
CO
LL

A
B
O

R
A

TI
O

N

The Upper Atmospheric

Research Collaboratory

supports global collaboration

among physicists studying

space weather, offering access

to more than 30 ground- and

space-based data sources

and supercomputer-class

theoretical models.

SOFTWARE
ARCHITECTURE
FOR THE UARC
WEB-BASED
COLLABORATORY

46 MARCH • APRIL 1999 h t tp ://computer.org/in terne t/ 1089-7801/ 9 9 /$10.00 ©1999 IEEE IEEE INTERNET COMPUTING

SUSHILA SUBRAMANIAN, G. ROBERT MALAN, HYONG SOP SHIM,
JANG HO LEE, PETER KNOOP, TERRY E. WEYMOUTH,
FARNAM JAHANIAN, AND ATUL PRAKASH

University of Michigan

T he emergence of the Internet has enabled interactions between peo-
ple working in the same field across the globe. This has resulted in a
number of efforts to solve the problems of supporting group com-

munication, and providing access to information sources that are geograph-
ically and administratively scattered. Collaboratories are one way to provide
virtual shared workspaces to users. We define a collaboratory as a wide area
distributed system supporting a rich set of services and tools that facilitate
effective synchronous and asynchronous communication between two or
more people who are not co-located.

The Upper Atmospheric Research Collaboratory is an Internet-based
system that gives space scientists a virtual shared workspace for conducting
real-time experiments as well as various asynchronous collaborations from
geographically dispersed facilities.1 During the past two years, UARC has
integrated a significant fraction of the worldwide observational systems
devoted to space physics and aeronomy. (Figure 1 shows the sources avail-
able to the last data-collection campaign in April 1998.) Moreover, the
system now supports real-time outputs from supercomputer-class theo-
retical models. This has enabled simultaneous comparison of experimen-
tal and theoretical data on a global scale. Such comparisons would not be
possible without collaboratory technology.

UARC has evolved into a scalable Web-based collaboratory over a peri-
od of six years. Since its inception in 1993, UARC has supported more than
10 scientific campaigns, each of which represented a concerted effort to
collect real-time data simultaneously from instruments around the world
for several days at a time. The first few campaigns ran on a distributed set of
Next systems on the NSFNET and could support about a dozen active par-

W E B - B A S E D C O L L A B O R A T O R Y

47IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MARCH • APRIL 1999

ticipants. The current Web-oriented Java-based sys-
tem supports a more accessible interface by moving
away from specific hardware or operating system
requirements. This allows UARC to provide
sharable multimedia tools across different platforms,
support more users, increase the number of sites
and instruments feeding data to the collaboratory,
and provide access to output from supercomputer-
class theoretical models of the thermosphere and
ionsphere. The Web-based system continues to
evolve, and during the most recent data collection
campaign, April 1998, scientists were able to exam-
ine data from a suite of 40+ instruments.

In this article, we describe the software architec-
ture and application environment of the UARC sys-
tem as it emerged from a six-year development
effort to support this scientific community in its
work. (For a complete list of contributors to the cur-
rent system, see the sidebar, “The UARC Team.”)

UARC APPLICATION
REQUIREMENTS
The base unit for space science collaboration is data,
so providing access to remote data sources is funda-
mental, along with recording the data for post facto
analysis and supporting its annotation. In general,
UARC had to establish a coherent system for effec-
tive distributed administration of numerous data
suppliers and servers.

This coherency included integration of domain-
specific visualizers for the remote data resources.

Managing the large amount of diverse data avail-
able to UARC participants imposed special require-
ments on the system’s data visualization compo-
nent, such as support for compact representation
of multiple graphs and time-synchronized views of
multiple data sources. In addition, the design had
to be extensible so that new data sources and graph-
ical representations could be added with limited
administrator overhead.

The UARC system must provide tools for seam-
less transitions between synchronous and asyn-
chronous collaboration. In addition to visualizers,
scientists must be able to add standard items to the
collaboratory workspace including URLs, custom

Figure 1. Data sources available to UARC during the last set of
campaigns between April 1997 and April 1998. Sources include
instruments such as incoherent scatter radars and magnetometers,
satellite images, and predictive Thermosphere Ionosphere Nested
Grid (Ting) model output.

The Upper Atmospheric Research Collaboratory is a multi-
disciplinary research collaboration supported by the Nation-
al Science Foundation. UARC studies space phenomena, such
as magnetic storms that originate on the sun and can interfere
with radio and television reception, disrupt electrical-power
transmission, and threaten orbiting spacecraft and astronauts.

The UARC team is made up of faculty, researchers, and
graduate students from the fields of computer science, social
and behavioral sciences, and space physics. The comput-
er scientists work with space physicists to develop the soft-
ware systems; the space physicists try out prototypes in live
collaborative research settings under the eyes of the behav-
ioral scientists; and the behavioral scientists evaluate suc-
cesses and failures and give guidance to the computer sci-
entists for the next round of prototypes.

This iterative feedback loop drove the software design

process and resulted in a testbed that is also a successful work-
ing collaboratory. The principal investigators at the University
of Michigan who were actively involved in the design, deploy-
ment, and evaluation of UARC include Daniel Atkins, Robert
Clauer, Tom Finholt, Farnam Jahanian, Tim Killeen, Gary
Olson, Atul Prakash, Joseph Hardin, and Terry Weymouth.

Partnerships with several investigators at other institu-
tions contributed greatly in the creation and evaluation of
the testbed. These institutions include SRI International, Dan-
ish Meteorological Institute, Millstone Hill Observatory,
Arecibo Observatory, EISCAT, NASA JPL, and NASA God-
dard Space Flight Center.

The home page for the UARC project is at
http://www.si.umich.edu/UARC/. A complete list of part-
ner institutions is at http://www.si.umich.edu/UARC/
partners.htm.

THE UARC TEAM

C O L L A B O R A T I O N

48 MARCH • APRIL 1999 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

GIFs, and text annotations. This workspace must
be designed to support both public and private col-
laboration. Moreover, to allow dynamic groups of
scientists to use sharable tools effectively, the tools
must support group awareness in terms of knowing
who the active participants are and their locations.

UARC supports two modes of operation:

■ Campaign mode, as noted above, allows scientists
to monitor and respond to unfolding phenome-
na in real time; Figure 2 shows a screen snapshot
from the April 1998 campaign. In this mode, a
scientist is likely to be interested in observing phe-
nomena and communicating with other scien-
tists about it. For example, during the April 1997
campaign, radar operators responded quickly to
the effects of a solar flare and arranged to keep
instruments around the world going beyond the
usual scheduled times in order to capture a geo-
magnetic storm of unusual intensity.

■ Electronic workshop mode supports scheduled
cybergatherings with specific goals in mind, such
as planning future research or writing papers.

This mode requires access to archived data or to
data preprocessed by participating scientists as
well as to shared access to multimedia tools.

UARC servers had to support continuous cam-
paign-style requests for weeks at a time, and the
system included tools for seamless transition
between synchronous and asynchronous collabo-
ration modes.

Variation in client bandwidth resources in the
heterogeneous Internet environment implicitly
imposed additional requirements on the UARC
middleware. Users had to be able to set quality of
service (QoS) parameters on a per-graph basis,
and servers had to support application-level QoS
and multicast delivery based on specific data
semantics.

UARC SOFTWARE
ARCHITECTURE
Figure 3 shows the five main components of the
UARC architecture:

■ The Salamander server provides data dissemi-
nation and archival services, distributing data
from remote instruments or transformation
modules to client-end data visualizers or archive
servers.2 Salamander also handles variation in
bandwidth and network speeds and enables
users to manage input data quality through
application-layer QoS controls.

■ The Corona server supports synchronous shar-
ing of state and events, archive and replay of
actions, and group management in terms of
joins, leaves, access control, and awareness.3

Corona is supplemented within UARC by
related DistView services, which include a reg-
istry service, and Session or Room Managers.

■ Cache and Computation Modules are domain
specific, transforming raw data from remote
instruments into user-specific formats. CCM
output is published through Salamander and
subscribed to by client data visualizers.

■ Client tools allow users to access the collabora-
tory and view the data in several available for-
mats. Also included in this component are
groupware applications based on the DistView
Toolkit,4 such as a multiparty chat or shared
whiteboard.

■ Data suppliers publish to Salamander from
diverse data sources, including remote instru-
ments, satellites, Web pages, or predictive mod-
els running on supercomputers.

Figure 2. Snapshot of a UARC Campaign in April 1998. At the top left
corner is the Room Manager showing the active participants in the
highlighted room. The bottom left and top right corners show the Chat
application from two different rooms (The Low Latitudes Room and
Main Campaign room respectively). The top central data visualizer
(Mural) displays time synchronized information from 4 radars: EISCAT
Tromso and Svalbard in Norway, Millstone Hill near Boston, USA and
Sondrestrom in Greenland. The bottom data visualizer shows data
from the UVI instrument on the Polar satellite, while the bottom right
display is a zoomed-in view of one of the images from the satellite.

W E B - B A S E D C O L L A B O R A T O R Y

49IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MARCH • APRIL 1999

Figure 3 shows the interconnections among these
components, each of which is independently
administered and maintained. This approach sup-
ports the design goals of scalability, maintainabili-
ty, and reasonable performance, limiting the prop-
agation of side effects or errors between subsystems.

The remainder of this discussion addresses fea-
tures of the application environment.

Collaboration Facilities
Users enter UARC through a Session Manager
application that uses the Corona server for com-
munication support and the DistView Toolkit for
group management and event sharing.

To join a UARC session, a user invokes a Ses-
sion and Room Manager, which is constructed as
a coordinated collection of group-aware Java
applets.5 To support dynamic reconfiguration of
shared workspaces and allow access over the Inter-
net, the Room Manager uses rooms as the high-level
grouping mechanism for objects, such as applets,
users, and arbitrary data objects. Rooms can be
used for asynchronous and synchronous collabo-
ration because their state persists across synchro-
nous sessions. Room participants can perform dif-
ferent roles (such as administrator, member, and
observer), with appropriate access rights. Figure 4
gives a snapshot of room activities.

The Session Manager provides a common inter-
face to the various applets within rooms. It sup-
ports queries on the status of the collaboratory or
group membership, and can send commands to
applets. When a user enters a room, the Session
Manager sends a message to the Room Manager,
which checks the user’s access control rights and
privileges. If the user is allowed entry, the Room
Manager updates its data structures and notifies the
Session Manager. The user may now instantiate
objects within this room.

In Session Manager, a room represents a group
activity and has a number of objects, which can
include shared tools, such as a chat, data visualiza-
tion tools, or URLs posted by group members. The
Session Manager works with the Room Manager,
which maintains a database of user whereabouts in
the system, for example, who is in room A and run-
ning object B. Session and Room Managers are
both Corona clients and use Corona’s communi-
cation and membership notification services to
communicate. The Session Manager also commu-
nicates with a user registration and authentication
server.

The Session and Room Managers feature

DistView and
Corona services

Data
supplier

Data
supplier

Client

ClientSalamander

CCM CCM

Figure 3. Architecture of the UARC system, showing the intercon-
nections between the data dissemination service (Salamander
server), shared state and event management service (Corona serv-
er and DistView), Cache and Computation Modules, data suppliers,
and client tools.

Figure 4. The Session Manager. The upper
window shows a list of seven visible rooms,
the first six of which are public and the last,
private. The Session Manager automatically
creates the list when a user logs into the sys-
tem. The lower window shows current users in
the selected room. An open doorway indicates
the room in use, while lit doors indicate rooms
in which the user is participating. The number
in parentheses following the room name indi-
cates the number of participants within that
room.

C O L L A B O R A T I O N

50 MARCH • APRIL 1999 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

■ User extensibility. Users can add their own col-
laborative applets that conform to the pub-
lished Session Manager interface.

■ Group awareness. Using the Session Manager
API, applets can query about groups, active
users, and so on.

■ Link applets. Users can move among rooms in
a hypertext model.

■ Common utility applets. Tools include shared
whiteboards, e-mail support, data visualizers,
and multiparty chat.

■ Asynchronous collaborations. The Session and
Room Managers support persistent rooms and
applets that retain state across invocations.

Group communication server. Corona is a group
communication service provider to UARC collab-
oration tools such as Session Manager, Chat, and
DVDraw.3 Corona services may be categorized as
stateful in that Corona supports communication
groups for which shared application state can be
defined, and manages shared state.

With its message-based management and inde-
pendence from application semantics, Corona
models shared state as a set of arbitrary objects,

each having a client-generated identifier. State
update messages are cached on disk to support a
robust state transfer service, in which new mem-
bers can receive the current state of their groups
despite network failures and client crashes. Coro-
na also supports persistent groups and locks to
allow exclusive access to shared objects. A persis-
tent group outlives its membership, and thus sup-
ports long group sessions. Other Corona services
include notification of group membership and
client and group property changes.

Groupware applications toolkit. DistView provides
the interface and libraries to run a stand-alone
application in shared mode.4,6 It supports selective
window sharing in which application windows can
be individually exported and imported to provide
a synchronized view of shared application state
while allowing private work in nonshared windows.

To provide quick response times, DistView
employs an object-replication scheme, in which
objects associated with shared windows are repli-
cated at import sites. DistView also provides a
library of reusable, group-aware objects for design-
ing shared windows. DistView-based applications
subscribe to Corona services for their communica-
tion needs. The Toolkit includes an application
component, DVGroup, which provides the Coro-
na client interface.

Data Visualization
Mural is a client tool that supports shared, interac-
tive visualization of data from remote instruments
distributed via the Salamander server. A generic tool,
Mural presents UARC-specific user options, using
information provided in a set of configuration files.
Graphs are stacked within a scrollable frame to pre-
serve screen real estate, as well as to display data in
a time-synchronized fashion (with the common x-
axis being time). Such a stacked model allows users
to scroll through multiple graphs simultaneously, as
well as to compare data from multiple instruments
or between instrument data and predictive model
data. Mural has a published interface with prede-
fined formats for configuration files and methods
to add new locations, instruments, and graphs.
Configurable parameters include location, instru-
ment type, graph type, transport layer (on a per-
graph basis), and axes for graphs.

Figure 5 shows two sets of time-synchronized
stacked graphs. The highlighted icons below the
GIFs show the currently displayed images. Notice
that the periodicity for the two graph sources is

Figure 5. Stacked graphs with a common time axis. This snapshot
of Mural shows real-time satellite images from the UVI instrument
on the Polar satellite being compared against images generated by
a predictive model (shown in the lower graph) running on parallel
computers. The time axis at the bottom shows that the current visi-
ble range is for a period of two hours running from 21:30 UT to
23:30 UT on 10 April 1997. The buttons at the bottom allow the
user to scroll along the time axis, and reduce or increase the visible
time range by clicking the 1/2x and 2x buttons, respectively.

W E B - B A S E D C O L L A B O R A T O R Y

51IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MARCH • APRIL 1999

considerably different (more icons for the first
graph than for the second).

Mural can run as an independent or shared
application, interacting with other UARC applica-
tions via the DistView Toolkit. In shared mode,
actions taken by any importer or exporter (such as
additions, deletes, and resizes) will be visible to all
other users. Mural features include the ability to set
data quality on a per-graph basis, zoom on images,
view a series of images as a movie, save and restore
a configuration of graphs as a single operation,
clone graphs and viewers, and cut and paste images
to the shared whiteboard for annotating snapshots.

The UARC suite of tools also includes a multi-
party, text-based chat tool. Chat creates a stateful,
persistent group at the Corona server. A chat
process must join that group to receive broadcast
messages. Latecomers can download previously
broadcast messages to catch up with the conversa-
tion. Chat also subscribes to Corona’s notification
services to provide an up-to-date participant list,
broadcast messages to other chat groups, and sup-
port private messages.

The shared whiteboard, DVDraw, is used to
import images, make annotations, and create shapes
and lines. DVDraw also creates a stateful group at
the Corona server and defines the canvas contents
to be the shared state of the group. To maintain a
synchronized state, DVDraw uses Corona’s locks to
control concurrent accesses to the canvas.

Scalable Data Distribution
A Salamander-based system is composed of two
basic units: servers that act as distribution points
generally co-located with Web servers, and clients
that act as both data publishers and subscribers.
These units can be connected in arbitrary topolo-
gies to best support a given application.

Salamander supports groupware applications by
providing virtual distribution channels in an
attribute-based data space. In a Salamander system,
a tree of distribution nodes (servers) can be dynami-
cally constructed to provide points of service into the
data space. Clients provide persistent queries to the
Salamander substrate, using attribute expressions to
request data flows, thereby subscribing to a virtual
data channel. Salamander connections are first-class
objects (that is, objects that are directly addressable)
and allow feedback from subscribers to data publish-
ers. Plug-in modules can be added at any point in the
distribution tree, allowing application code to affect
data distribution, and thereby providing the mecha-
nism to support application-level QoS policies.

Attribute-based data distribution. The Salamander
substrate uses flexible attribute sets as its addressing
mechanism. Opaque data objects are delivered to
receivers based on outstanding subscription queries.
Applications subscribe to virtual channels based on
a stream of data objects’ invariant set of attribute
values. These attribute sets, or queries, are propa-
gated throughout the tree of Salamander servers.
The use of text-based attribute key-value tuples for

data routing is a flexible and powerful abstraction.
In general, it supports a variety of application-spe-
cific data flows, which can be addressed by an arbi-
trary hierarchy of channels that can be defined and
dynamically extended by the application.

The Salamander substrate provides an abstraction
for the distribution of data from publishers to sub-
scribers through its channel subscription interface
with both anonymous and negotiated push tech-
niques. In anonymous push, publishers package
opaque data objects with text-based attribute lists.
Subscribers place persistent queries to the Salaman-
der substrate, using lists of attribute expressions that
match both current and future objects published to
the Salamander space. Alternatively, this procedure
can be thought of as accessing a distributed database
where the queries are persistent. The query aspect of
Salamander’s attribute-based subscription service dif-
fers from traditional database systems, in that Sala-
mander queries are dynamic entities that act on both
the current state of the system and future updates.

Application-level quality of service. The Salaman-
der architecture provides application-level QoS
policies to deliver data to clients, tailoring content
to fit client connectivity and processing resources.
Application-specific policies allocate the available
bandwidth between a client’s subscribed flows, pro-
viding a client with an effective throughput based
on semantic thresholds that only the application
and user can specify. These application-level QoS
policies are achieved with plug-in policy modules
at points in the distribution tree. The UARC appli-

Salamander supports groupware
applications by providing

virtual distribution channels in an
attribute-based data space.

C O L L A B O R A T I O N

52 MARCH • APRIL 1999 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

cation uses discrete delivery, data degradation, and
data conversion plug-in modules. By multiplexing
the subscribed flows, discrete delivery modules can
be used to prioritize, interleave, and discard discrete
data objects. The Salamander substrate also pro-
vides for on-demand data degradation and conver-
sion of data objects. In order to support real-time
collaboration between heterogeneous clients, some
mechanism for graceful data degradation must pro-
vide useful data to slower participants.

Flexible attribute routing. Salamander’s flexible
attribute routing allows applications to extend the
system with specialized services that act as publish-
ers and respond to specific queries or commands.

These services register with Salamander, thus
enabling clients to query the substrate about a par-
ticular supply or service. Two general services have
been constructed for use with UARC: a lightweight
temporal database and the CCM.

Salamander provides data persistence by incor-
porating a custom lightweight temporal database,
which stores a virtual channel’s data as a sequence
of write-once updates primarily based on time, and
satisfies data requests based on temporal ranges
within the update stream. A temporal database gen-
erally views a single data record as an ordered
sequence of temporally bound updates, which cor-
respond to virtual channels in the Salamander data-
base. Salamander’s synergy between real-time data
dissemination and traditional temporal and rela-
tional databases is one of its main contributions.
Our model provides support for persistent queries
that act over both present database elements and
any real-time updates to the database elements.

Cache and Computation Modules
CCMs are special entities that subscribe to raw data
from remote instruments or Web sites, apply a data
transform to generate a graph, convert it to a GIF,
and then republish it. The Salamander database
stores raw data and their corresponding images to

support historical queries or time-based scrolling.
The GIF images display at the client through Mural
for active participants or through a Web page for
casual observers. By converting scientific data into
simple images, the CCMs offload computationally
intensive operations from the Java-based clients,
trading network bandwidth for client computa-
tional resources.

A CCM registers itself with its Salamander serv-
er at startup. Clients can then use the registration
information to manipulate a CCM’s behavior
remotely. A client can start or stop the data supply,
change QoS requirements, send domain-specific
choices of transformation algorithms, invoke time
or other boundaries on requested data, and control
data arrival rate.

IMPLEMENTATION FOR
THE FINAL CAMPAIGN
The environment for the final April 1998 cam-
paign varied in terms of network connectivity and
client processing power. Participants in Greenland
and Puerto Rico connected across a slow 56K line,
periodically publishing or viewing data, while
other data sources or clients were on T3 or, on
occasion, vBNS links. Machines also ranged from
a 486-based PC to high-end Pentiums and work-
stations.

The data itself ranged from a few hundred bytes
for periodic raw data to 400-Kbyte GIF images
published by the Pixie instrument on NASA’s Polar
satellite. Images generated by the CCMs were gen-
erally about 80 Kbytes and were published every
four minutes or so.

The raw data was published from once every five
seconds from the Sondrestrom Incoherent Scatter
Radar to about once in 20 minutes from some
Digisondes. Average round-trip times between
most servers in Ann Arbor, Michigan, and clients
or publishers also varied greatly from a few mil-
liseconds within the University of Michigan cam-
pus to about 750 milliseconds to Puerto Rico.

All Mural, CCM, Corona, and DistView code
is written in Java. The servers and clients can be
connected in arbitrary topologies. All Java subsys-
tems can run on Solaris or Win32 machines. The
Salamander server is a Posix thread implementation
on Solaris and is written in C. Salamander emulates
a multicast service in the absence of ubiquitous sup-
port for Mbone. Most of the data suppliers are
written in Java and C, or run as Perl scripts at
remote instrument sites. Some data suppliers peri-
odically monitor Web pages set up by remote sites

Salamander provides data
persistence by incorporating

a custom lightweight
temporal database.

W E B - B A S E D C O L L A B O R A T O R Y

53IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MARCH • APRIL 1999

and “push” the data from it as it becomes available
through the Salamander interface.

The Room Manager and Corona are imple-
mented as Java applications. The Session Manager
runs as a Java applet under a Java-enabled browser
such as Netscape. Initial communications between
the Session and Room Managers assign unique IDs
to objects within a room and support shared work-
spaces via group IDs. These IDs generate specially
tailored HTML documents dynamically by CGI
scripts, which then provide users with a specialized
configuration within which to work. All client end
tools, including the data visualizers and groupware
applications, are signed with a Netscape Certificate.
Signed tools are primarily used to allow Java applets
to access special privileges, such as connecting to
multiple servers simultaneously.

EXTENDING THE UARC SYSTEM
UARC’s architecture can also support general
Internet collaborative applications. For example,
the Salamander substrate has been used as a gen-
eral-purpose data distribution service for several
other large Internet projects. Similarly, the
DistView Toolkit has been used for collaboration
on both LAN and Internet environments. Anoth-
er Internet performance project uses the Mural
package to visualize Internet statistics in real time.
As loosely coupled systems, the UARC servers
function independently, allowing domain-specif-
ic approaches to scalability. Moreover, this
approach limits the propagation of any side effects
or errors between subsystems. An inoperative serv-
er limits, but does not incapacitate, the available
system functionality.

The Remote Experimental Environment (REE) allows sci-
entists to conduct fusion energy research using instruments
located at General Atomics in San Diego, California.

http://fusionscience.org/collab/REE/

The Spectro-Microscopy Collaboratory uses collaboration
tools such as Mbone videoconferencing tools and electron-
ic notebook for research in spectro-microscopy.

http://www-itg.lbl.gov/BL7Collab/
http://www.lbl.gov/Notebook/project.html

DOE2000 contains pointers to several collaboratory pro-
jects funded by the Department of Energy.

http://www.mcs.anl.gov/DOE2000/

The Materials MicroCharacterization Collaboratory pro-
vides views and controls of remote instruments as well as a
shared electronic notebook to which users can add text and
images.

http://tpm.amc.anl.gov/MMC/

The Collaboratory for Environmental Molecular Sciences
uses a shared electronic notebook, audio- videoconferenc-
ing tools, chat, shared whiteboard, and some window shar-
ing capabilities.

http://www.emsl.pnl.gov:2080/docs/collab/

The Mbone site lists audio- and videoconferencing tools
used in several collaboratory efforts.

http://www.lbl.gov/mbone/

Collaborative Computing Frame-
works (CCF) is a suite of soft-
ware systems, communications
protocols, and tools that construct
a virtual work environment on
multiple computer systems connected over the Internet, to
form a collaboratory.

http://emily.mathcs.emory.edu/ccf/

Collaboratory for Microscopic Digital Anatomy (CMDA)
provides researchers at a remote site distributed interaction
with unique instrumentation for data acquisition, as well as
significantly enhanced capabilities to derive and analyze
three- dimensional (3D) data by accessing high-performance
computers.

http://www-ncmir.ucsd.edu/CMDA/

The Decisions Systems Group InterMed Collaboratory Pro-
ject focuses on the development of health care information
systems, and in developing a robust frame for collaboration
over the Internet.

http://dsg.harvard.edu/public/intermed/InterMed_
Collab.html

The TeamWave workplace is a framework that provides
support for synchronous and asynchronous collabora-
tion, development of new tools using their libraries, cus-
tomizing tools and other room objects, and sharing of
documents.

http://www.teamwave.com/

OTHER INTERNET COLLABORATORY EFFORTS

on the on the
eb eb

C O L L A B O R A T I O N

54 MARCH • APRIL 1999 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

Ongoing work includes improving the current
system’s robustness, as well as extending the sys-
tem to support a richer set of collaboration tools,
enabling more seamless methods of synchronous
and asynchronous collaboration, as well as record
and replay support. Workspaces will be more hier-
archical, allowing multiple Room levels. Data
visualization needs to support sophisticated mul-
timedia, such as audio, video and 3D simulation.
We will also continue work on networking issues,
such as support for disconnected operation,
mobile clients, and increased scalability and QoS
support. Finally, we are including access to pub-
lishing tools and digital libraries from within the
UARC environment to support presentation of
Campaign results or summaries from an Elec-
tronic Workshop. ■

ACKNOWLEDGMENTS
We thank all the UARC team members and participants.

Their valuable input in the areas of computer science, space

physics, and human computer interface greatly influenced

the design of the system and allowed for an iterative process

that resulted in a useful and unique collaboratory. This work

was supported by funds from the National Science Founda-

tion cooperative agreement IRI-92-16848. We gratefully

acknowledge the Intel Corporation for its generous donation

of equipment through its Technology for Education 2000

program.

REFERENCES
1. G.M. Olson et al., “The Upper Atmospheric Research Col-

laboratory (UARC),” Interactions, Vol. 3, May-June 1998,

pp. 48-55.

2. G.R. Malan, F. Jahanian, and S. Subramanian, “Attribute-

Based Data Dissemination for Internet Applications,” J.

High Speed Networks (special issue on Multimedia Net-

working), Vol. 7, No. 3, 1998, pp. 319-337.

3. R. Hall et al., “Corona: A Communications Service for

Scalable, Reliable Group Collaboration Systems,” Proc.

CSCW, ACM Press, New York, 1996, pp. 140-149.

4. A. Prakash and H. Shim, “DistView: Support for Build-

ing Efficient Collaborative Applications Using Replicat-

ed Objects,” CSCW, ACM Press, New York, 1994, pp.

153-164.

5. J.-H. Lee et al., “Supporting Multi-User, Multi-Applet

Workspaces in CBE,” Proc. Sixth ACM Conf. Computer-

Supported Cooperative Work, ACM Press, New York, 1996,

pp. 344-353.

6. H. Shim et al., “Providing Flexible Services for Managing

Shared State in Collaborative Systems,” Proc. European

Conf. Computer-Supported Cooperative Work, Kluwer Aca-

demic, Lancaster, UK, 1997, pp. 237-252.

Sushila Subramanian received an MSE degree in 1991 from the

University of Michigan. She has since worked in the areas of

distributed file systems over high-speed networks, Web-

based collaboratories such as UARC, and Internet perfor-

mance measurement.

G. Robert Malan received the BS degree from Carnegie Mellon

University in 1990 and the MSE degree in 1996 from the

University of Michigan where he continues working toward

his doctorate. He has been an active participant in the

UARC, IPMA, and Mach projects.

Hyong Sop Shim is a PhD candidate in computer science and

engineering at the University of Michigan, Ann Arbor. He

now works at Bellcore as a research staff member in the

areas of multimedia and groupware systems.

Jang Ho Lee is a PhD candidate in computer science and engi-

neering at the University of Michigan, Ann Arbor. His

research interests include computer-supported cooperative

work and distributed systems. He is a student member of

the IEEE and the ACM.

Peter Knoop is the system administrator and user liaison for

UARC. He earned a BSE degree in atmospheric and ocean-

ic sciences in 1989 and an MS degree in marine geology

and geochemistry in 1993 at the University of Michigan,

where he continues working toward his doctorate.

Farnam Jahanian is an associate professor of electrical engi-

neering and computer science at the University of Michi-

gan. He received a PhD degree in computer science from

the University of Texas at Austin in 1989. His current

research interests include network protocols and architec-

tures, and distributed computing.

Atul Prakash is an associate professor in the Department of Elec-

trical Engineering and Computer Science at the University

of Michigan, Ann Arbor. He received a PhD degree in com-

puter science from the University of California at Berkeley

in 1989. His research interests include computer-supported

cooperative work, distributed systems, and security.

Terry E. Weymouth is an associate research scientist and has

been a software developer and research manager for pro-

jects in collaboration technology for the support of med-

ical diagnosis and for the support of distributed remote sci-

entific experimentation. He received a PhD in computer

science from the University of Massachusetts in 1986.

Readers can contact the authors at University of Michigan, Ann

Arbor, MI 48109; e-mail {sushila, rmalan, hyongsop, jangho,

knoop, weymouth, farnam, aprakash}@umich.edu.

