reduce the algorithm's worst-case complexity to O(n) if the transpose function is pure, i.e.,
Transpose(A;B) = (B;A) whenever Conflict(A;B) is false.

In such a situation, it is possible to remove all the redundant do-undo pairs from the temporary
history list in O(n) time. This removal simply requires a traversal of the list to delete any operation
that has been later undone, along with its inverse.

This sequential deletion of do-undo pairs without using the RemoveDoUndoPair procedure
works because, with pure transpose functions, any shifting of A to bring it next to A would not
modify the operations between A and A.
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Text editors are di�cult to design in such a way that the transpose function is pure | most
operations use character positions or line numbers to refer to entities in the text for e�ciency
reasons. Graphical editors, on the other hand, appear to be easier to design to use a pure transpose
function and, thus, can take advantage of a more e�cient implementation of selective undo.

6.3 More e�cient algorithm?

Even with pure transpose functions, the algorithm is O(n) primarily because it still has to traverse
the history list to check if the operation to be undone con
icts with a later operation. If it were
possible to check whether an operation con
icts with a later operation in less time, we would have
a more e�cient selective undo algorithm, assuming that the transpose function is pure.

Unfortunately, even with pure transpose functions, it appears di�cult to develop a general,
more e�cient way of checking an operation for con
icts with later operations. To see the di�culty,
consider the following history list:

X1 X1 X2 X2 : : : Xn�1 Xn�1 Xn

where all the Xi's con
ict. In this situation, none of the operations except Xn are undoable. Now,
when Xn is undone via Xn, n of the operations, X1; X2; : : : ; Xn, become undoable. It appears to us
that an algorithm will take linear time either to mark all the previous nodes that become undoable
when Xn is undone, or, in the absence of a marking, to determine if an operation such as X2 is
undoable.

7 Selecting Operations to Undo

Before the selective undo algorithm can be used in practice, a means must be provided for a user
to select the operation to be undone. There are many variations by which operations to be undone
can be selected. We give some useful variations below to illustrate the basic techniques. All of
these variations have been implemented in the DistEdit toolkit.

7.1 Per-user history undo

The Emacs-style history undo described in Section 2.3 can be made to work in our framework,
allowing users to undo their own recent operations one by one.

The �rst time a user does an undo, the system searches backward from the end of the history
list until an operation tagged with that user's identity is located; a pointer to that history record
is stored for later use by the user. The selective undo algorithm is then applied to the operation.
Should the user immediately do another undo, the history search continues backward from the
stored pointer. When an operation other than another undo is performed, the stored pointer is
deleted, making the undo operations appear as normal operations that can be later undone.

7.2 Region-undo

In region-undo, only operations that a�ect a speci�ed region of a document are undone. For
example, a user may want to undo changes to the abstract of a paper, but not undo any other
changes. Region-undo can be a useful feature not only in group editors, but also in single-user
editors.

Using a region as a selection criterion is slightly more di�cult than using user-id or timestamps
because operations stored on the history list may refer to locations where the region used to be,
rather than where the region is now.

One way to locate operations that a�ects a region R is to de�ne a special region-identifying
operation S such that Conflict(A; S) is true if operation A was performed in the region R. We
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place S at the end of the history list, and use transpose to shift it backward. If a con
ict arises,
the con
icting operation must be within the region and can now be undone. For any operation A,
Transpose(A; S) should give (S0; A), where S0 identi�es the region that corresponds to S prior to
executing A.

Note that, to allow repeated undo on a region, it is necessary that Transpose(A,S) be de�ned
even if A con
icts with S, so that S can be shifted past A after A is undone, in order to carry
out subsequent undo operations. This apparent anomaly is not a problem since S is not an update
operation | it is simply introduced to identify a region and to determine which operations were
carried out in that region.

7.3 Multi-operation undo

Situations often arise in which an application may wish to treat a group of primitive operations as
a single action for the purpose of undo. For instance, consider the following scenarios:

� One user-level action (e.g. IndentParagraph) could result in numerous primitive operations
(a bunch of InsChar operations). Users would expect to be able to undo the user-level action
in its entirety using one undo operation rather than having to undo the primitive operations
one by one.

� Undoing many steps at once could be useful for returning to a known previous state. For
example, a user may wish to revert chapter 15 of a paper back to the way it was at 5PM last
Tuesday (i.e., undo all operations done on chapter 15's region with time-stamps after 5PM
last Tuesday), assuming su�cient history with appropriate tags is kept.

Multi-operation undo can be implemented in our framework with the following extensions:

� The history list is extended to keep su�cient information around so that the set of operations
that constitute a multi-operation action can be correctly selected.

� When undoing a multi-operation action, all the primitive operations that constitute the action
are shifted to the end and then undone collectively.

One open issue is whether a partial undo should be allowed if con
icts arise during shifting
of some, but not all, of the operations that constitute a multi-operation action. The present
version of DistEdit carries out partial undo of multi-operation actions upon a con
ict, based on
the assumption that users would prefer to undo as much of a complex change as possible than to
undo none of it. An alternative would be require that either all the primitive operations are undone
collectively or, if con
icts arise, none of them are undone.

8 Usage Experience

For implementing per-user undo in DistEdit, we �rst used con
ict and transpose functions similar
to those given in Section 4.3. Using these functions, if the characters a�ected by two operations
were the same or were neighbors, the operations were assumed to con
ict. Else, transpose functions
similar to those in Section 4.3 were used to reorder the operations3. We present some of the problems
that were encountered in using this version of the system, the lessons learned, and one solution to
those problems. We also discuss whether providing a global undo facility is desirable in groupware
systems.

3The functions used in DistEdit are slightly more general versions of the functions in Section 4.3 because DistEdit's
primitive operations allow insertion and deletion of strings.
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8.1 The problem of con
icts

Undo operations in DistEdit sometimes failed due to con
icts when users expected them to succeed.
The following example illustrates the type of situation in which undesired con
icts arose:

A user, say Ann, deletes a sequence of characters, say c1...cn one by one. Another user, say
Bob, subsequently inserts some characters following cn. Unfortunately, now, if Ann issues an undo
command, it will fail. She cannot undo the deletion of cn because Bob later did an operation next
to cn. To compound the problem, she also cannot undo the deletions of c1...cn�1 because each
deletion con
icts with the next one! In most cases, the reason for such con
icts was not obvious to
users because they expected the undo operations to succeed in recovering their lost text.

Con
icts sometimes also arose when the editor was being used by a single user. This happened
when the region-undo command was invoked. The following is an example of the problem. Suppose
that a user deletes a paragraph and subsequently adds some characters at the beginning of the next
paragraph. Now, the user selects the region from which the paragraph was deleted, and invokes
the region-undo command, expecting the deleted paragraph to be restored. Unfortunately, the
region-undo operation would fail. The reason for the failure, of course, is because of a con
ict
with an operation that added the character immediately outside the selected region. Con
icts
during single-user use were quite annoying because the editor's user expected all undo operations
to succeed and with speci�c e�ect (e.g. reappearance of a paragraph, etc.).

One could attempt to avoid the above problem by de�ning Con
ict to be false for neighboring
operations. Below, we describe the resulting behavior obtained at the user level.

8.1.1 Inability to undo operations

Since attempts to undo DelChar operations were the ones that caused us to notice that there was
a problem, we �rst tried out the seemingly obvious solution of de�ning the Con
ict function to be
false for neighboring deletes. A transpose function that satis�es Transpose Property 1 and appears
to be quite reasonable for two neighboring deletes is as follows:

Transpose(DelChar(p; c1); DelChar(p; c2)) = (DelChar(p+ 1; c2); DelChar(p; c1))

Transpose(DelChar(p; c1); DelChar(p� 1; c2)) = (DelChar(p� 1; c2); DelChar(p� 1; c1))

Unfortunately, the above change did not lead to desirable behavior in practice, as illustrated by
the following example:

Example: Let's say the initial string in a text bu�er is abcd. Characters b and c are deleted using
separate operations. These two operations end up on the history list as DelChar(2, 'b') and
DelChar(2, 'c'). Now, consider the problem of undoing these two operations, so as to get
back the original string abcd. Clearly, these two operations can be potentially undone in two
ways:

1. by undoing the second operation �rst and then the �rst operation, or

2. by undoing the �rst operation and then the second operation.

The �rst way should always work, since it is the same as doing single-user history undo. Either
way, the result should be the original string abcd after performing the two undo operations.

Unfortunately, doing undo the �rst way fails if the Con
ict function is de�ned to be false for
neighboring deletes, but true for other neighboring operations. After the �rst undo, the history list
becomes:
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DelChar(2;0 b0) DelChar(2;0 c0) InsChar(2;0 c0)

However, now the second undo fails because DelChar(2, 'b') can be shifted past DelChar(2,
'c') (there is no con
ict now for neighboring delete operations) but not past InsChar(2, 'c') (there
is still a con
ict between neighboring insert and delete operations). The above relaxation of the
Con
ict function alone is clearly not su�cient to ensure good undo behavior at the user level.

8.1.2 Incorrect results from undo

At this point, one might be tempted, as we were, to rede�ne the Con
ict and Transpose functions so
that none of the neighboring operations con
ict. We tried the following de�nition for the Transpose
function for reordering an insert operation and a delete operation at the same location:

Transpose(DelChar(p; c1); InsChar(p; c2)) = (InsChar(p; c2); DelChar(p+ 1; c1))

De�nitions of other neighboring operations can be similarly de�ned.
Usage of DistEdit with above de�nitions added quickly showed 
aws with the de�nitions. In

particular, consider the two ways of doing undo in the example above. The �rst way gives the
correct result, but with the second way, the �rst undo gives the result acd and the history list:

DelChar(2;0 b0) DelChar(2;0 c0) InsChar(2;0 c0)

Now for the second undo, the selective undo algorithm shifts the operation past the two following
operations using the Transpose function (since there is no con
ict). The operation after the two
shifts is DelChar(3, 'b'). Executing the inverse of this operation results in the string acbd, an
incorrect result.

To make the second way work, the de�nition above could have been de�ned as follows:

Transpose(DelChar(p; c1); InsChar(p; c2)) = (InsChar(p+ 1; c2); DelChar(p; c1))

It can be checked that, like the earlier de�nition, the above de�nition also satis�es Transpose
Property 1. Unfortunately, as can be veri�ed, now the �rst way of doing undo fails to work, giving
the incorrect result acbd!

8.1.3 Result of the experience

Relaxing the Con
ict function for neighboring operations as described above led to anomalies or
incorrect results because, as can be veri�ed, the resulting Transpose functions violated Transpose
Property 4 or Inverse Property 2. Thus, the lemmas and the theorem given in Section 5.3 no longer
held.

At the same time, not being able to undo an operation if a later operation was done next to
it turned out to be too restrictive in practice, even though it always gave correct results whenever
the undo succeeded, and it satis�ed the lemmas and the theorem of Section 5.3.

From the above experience, we conclude the following:

� Relaxing the Con
ict function so that it is false whenever possible is important. Otherwise,
users tend to get frustrated when they are unable to undo something that they consider to
be undoable.
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� It is important to verify that any de�nition of Transpose and Inverse functions satis�es the
transpose properties and the inverse properties. Otherwise, selective undo can behave con-
trary to users' expectations and, even worse, lead to incorrect results.

In the case of text editing, fortunately, there is a way to allow safe transpose of neighboring
operations by storing additional data in the operations on the history list. The operations stored
on the history list are modi�ed to be as follows:

� InsChar(locator, position, c)

� DelChar(locator, position, c)

Locator is used to associate a unique point of insertion or deletion with every operation. Locators
have the following properties:

� Given an operation op(l; p; c), the position of the �rst character after the locator l is p. We
say pos(l) is p.

� Given two di�erent locators, say l1 and l2, it is possible that pos(l1) = pos(l2). In other
words, the two locators identify di�erent points between the same two characters.

� An ordering relation, precedes, exists between any two di�erent locators. So one locator can
always be considered to be before the other. Given two locators l1 and l2, the following are
true:

{ pos(l1) < pos(l2) implies l1 precedes l2.

{ l1 precedes l2 implies pos(l1) � pos(l2).

A new locator is associated with every new operation to insert or delete a character. When
adding a new operation to the history list, the locator for that operation needs to be ordered
correctly with respect to other locators at that position. If it is a delete operation, the locator
for the operation is considered to be immediately before the next character and after any previous
locators at that position. If it is an insert operation, the locator is considered to be immediately
after the previous character and before any other locators at that position.

The Inverse function can now be de�ned as follows:

Inverse(InsChar(l; p; c)) = DelChar(l; p; c)

Inverse(DelChar(l; p; c)) = InsChar(l; p; c)

Notice that the locator of the operation and its inverse are identical.
The Transpose function is de�ned as follows:

Transpose(DelChar(l1; p1; c1); InsChar(l2; p2; c2))

=

8><
>:

(InsChar(l2; p2 + 1; c2); DelChar(l1; p1; c1)) if p1 < p2 or (p1 = p2 and l1 precedes l2);
(InsChar(l2; p2; c2); DelChar(l1; p1 + 1; c1)) if p1 > p2 or (p1 = p2 and l2 precedes l1);
undefined if l1 is same as l2

Transpose(InsChar(l1; p1; c1); DelChar(l2; p2; c2))

=

8><
>:

(DelChar(l2; p2 � 1; c2); InsChar(l1; p1; c1)) if p1 < p2;
undefined; if p1 = p2;
(DelChar(l2; p2; c2); InsChar(l1; p1 � 1; c1)) if p1 > p2
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Transpose(DelChar(l1; p1; c1); DelChar(l2; p2; c2))

=

(
(DelChar(l2; p2 + 1; c2); DelChar(l1; p1; c1)) if p1 � p2;
(DelChar(l2; p2; c2); DelChar(l1; p1� 1; c1)) if p1 > p2

Transpose(InsChar(l1; p1; c1); InsChar(l2; p2; c2))

=

(
(InsChar(l2; p2 + 1; c2); InsChar(l1; p1; c1)) if p1 � p2;
(InsChar(l2; p2; c2); InsChar(l1; p1 + 1; c1)) if p1 > p2

The Con
ict function is true wherever the Transpose function is unde�ned.
Locators essentially help us to reorder a delete operation followed by an insert operation cor-

rectly when they have the same position. Without the locator, as seen in Section 8.1.2, there are
two ways to reorder a delete operation followed by an insert operation, and both fail to satisfy the
needed properties, giving incorrect results. With the use of locators, it can be veri�ed that the
various properties in Section 4 are satis�ed and, therefore, undo behaves correctly and without the
anomalies described in the previous subsections.

Methods to e�ciently determine the ordering among locators are not the focus of this paper.
But to show that the ordering can be determined, we give two simple methods here. One method
is for the system to maintain a list of locators, along with their current positions in the bu�er. The
list is ordered so that a locator precedes all locators that appear after it in the list. The positions
in the list are updated as insertions or deletions occur, so as to re
ect the positions of locators
in the current state4. This method is similar to that used for maintaining markers in Emacs [35]
and positions of locks in DistEdit [22]. Another method to determine the ordering among locators
is to do so by using the information on the history list, and only when needed. The history list
contains all the information needed to determine the ordering between two locators. The second
method will generally be more e�cient than the �rst because the cost of updating a list on every
insertion/deletion is avoided.

8.1.4 Dealing with Remaining Con
icts

For text, the use of locators eliminates most of the con
icts during undo. However, the possibility
of con
ict remains, for instance, when one user creates a string and another user modi�es it. The
possibility of failure of an undo command because of con
icts bring up an interesting issue. What
should a user/system do when an undo command fails due to a con
ict? We discuss two approaches
to address the problem.

The �rst approach is for the system to determine all the con
icting operations (using a con
ict
list generation algorithm, such as the one described in [33]) and to give the user the option to
undo the requested operation, along with all the con
icting operations. How should the user be
presented with such an option is an unexplored user interface design issue. It probably would be
desirable to show to the user the e�ect of undoing the con
icting operations, since some of those
operations may have been executed by other users. One possible scheme would be to allow the user
to undo/redo the con
icting operations several times while highlighting the a�ected regions in the
document.

The second approach, the one currently adopted in DistEdit, is simply to tell the user about
the con
ict, ignore the operation for undo, and allow the user to go on to the next older operation
in the history. This approach, though not as powerful as the �rst approach, has turned out to be
acceptable in practice. For many usage patterns of group editors, users work on di�erent parts

4In fact, if such a list is maintained, it is possible to rewrite the Transpose function so that it is pure.
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of a document and thus are unlikely to make overlapping changes, so con
icts should be rare.
Overlapping changes are much more likely to occur in closely-coupled editing; however in such
cases, the use of global undo, region-undo, or normal editing can help in getting around con
icts.
Of course, as concluded in Section 8.1.3, Con
ict and Transpose functions needs to be carefully
designed so that operations can be reordered in as many cases as possible.

8.2 Per-user undo and global undo

In DistEdit, to allow experimentation with various undo facilities, we provide support for both
per-user undo and global undo. Per-user undo undoes the user's last action. Global undo undoes
the last action irrespective of the owner of the action.

An important issue in the design of group undo facilities is whether global undo is useful. Our
preliminary experience in using DistEdit indicates that global undo can often be confusing for users.
Two key problems are:

� Lack of predictability. When a user invokes a global undo command, it is di�cult for the user
to predict what will be undone. A user does not normally know what the globally last action
is. The globally last action may have been done on a part of the document that the user is
not currently observing. We feel that predictability of e�ect is very important for any editing
operation, including undo.

� De�nition of globally last action: The notion of globally last action is not well de�ned. Sup-
pose two users do two actions simultaneously in their editors. In this case, no particular
action can be guaranteed to be globally last. In fact, the two operations could end up in
di�erent orders on di�erent history list(s).

Some scenarios where we found global undo to be of some use and having predictable e�ect are:

� When the group as a whole wishes to go to a known earlier state of a document by discarding
all recent changes, irrespective of who made them.

� When a group is working with synchronized views (e�ectively as one person) | everyone
is looking at the same part of the document, changes are being made one at a time, and
everyone is known to be looking at everyone's changes.

A reasonable way to handle such scenarios is to provide a special editing mode where a user
acquires the undo rights of an entire group. DistEdit, for instance, provides a lockstep editing mode
in which views of all participants in a group session are synchronized, and users have to acquire
the 
oor in order to edit. In fact, it may be su�cient to provide a single undo button that does
per-user undo for operations executed in the normal (non-lockstep) editing mode and does global
undo for operations executed in the lockstep-style editing mode.

Figure 2 shows the user interface of DistEmacs, a DistEdit-based group editor. The DistEdit
toolkit provides a status/control window that informs users about the state of the group session
and provides functions speci�c to group-editing. From the control window, two types of undo are
provided | per-user undo and region-undo. It is also possible to reset the undo pointer to the end
of the history list and skip an operation for the purpose of undo. Global undo is also provided by
the toolkit and, in the case of DistEmacs, can be invoked from the editing window using a text
command.
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Figure 2: Sample screen display of a DistEdit-based group editor. The window on the right gives
status information about the collaborative session and also provides access to various features of
DistEdit, such as per-user undo and region-undo.
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9 Conclusions and Future Work

We have presented a formal framework, and algorithms based on it, for allowing users to selectively
undo operations on a document. The framework is quite general and is applicable to a variety
of documents. The primary motivation for introducing the framework was to allow users of a
groupware system to individually reverse their own changes. However, the framework can also be
applied to single-user systems for implementing additional undo facilities, such as region-undo. We
presented our framework in the context of history undo; however, many aspects of the framework,
such as the notions of Transpose and Con
ict, are also applicable to implementing undo based on
the linear and the US&R models.

The main requirement to use the framework for implementing selective undo is for the appli-
cation designer to provide functions to reverse and reorder operations. We stated properties that
should be satis�ed by such functions in order to provide undo behavior to the users that gives
correct results and is free from certain potential anomalies.

We reported our preliminary experience in using undo facilities based on the framework in an
actual system. Our experience indicates that functions to reorder operations must be designed
carefully. A design that violates the required formal properties is likely to lead to unexpected or
incorrect results from undo. It is also important that reordering con
icts are minimized so that
users do not get frustrated in attempting to undo operations. More systematic studies will be
useful, particularly for determining good user interfaces for dealing with con
icts.

History lists have previously been applied to uses other than undo, such as to see a trace of the
evolution of text [8]. The mechanisms for transposing operations provided in the selective undo
framework could be useful for providing a selective evolution of the text, for instance seeing the
evolution history of a particular section of the document. In the future, we plan to explore other
applications of the framework.
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