
Tolerating Client and Communication Failures in Distributed Groupware
Systems

Hyong Sop Shim and Atul Prakash
Department of Electrical Engineering and Computer Science,

University of Michigan, Ann Arbor, MI 48109-2122 USA
E-mail: fhyongsop,aprakashg@eecs.umich.edu

Abstract

If a groupware system is to be effectively used, espe-
cially over a wide-are network such as the Internet, where
the quality of networking and computing resources are un-
predictable, it should allow clients to tolerate client, link,
and server failures. In particular, clients should be able to
join groups and transfer groups’ current state in the pres-
ence of most client and link failures. In order to reduce
usage overhead, disconnected clients should also be able to
rejoin groups without having to restart from scratch. Fur-
thermore, lock management and group membership should
tolerate transient failures in the system. In this paper, we in-
troduce the notion of stateful group communication, which
frees clients of administrative management of shared ap-
plication state and allows fault-tolerant group join, state
transfer, and rejoin. Stateful group communication is incor-
porated in Corona, a general-purpose, group communica-
tion service provider. In order to allow groups to tolerate
transient failures, Corona also provides locks with grace
period and group membership notification services that are
based on client connection status. In this paper, we present
and discuss Corona’s fault-tolerant services.

1. Introduction

The goal of a groupware system is to enable groups of
geographically distributed users to collaborate over com-
mon tasks over distance and/or time. A synchronous group-
ware system requires users to be present at their respective
sites at the same time, whereas an asynchronous groupware
system allows users to work on common tasks at differ-
ent times. In this paper, we address issues in making syn-
chronous groupware systems fault-tolerant against client,
network link, and server failures. In particular, we are only
concerned with fail-stop failures [15] of clients and servers.
A failed component stops operating until it is restarted, and

operational components can detect failures of other compo-
nents in the system. We also assume that a network link is
reliable and FIFO and may only fail by crashing. Two com-
ponents connected via a failed link cannot exchange mes-
sages until a new link is established.

In a groupware system, users are often impatient with
any delays due to network congestion, slow links, failed
processes, etc. Therefore, if a groupware system is to be
effectively used, especially over a wide area network such
as the Internet and World Wide Web, where the quality of
networking and computing resources are unpredictable, it
should allow clients to tolerate client and link failures and
server crashes.

In particular, a client should be able tojoin its group in
the presence of client and link failures. In addition, existing
clients should be able to continue their operations while a
new client is joining their group. A group of clients may
also share some application state. In such a case, a new
client joining the group should betransferredthe group’s
current state, even in the presence of client and link fail-
ures. Clients may get disconnected due to server crashes
and/or link failures in the system. In such a case, a client
should be allowed torejoin its groups without having to
start over from scratch, which may present substantial usage
overhead. A rejoined client should also be able to synchro-
nize with the current group state with minimal overhead. In
a groupware system, some clients may provide application-
specific services to other clients based on group member-
ship. Therefore, the groupware system should allow such
service providers to tolerate transient membership changes
due to transient client and link failures. In order to increase
application responsiveness, some clients may also require
lockson shared application objects. In such cases, a group-
ware system should recover locks from failed lock holders
in a timely manner. At the same time, it should tolerate
transient failures so that a lock holder’s state updates can be
salvaged upon rejoin.

Existing group communication subsystems, such as
ISIS [4], were originally intended to support building of ro-



bust, replicatedservices. They have been used to manage
replicated state among clients in a groupware system [7],
but there are limitations of that approach. Although they
provide important message ordering and consistent mem-
bership view guarantees, the inherent assumption is that
members of a replica group are generally available for state
transfer, etc. Our experience with groupware systems in
wide-area networks is that clients, such as those run from
browsers, can often crash, be frequently stopped or termi-
nated by users (such as by closing the browser window),
or have poor connectivity to the network. If the client
(a replica group member) chosen for state transfer experi-
ences a link failure or crashes, the new client would have
to wait until another client is chosen and so on. Thus,
frequent membership updates can incur significant perfor-
mance penalties on clients.

In this paper, we present our approach to providing fault-
tolerant services in groupware systems. Specifically, we
introduce the notion ofstateful group communication, in
which a group communication subsystem directly manages
groups’ shared application state and transfers groups’ state
to new clients. Stateful group communication enables ro-
bust group join, state transfer, and rejoin that tolerate client
and link failures by delegating shared state management re-
sponsibilities to the communication server. In order to sup-
port a wide range of groupware applications, the manage-
ment of shared application state at server is independent of
application semantics [12]. In order to protect group state
from server crashes, broadcast messages are logged on per-
manent storage at server. In order to facilitate group rejoin,
clients buffer their broadcast messages until acknowledged
by the server. Coupled with server message logging, this al-
lows clients to tolerate server crashes and rejoin groups with
minimal overhead. This approach has the added benefit
of supportingasynchronouscollaboration where the group
state can be transferred from one client to another even
when they are not simultaneously connected to the commu-
nication subsystem.

Our approach has been designed and implemented in
Java as part of the Upper Atmospheric Research Col-
laboratory (UARC) project [6] and is incorporated into
Corona [16] and DistView [13]. Corona is a communication
service provider that allows stateful group communication,
whereas DistView is a toolkit for building groupware appli-
cations on top of Corona services. In addition to group com-
munication services, Corona provides locks with grace pe-
riod and group membership notification services that reflect
client connection statusto allow groups to tolerate transient
failures in the system. Over the past few years, Corona has
been successfully used to support team science over a wide
area network in UARC.

The rest of the paper is organized as follows. Section 2
presents basic Corona services. Section 3 introduces the

notion of stateful group communication and discusses how
it allows group join and state transfer to tolerate client and
link failures. Section 4 discusses Corona’s message log-
ging mechanism. Section 5 discusses locks with grace pe-
riod. Section 6 discusses Corona’s group membership ser-
vice based on client connection status. Section 7 discusses
issues involved in supporting automatic client rejoin and
presents its mechanism. Section 8 discusses related work.
Section 9 concludes the paper and discusses future work.

2. Corona Group Communication: Basics

Corona supports the notion of agroup. A group is a
set of client applications that are communicating with each
other by broadcastingmessagesto the group. A group has
various attributes, which include a name and client-defined
properties. A group’s name uniquely identifies the group in
Corona; no two groups can have the same name. A group
may also have various properties that are client-defined. A
property is a(name; value) pair, name is a the property
name, andvalue is an object that represents the property
value. By default, a group does not have any property.

In order to distinguish between different clients, Corona
assigns aclient id to a client when it joins a group. The
client id is also sent to the joining client as part of its
joinGroup() protocol. The client uses itsclient id to
uniquely identify its own messages.

Corona allows both inter- and intra-group message
broadcast. A client broadcasts a message to a group by
sending abcast(gname; data) message to Corona, where
gname is the name of the target group, anddata is the
byte-stream encoding of the message content. Upon re-
ceiving abcast(gname; data) message, Corona broadcasts
the message to the members of the target group. Corona
allows the message sender to specify whether it wants to
receive the message back (sender-inclusive broadcast) or
not (sender-exclusive broadcast). Corona also supports
obj state bcast() messages. Aobj state bcast() message
contains state update information on a shared object and is
described in detail in Section 3.2.

Both bcast() andobj state bcast() messages have fol-
lowing attributes: senderid, local id, and global id. A
broadcast message’ssenderid uniquely identifies the mes-
sage sender and is set to theclient id of the sender client.
The local id is a client-generated sequence number and
uniquely identifies a message among other messages broad-
cast by the same sender. Theglobal id is a Corona-
generated sequence number and uniquely identifies the
message among all the broadcast messages in the system.
Theglobal id also indicates the receive order at Corona. For
messages,m1 andm2, if global id(m1) < global id(m2),
then Corona receivedm1 beforem2. No two messages
can have the sameglobal id. The sender client sets the



senderid andlocal id of a message when it sends the mes-
sage to Corona, whereas Corona sets theglobal id of a mes-
sage when it receives the message.

3. Stateful Group Communication

A group of clients often share some application state for
their tasks, e.g., shared documents. In a majority of ex-
isting groupware systems, clients assume state transfer re-
sponsibilities in that an existing client is chosen to transfer
the current shared state to a new client . In this protocol,
the new client may experience delay due to the failure of
the chosen client or its network link to the system. This
is especially true when groups collaborate over a wide-area
network such as the Internet, in which the quality and reli-
ability of network connectivity and host machines are un-
predictable. Another problem is that the new client may not
able to receive application state at all. It is possible that all
existing members experience failures while the new mem-
ber is still joining. Then there would no client left to trans-
fer application state. One possible solution is to store shared
application state in a known location on disk. However, the
new client may not be able to access the disk, especially
when working over a wide-area network.

In order to provide fault-tolerant group join and state
transfer services, Corona directly manages a group’s shared
application state and transfers the group’s state to new
clients. Because no existing client participates, a new client
is protected against client and link failures. Of course, either
Corona itself may crash or the network link between Corona
and the new client may fail during this protocol. However,
the idea is that as a service provider, Corona can be made
more reliable than client applications and that its runtime
environment can be better controlled, e.g., resources can be
dedicated. If a failure does occur, the client can rejoin the
group through Corona’s automatic client rejoin mechanism
as discussed in Section 7. In case of a crash, Corona can
still recover the group’s state via its message logging mech-
anism as discussed in Section 4.

3.1. Stateful and Stateless Groups

In Corona, a group that shares application state is called
a stateful group. Figure 1 graphically illustrates stateful
groups. Note thateach group member has a copy of shared
application state due to Corona’s state transfer. This allows
a client to update its local copy of the shared state first (as-
suming the client has appropriate locks (See Section 5)) and
then broadcast the updates. This increases application re-
sponsiveness, a critical performance factor in an interactive
collaboration environment.

Corona also supportsstatelessgroups. A stateless group
is a communication group, in which group members do not

Corona
Group Communications

Subsystem

Client A Client A’ Client B Client B’

DVGroupDVGroupDVGroupDVGroup

Figure 1. Corona stateful groups. Clients A
and A’ are in a stateful group and are sharing
some application state, identified by a filled
rectangle, whereas Clients B and B’ are in
another stateful group sharing some applica-
tion state, identified by a filled polygon. DV-
Group is a DistView toolkit [13] component
that provides interfaces for Corona services,
e.g., groupJoin(), groupLeave(), and bcas t().

share application state for their work and communicate by
broadcasting onlybcast() messages.

3.2. State Update Messages

In Corona, a stateful group’s shared application state
consists of a number of application objects, each of which
has a client-generated identifier,shared obj id. The
shared obj id of a shared object is known to Corona
only when it receives from a client a broadcast mes-
sage,obj state bcast(id; type; data) message, whereid
is the shared object id of the object, type specifies
the type of state update, anddata is a byte-stream
encoding of state update. type can be eitherINC

or NEW . An obj state bcast(id; INC; data) message
contains an incremental state update indata, whereas
an obj state bcast(id;NEW; data) message contains the
new state of the specified object indata. In order to broad-
cast anobj state bcast() message to a group, the sender
should be a member of the group.

In addition toobj state bcast() messages, Corona al-
lows authorized clients to checkpoint stateful groups’
state by broadcastinggroup state bcast(data) messages,
wheredata contains the latest state of each shared object.
That is,group state bcast(data) messages provide a way
of updating all the shared objects in a stateful group.



Note that Corona does not get involved in the inter-
pretation of semantics of shared objects. Corona only
knows a shared object by itsshared obj id and a series
of obj state bcast(idi; type; data) messages, whereidi =
shared obj id. Furthermore, Corona does not (or cannot)
decode the message contents of eithergroup state bcast()
or obj state bcast() messages. This client-based seman-
tics of shared objects [12] enables Corona to support a wide
variety of client applications.

3.3. Corona State Transfer

In order to facilitate application state transfer,
Corona caches bcast() and obj state bcast() mes-
sages based on message semantics as follows. An
obj state bcast(idi; INC; data) message contains in-
cremental state information on the specified object. Thus
Corona caches anobj state bcast(idi; INC; data) mes-
sage along with the otherobj state bcast(idj ; type; data)
messages in the order they are received, whereidj = idi.
On the other hand, anobj state bcast(idi; NEW; data)
message contains the specified object’s com-
plete state. Thus when Corona receives an
obj state bcast(idi; NEW; data) message, it purges from
its message cache anyobj state bcast(idj ; type; data)
messages, whereidj = idi, and then saves the message.
Likewise, upon receiving agroup state bcast(data) mes-
sage, Corona purges all previously savedobj state bcast()
messages from its message cache before storing the
group state bcast() message. Corona cachesbcast()
messages in the order they are received. Messages are
cached an in-memory list, calledgroup msgs, which
Corona maintains for each group in the system.

A stateful group’s state is the lastgroup state bcast()
message followed by a list ofobj state bcast() messages.
When a client joins a stateful group, Corona takes a snap-
shot of the group’s state from itsgroup msgslist and sends
it to the client. If new messages are broadcast during this
process, Corona sends the new messages to the new client
after the state is transferred.

No state transfer occurs when joining stateless groups.
However, Corona cachesbcast() messages for stateless
groups in order to support automatic client rejoin as dis-
cussed in Section 7.

4. Message Logging at Corona

Coronalogsbroadcast messages in order to protect group
state information against its own crashes. For each group,
Corona maintains agroup log file. Upon receiving a broad-
cast message for a group, it first logs the message to the
group’sgroup log file and then broadcasts the message to
the group members. This is to provide a guarantee that

when a client receives a broadcast message from Corona,
the message has already been logged. This guarantee is
critical to Corona’s automatic client rejoin support (see Sec-
tion 7). In addition, messages are logged at the time they are
cached ingroup msgslists. This is to minimize the amount
of group state that may be lost due to Corona crashes. Al-
ternatively, for less frequent disk access, a periodic dump-
ing of agroup msgslist to the correspondinggroup log file
could have been done, but that risks losing a period’s worth
of messages. Performance issues can also be addressed
by utilizing a memory-based filecache such as Rio [5].
Corona also stores group attributes ingroup log files. At
each start-up, Corona reads ingroup log files in order to
restore groups, their attributes, and the contents of their
group msgslists.

Group log filesare also used to preventgroup msgslists
from growing indefinitely. When the size of agroup msgs
list reaches a predefined threshold, Corona empties the list.
The size of the threshold has an impact on Corona’s perfor-
mance in state transfer. A large threshold means that more
messages can be cached in memory and allow for fast state
transfer withoutaccessing disk. In contrast, a small thresh-
old means that agroup msgslist is more frequently emp-
tied, and thus Corona may have to access the group’s log
file on disk more often. On the other hand, large thresholds
demand correspondingly large amounts of system resources
and may limit Corona’s scalability in terms of the number
of clients it can support.

5. Locks with Grace Period

Some clients may require locks in order to provide low
response time when updating shared objects. In order to
tolerate transient failures of lock holders, Corona associates
a lock with a grace period, during which a disconnected lock
holder can rejoin its group and salvage its updates on locked
objects. If the grace period expires, Corona can recover
locks and grant them to other clients. If Corona crashes
while a client has a lock, the client should rejoin its group
within the lock’s grace period after Corona restarts.

In order to provide flexible lock granularity, Corona
allows clients to simultaneously lock multiple ob-
jects. Simultaneously locked objects constitute a
lock set. In order to create alock set, a client
sends a lock request(fid1; :::; idng) message to
Corona, whereidi is the identifier of an object to be
locked. If no lock set with overlapping elements ex-
ist, Corona creates a requestedlock set and broadcasts
a lock granted(lock set id; fid1; :::; idng) message
to group members, wherelock set id is the Corona-
generated identifier of thelock set. Otherwise, Corona
sends alock denied(fid1; :::; idng) message to the re-
questing client. In order to release a lock on objects, a



client sends alock release(lock set id; fid1; :::; idng)
message to Corona. Corona removes the specified object
identifiers from the specifiedlock set and then broad-
cast a lock released(fid1; :::; idng) message to group
members. In order to remove alock set, a client sends a
lock release(lock set id) message to Corona. Corona
removes the specifiedlock set and then broadcast a
lock released(fid1; :::; idng) message to group members,
whereidi is an element of the removedlock set. Corona
caches and logslock granted messages andlock released

messages to a group’sgroup msgslist and group log file
respectively.

By default, a group does not have alock set. In order to
broadcast aobj state bcast() message, the sender should
have a lock on the specified object, or the object should not
be locked.

6. Group Membership

In Corona, some group members may provide
application-specific services to other group members
and maintain application-dependent data. In such a case,
application service providers may make data management
decisions based on group membership. Therefore, group
membership service should allow application service
providers to tolerate transient client and link failures.
Otherwise, an application service provider may update
its database based on incorrect membership information
and can no longer provide proper services. For example,
in UARC, Room Manager maintains a database of user
locations in Session Manager [8] based on the membership
of a predefined group in Corona. Without support for
tolerating transient failures, Room Manager would have
to update its database every time the group membership
changes. This can incur significant usage overhead and
performance penalties due to frequent database updates
in Room Manager as temporarily disconnected Session
Managers rejoin the group.

In order to tolerate transient client/link failures, Corona
supports three types of clients in a group:mem-
ber, disconnectedmember, and non member. When
a client joins a group, it becomes amember, and
Corona broadcasts to other clients in the system a
new member notif(gname; client id) message, where
gname is the name of the group the client joins,
and client id is the client’s unique identifier assigned
by Corona upon join. When amember is discon-
nected due to a client and/or link crash, the client
becomes adisconnectedmember, and Corona broad-
casts adisconnected member notif(gname; client id)
message. If adisconnectedmember does not re-
join the group within a predefined timeout period,
it becomes anon member, and Corona broadcasts a

non member notif(gname; client id) message. Amem-
bercan also become anon memberby explicitly leaving the
group.

7. Automatic Client Rejoin Support in Corona

Automatic client rejoin support enables a disconnected
client to wait until a network link can be established to
Corona, rejoin its group(s), synchronize its shared applica-
tion state with that of the group, if needed, and continue its
operations, without having to restart from scratch. Avoid-
ing unnecessary client restarts minimizes usage overhead
as users are freed from having to go through a registration
process and (possibly manually) recover shared state after a
restart. In this section, we discuss our approach to support-
ing automatic client rejoin in Corona.

There are two issues in supporting automatic client re-
join. First, a rejoining client should be transferred any new
messages broadcast while it was disconnected. This allows
the client to synchronize its state with the rest of the group.
An alternative is to blindly transfer entire broadcast mes-
sages to the rejoining client. But this would be wasteful,
especially when the group has a large number of messages.

Second, the client may have to re-broadcast some of its
own messages upon rejoin. It is possible that the client ex-
perienced a link failure as it was broadcasting messages,
that Corona crashed before it logged the client’s messages,
or that the user may continue to work while disconnected.
In the last case, the user assumes the risk of losing his or her
work due to conflicts. A different approach would be to re-
broadcast all of the client’s messages upon rejoin. However,
this approach requires Corona to detect and reject duplicate
messages. This places extra overhead on Corona.

7.1. Basic Approach

During normal operation, a client buffers its own mes-
sages in an in-memory list, calledbufferedclient msgs.
A message remains in the buffer until Corona acknowl-
edges the message as follows. If the message is broad-
cast sender-inclusively, Corona sends the original message
back to the client. If the message is broadcast sender-
exclusively or broadcast to another group, Corona sends a
specialack message to the client. Theack message con-
tains thesenderid andlocal id of the original message.

In addition, a client keeps track of theglobal id of the
last broadcast message from Corona. When rejoining, the
client presents this information to Corona, which then can
determine a sequence of messages that should be transferred
to the client.



7.2. Automatic Client Rejoin Mechanism

A rejoining client presentslast global id, theglobal id
of the last broadcast message from Corona. Corona then
determines the sequence of messagesM = fm1; :::;mng,
wheremi 2 M andglobal id(mi) > last global id, and
sendsM to the client.

Upon receivingM , the client processes each message,
mi 2M as follows. The goal is to determine whether or not
any local updates that the client made while disconnected
would conflict with the group’s state. A conflict results if
the client updated an object, while being disconnected, that
has since been locked by another client; note that server can
take away a lock from a disconnected client after its grace
period expires. If a conflict is found, the client is required to
join the group as a new client. This ensures that the client’s
state is consistent with the rest of the group. An alterna-
tive would have been to undo the conflicting local updates.
With this approach, it may be possible to salvage local up-
dates that do not conflict with the group’s state. However,
it requires the client to be prepared for undo even when it
has locks. We are currently investigating ways to providing
transparent system-level undo support for shared objects.

First, the client checks ifmi is a locally generated mes-
sage. If so, the client removes the corresponding buffered
message. This accounts for the locally generated messages
that are received by Corona but not yet acknowledged.

If mi is a lock granted(lock set id; S) message or a
lock released(S) message, whereS = fid1; :::; idng,
it means that another client has acquired and/or released
locks on the specified objects while the client was discon-
nected. If the client finds in itsbufferedclient msgslist any
object state bcast(idi; type; data) message, whereidi 2
S, then the client empties thebufferedclient msgs list,
deletesM , and joins the group as a new member.

If mi is aobject state bcast(idi; type; data) or abcast
message, the client processesmi as it would a regular
broadcast message. Note thatmi does not conflict with
any messages in the client’sbufferedclient msgslist. If the
client had a lock on the specified object prior to getting dis-
connected, then the presence ofmi means the the client has
failed to rejoin the group before the lock’s grace period was
expired, and Corona granted the lock to some other client.
As such, the client would have processed alock released

message as described earlier.
If mi is a group state bcast(), it means that the

group’s state has been reset after the client got discon-
nected. Therefore, the client removes all the messages
from its bufferedclient msgs list, makes note ofmi’s
global msgid, and forwardsmi to the client.

After all the messages inM are processed, the
client broadcasts any remaining messages in its
buffered client msgs. If Corona has received new

broadcast messages from other clients after it has sentM

to the rejoining client, and these messages conflict with the
client’s cached messages, Corona would detect conflicts
and take appropriate actions as it would with regular
broadcast messages.

A failure can occur while a client is rejoining; the re-
joining client may experience a link failure and/or Corona
may crash. In such a case, the client would try again. If
the client receivesM from Corona before getting discon-
nected again, it would process the messages inM and then
try to reconnect. If Corona crashes, it would restart, read in
group log files, and then allow rejoins.

8. Related Work

Lotus Notes is anasynchronousgroupware system that
allows clients to be disconnected from the system, work off-
line, and reconnect to the system at a later time. Notes
does not supportsynchronouscollaboration in which par-
ticipants work together at the same time. On the other hand,
Corona is primarily a synchronous groupware system. Al-
though Corona’s automatic client rejoin mechanism does
allow users to work off-line, it does not have as extensive
merge support as in Notes.

In the domain of synchronous groupware systems, we
are not aware of any other systems that provide system-
level support for automatic client rejoin. In its functional-
ity, Lotus’ NSTP [12] most closely resembles Corona. Both
systems advocate providing system-level services for man-
aging shared objects and argue for client-based semantics
of shared objects. However, NSTP lacks the notion of state
transfer (clients acquire remote references to shared objects)
and does not support the notion of persistent shared ob-
jects. On the other hand, Corona does not support NSTP’s
Facade-like facilities for browsing shared objects.

Other groupware systems, such as Groupkit [14] and
Jupiter [11], also provide an infrastructure for conference
management and application sharing. However, they lack
system-level support for dynamic shared object specifica-
tion, group state transfer, and persistent groups, the last of
which is made possible by Corona’s message logging.

Group communication subsystems such as ISIS [4],
Transis [1], and Consul [10] provide an infrastructure for
building distributed and reliable services on top of their
message broadcasting and membership services. Although
they provide message ordering and consistent membership
view guarantees, they lack the notion of a stateful group
communication of Corona. Instead, they leave the respon-
sibility of application state management to clients. Such
a client-based approach may not be suitable for building
groupware applications, where clients are free to leave the
group at any time. They are better suited to building repli-
cated services [3, 9, 2], where service failures are expected



to be rare. In our experience with groupware systems over
the Internet, it is much easier to make servers reliable, com-
pared to clients, simply because resources can be devoted to
keep servers running all the time.

9. Conclusion and Future Work

We introduced the notion of stateful group communica-
tion as means of providing fault-tolerant services in group-
ware systems. By freeing clients of the administrative man-
agements of shared application state, stateful group com-
munication allows robust join, state transfer, and rejoin ser-
vices that tolerate client/link failures and server crashes.
Stateful group communication is incorporated in Corona, a
general-purpose, group communication service provider. In
order to allow groups to tolerate transient failures, Corona
provides locks with grace period and group membership no-
tification services that are based on client connection status.
Corona has been successfully used over a wide area network
as part of the Upper Atmospheric Research Collaboratory
(UARC) project.

Several open issues remain. For example, there are cases
in which groups of client applications are inter-related and
the proper function of one group depends on other groups.
In such a case, when Corona crashes, not only do the mem-
bers of a group lose connection to Corona, but they also lose
connection to the members of related groups. When Corona
restarts, the members may require that inter-group relation-
ships are properly restored. Depending on operational se-
mantics, it may not be enough to simply recreate groups and
re-broadcast lost messages. Some applications may require
a specific order in which inter-related groups are created as
well as specific members to be present for proper opera-
tions. We are currently exploring these and other related
issues.

Acknowledgments

This work is supported in part by the National Science
Foundation under cooperative agreement IRI-9216848, by
the IBM Research Partnership Award, and an equipment
Grant from Intel.

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A
Communication Sub-System for High Availability. Techni-
cal Report TR CS91-13, Computer Science Dept., Hebrew
University, April 1992.

[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Robust and
Efficient Replication using Group Communication. Techni-
cal Report TR CS94-20, Institute of Computer Science, The
Hebrew University of Jerusalem, Nov. 1994.

[3] K. P. Birman and T. A. Joseph. Low-Cost Management
of Replicated Data in Fault-Tolerant Distributed Systems.
ACM Trans. on Computer Systems, 4(1):54–70, Feb. 1986.

[4] K. P. Birman and T. A. Joseph. Exploiting Virtual Synchrony
in Distributed Systems. InProc. of 11th ACM Symp. on
Operating Systems Principles, pages 123–138, Austin, TX,
Nov. 1987.

[5] P. Chen, W. Ng, S. Chandra, C. Aycock, G. Rajamani, and
D. Lowell. The Rio File Cache: Surviving Operating Sys-
tem Crashes. InProc. of the International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, October 1996.

[6] R. C. et. al. UARC: A prototype upper atmostpheric
research collaboratory.EOS Trans. American Geophys.
Union, 267(74), 1993.

[7] M. Knister and A. Prakash. Issues in the Design of a Toolkit
for Supporting Multiple Group Editors. Computing Sys-
tems – The Journal of the Usenix Association, 6(2):135–166,
Spring 1993.

[8] J. Lee, A. Prakash, T. Jaeger, and G. Wu. Supporting Multi-
user, Multi-applet Workspaces in CBE. InProc. of the
Sixth ACM Conference on Computer-Supported Coopera-
tive Work. ACM Press, Nov. 1996.

[9] S. Mishra, L. L. Peterson, and R. D. Schlichting. Imple-
menting Fault-Tolerant Replicated Objects Using Psync. In
Proc. of IEEE 8th. Symp. on Reliable Distributed Systems,
pages 42–52, Seattle, WA, Oct.1989.

[10] S. Mishra, L. L. Peterson, and R. D. Schlichting. Con-
sul: A Communication Substrate for Fault-Tolerant Dis-
tributed Programs.Distributed Systems Engineeering Jour-
nal, 1(2):87–103, Dec. 1993.

[11] D. Nichols, P. Curtis, M. Dixon, and J. Lamping. High-
Latency, Low-Bandwidth Windowing in the Jupiter Collab-
oration System. InProceedings of UIST ’95, Pittsburgh, PA,
1995.

[12] J. F. Patterson, M. Day, and J. Kucan. Notification Servers
for SynchronousGroupware. InProc. of the Sixth ACM Con-
ference on Computer-Supported Cooperative Work. ACM
Press, Nov. 1996.

[13] A. Prakash and H. Shim. DistView: Support for Building
Efficient Collaborative Applications using Replicated Ob-
jects. InProc. of the Fifth ACM Conf. on ComputerSup-
ported Cooperative Work, pages 153–164, Chapel-Hill, NC,
Oct. 1994.

[14] M. Roseman and S. Greenberg. GroupKit: A group-
ware toolkit for building real-time conferencing appliations.
In Proceedings of the Fourth Conference on Computer-
Supported Cooperative Work, pages 43–50, Toronto,
Canada, October 1992.

[15] F. B. Schneider. Byzantine generals in action: Implement-
ing fail-stop processors.ACM Trans. on Computer Systems,
2(2):145–154, 1984.

[16] H. Shim, R. Hall, A. Prakash, and F. Jahanian. Providing
Flexible Services for Managing Shared State in Collabora-
tive Systems. InProceedings of the ECSCW European Con-
ference on Computer Supported Cooperative Work, pages
237–252. Klewar Academic Publishers, 1997.


