
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999 213

Data Management Issues
and Trade-Offs in CSCW Systems

Atul Prakash, Member, IEEE, Hyong Sop Shim, and Jang Ho Lee, Student Member, IEEE

Abstract—Substantial interest has developed in recent years in building computer systems that support cooperative work
among groups without the need for physical proximity. This paper examines some of the difficult data management issues in
designing systems for computer-supported cooperative work (CSCW). Specifically, we consider an example CSCW system to
support large-scale team science over the Internet, Collaboratory Builder’s Environment; we discuss the issues of managing
shared data in such systems, reducing information overload, and providing group awareness and access control. We discuss
several promising approaches to these issues. We point out where a significant gap remains in addressing the requirements of
such systems and where designers have to make design trade-offs that can be difficult to evaluate. Finally, we discuss several open
issues for future work.

Index Terms—Computer-supported cooperative work (CSCW), groupware, system architecture, group communication,
collaboration environment, access control, data management.

——————————���F���——————————

1 INTRODUCTION

ECENT advancements in computer and communication
technologies have revolutionized how computers are

used. One of the application domains that is gaining in-
creasing usage and visibility is computer-supported coopera-
tive work or CSCW. In essence, the goal of CSCW is to
provide systems that allow users to effectively collaborate
on common goals using networked computer systems. The
motivation is to enable users to work together across geo-
graphical and time boundaries. CSCW provides computer-
based work environment in which collaborators can ex-
change messages, share data, and collaborate, even when
they cannot physically get together at the same place
and/or at the same time. As a result, CSCW dramatically
increases opportunities for group work and provides ready
access to resources needed for such work, e.g., shared data
and diverse expertise of participants.

The computer systems designed to support CSCW are
commonly known as groupware or collaborative systems. The
examples of groupware systems include electronic bulletin
boards, shared whiteboards, and chat rooms found on the
Internet. The popularity of the CSCW technology is also
evidenced by an increasing number of commercial prod-
ucts, such as Lotus Notes, Microsoft NetMeeting, and
CoolTalk in Netscape Communicator. Many of these sys-
tems have been successfully used, usually in small groups,
to facilitate data sharing among distributed participants.

In this paper, we consider some of the issues in the de-
sign of groupware systems for emerging applications such

as team science, crisis management, and tele-medicine. In
such applications, potentially several groups of geographi-
cally dispersed people with different areas of expertise
jointly work on multiple shared data artifacts. We will spe-
cifically examine several critical data management issues
that arise in the design of groupware systems to support
large-scale collaborations over a wide-area network. In
particular, we focus on the following issues:

•� CSCW System Architecture: The architecture of a
groupware system has a large impact on the size and
replication of shared state. In addition, it affects the
system’s runtime performance, the set of services that
can be provided, and scalability.

•� Group Awareness: A CSCW system should provide
mechanisms so that users are generally aware of
what other participants are doing. Such facilities al-
low better coordination by enabling users to avoid
duplication of work and reduce conflicts. An issue is
what constitutes awareness and how best to provide
it to users.

•� Reducing Cognitive Overload: As CSCW systems are
scaled up to share a large amount of data or to handle
a large number of users, reducing cognitive overload
on users becomes important. A large amount of data
can be potentially available to group members, and
the shared data can frequently change due to updates
by group members or external sources. Being in a
collaboration does not necessarily mean that users
want to be notified of all updates or provided with all
the shared data. For example, the subscription to a
particular news group does not mean that a user is
interested in all the posted articles. Reducing cogni-
tive load on users by better organizing coordination
activity, by filtering unnecessary information, and by
delivering key information can greatly increase the ef-
fectiveness of CSCW systems.

1041-4347/99/$10.00 © 1999 IEEE

²²²²²²²²²²²²²²²²

•� A. Prakash, H.S. Shim, and J.H. Lee are with the Software Systems
Research Laboratory, Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109.
E-mail: {aprakash, hyongsop, jangho}@eecs.umich.edu.

Manuscript received 12 June 1997; revised 21 Aug. 1998.
For information on obtaining reprints of this article, please send e-mail
to: tkde@computer.org, and reference IEEECS Log Number 108312.

R

214 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

•� Access Control: Proper access control to shared data
increases security and promotes active participation.
This is especially critical for supporting CSCW in an
open environment, such as the World Wide Web.

The above list is not intended to be exhaustive. However,
it serves to illustrate some of the challenges in designing
CSCW systems. The decision to discuss these issues is
partly influenced by our experiences with an ongoing proj-
ect to support team science, called the Collaboratory
Builder’s Environment or CBE [1]. The above issues are
emerging as some of the key problems in scaling up CBE to
support a large group of scientists.

In this paper, we discuss the CSCW requirements for
addressing these issues, present novel approaches found in
existing systems, and evaluate the presented approaches in
the context of CBE. Although the evaluation focuses on the
applicability of the presented approaches in the CBE, we
expect the evaluation to be broadly applicable to many
other CSCW systems.

The rest of the paper is organized as follows. Section 2
provides some background information needed for the
discussions presented in the paper. Section 3 discusses
the key design considerations in CBE to provide an

illustrative example of issues in building a groupware sys-
tem. Section 4 discusses the architectural issues of CSCW
systems. Section 5 presents some of the approaches to
dealing with reducing cognitive overload. Section 6 ad-
dresses access control in CSCW systems. Section 7 discusses
several approaches to providing group awareness. Finally,
Section 8 presents some concluding remarks and directions
for future work.

2 CSCW BASICS

To illustrate some of the data management issues in the
context of a simple CSCW application, consider a shared,
distributed whiteboard (see Fig. 1). A shared whiteboard
allows geographically distributed users to draw or write on
it and see each other’s work. Ideally, it can be used for in-
teractive discussions and brainstorming sessions, just like a
physical whiteboard, except that it allows participants to be
geographically distributed.

In order to ensure that the users see the same contents,
the whiteboard should maintain its state consistent in the
presence of concurrent accesses. Many approaches to
concurrency control problems exist in the distributed sys-
tems literature. However, a direct application of an existing

Fig. 1. Shared whiteboard. Users can freely express their ideas by making free-hand sketches, drawing diagrams, entering text, etc. as well as
observe updates made by others in real time.

PRAKASH ET AL.: DATA MANAGEMENT ISSUES AND TRADE-OFFS IN CSCW SYSTEMS 215

solution, say, a distributed transactions approach, may not
work, not because the solution cannot synchronize the state
of the board, but because it would not satisfy the demands
for high interactivity on the board. If the users have to wait
for their previous actions to commit before they can pro-
ceed, the interactions on the whiteboard could lose the
sense of fluidity, making users’ work less effective or the
system unusable in practice. Thus, concurrency control so-
lutions have to be devised that ensure interactive response
times and yet provide consistency. This may involve de-
signers making trade-offs between interactive response
time, latency in propagating updates, consistency of display
with shared data, and the kind of updates users are allowed
to make. Or it may require designers to build flexibility into
the system and allow end-users to make the trade-off, de-
pending on their task [2].

Another issue is group awareness. For users collaborat-
ing on shared work, an awareness of what each user in the
group is doing can play a critical role in coordinating their
activities. A traditional distributed system usually takes a
passive approach in providing the awareness information.
Unix commands such as who, finger, and zlocate usu-
ally require users’ explicit actions, i.e., type in a command

at the prompt. Collaborative systems, in contrast, need to
take an active approach in providing the awareness infor-
mation. For instance, in the shared whiteboard, support
may be required to show the users who are active (with the
list automatically updated as users join or leave the ses-
sion), to provide telepointers so that other users know where
a particular user is pointing, or to provide new user-
interface metaphors, such as multiple scrollbars, in order to
show where each user is working in a large scrollable
whiteboard. Audio/video conferencing may be used to
provide additional awareness, but that requires good infra-
structure to provide reasonable quality. Providing group
awareness has trade-offs with scalability and performance
of the system, and with privacy concerns of participants. In
addition, some users may find group awareness informa-
tion distracting (e.g., seeing several telepointers moving on
the whiteboard), so careful design is required so that rea-
sonable trade-offs can be made.

A shared whiteboard is a relatively simple groupware
application. The issues become more challenging when an
attempt is made to scale up CSCW systems for more in-
volved tasks and to a larger number of users. Fig. 2 shows
the interface presented by the CBE-based UARC system to

Fig. 2. UARC Collaborative Applications. Session Manager allows users to organize their collaborative and private work. The chat box allows
users to exchange textual messages. A whiteboard (not shown) allows users to annotate images and brainstorm about their work. The remote
data viewers receive atmospheric data from various instruments at remote locations and graphically display the data according to data types and
user settings. Users may export CBE-compatible windows to each other, allowing synchronized views of data.

216 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

support team science activities over the Internet. A CSCW
session in UARC usually consists of multiple collaboration
tools, such as chat, whiteboard, shared data windows, and
shared URLs displayed via a browser. Collaboration ses-
sions can last several days and involve tens to hundreds of
scientists and students. The system architecture has to be
flexible to support evolving needs of scientists and yet be
robust so that it can be successfully used over the Internet
for both synchronous and asynchronous collaboration. It
also becomes more challenging to handle issues of provid-
ing collaboration context and group awareness, and reduc-
ing cognitive overload when multiple activities are taking
place. In the following sections, we examine various ap-
proaches to addressing these issues.

3 COLLABORATORY BUILDER’S ENVIRONMENT

The Collaboratory Builder’s Environment, or CBE [1], pro-
vides a computer-based shared workspace that facilitates
team science over the Internet and World Wide Web. It is
being used to support a project sponsored by the National
Science Foundation called the Upper Atmospheric Research
Collaboratory or UARC project [3]. UARC focuses on the crea-
tion of an experimental testbed for wide-area scientific col-
laboration work. This testbed is implemented as an object-
oriented distributed system on the Internet and provides a
collaboration environment in which a geographically dis-
persed community of space scientists performs joint scien-
tific experiments with real-time atmospheric data from vari-
ous sites without having to leave their home institutions.
This community of space scientists has extensively used the
UARC system over the last three years.

Based on our experience with CBE, we have identified
the following usage and data management requirements.
While not exhaustive, the identified requirements are gen-
eral and should be taken into account when building large-
scale groupware systems.

•� Users with both individual goals and team goals:
Users often have individual goals as well as team
goals. For instance, in the use of the CBE for UARC,
scientists often have different areas of expertise. They
are interested in advancing their own research, but at
the same time, they want to collaborate with other re-
searchers in order to develop models of upper atmos-
phere events.

•� Participation of users in multiple activities: Users
often engage in a number of related activities simul-
taneously. For example, a scientist in UARC may
monitor different instruments, engage in discussions
with several groups, and do group work as well as
private work.

•� Synchronous and asynchronous collaboration: Users
may require multiple sessions to accomplish their
goals and they may not always be able to schedule a
common time for synchronous collaboration. There-
fore, support is required for collaborative activities
that consist of a series of sessions, centered around
collaboration artifacts, such as annotated data, paper
drafts, and design sketches, that should persist from

session to session. When a session starts, any artifacts
needed for the session should be available so that the
participants can quickly get on with their work. For
users who miss some sessions or a part of a session,
mechanisms for providing collaboration context are
needed so that the users can catch up on the missed
work quickly.

•� Dynamic multigroup collaboration: A collaboration
may involve sharing of work across group bounda-
ries. In UARC, one group of scientists may be more
interested in data from radar instruments and another
group in satellite image data. But, when interesting
data is observed, group boundaries may need to
quickly change, with scientists being able to dynami-
cally move data from one group to another.

•� Information overload: As CSCW systems are used by
larger or multiple overlapping groups and collabora-
tions involve increasing amount of on-line, changing
data, mechanisms are needed to filter out unnecessary
information and present overviews/summaries of
shared data and updates to it, so that users can work
efficiently and with as few distractions as possible.
Limited size of desktop displays can also be a con-
straining factor, requiring efficient use of desktop real-
estate in CSCW applications.

•� Collaboration in a wide-area network: Scientists in
the CBE collaborate over the Internet, with various
bandwidths and qualities of connection. Furthermore,
clients can often be unreliable, as compared to serv-
ers, in CSCW systems; clients may leave ungracefully
(e.g., by turning off the computer). CSCW systems
have to be robust against individual client failures
and provide adequate performance even when some
of the clients have poor bandwidth connections.

4 ARCHITECTURAL CONSIDERATIONS FOR
GROUPWARE SYSTEMS

In this section, we discuss architectural considerations for
groupware systems. In particular, we present the discus-
sions with respect to the following performance require-
ments. While not meant to be comprehensive, the following
requirements are based upon our experience with building
a large number of collaborative systems of various scales
and are found to be critical to the success of these systems:

•� Predictable performance for latecomers: In a syn-
chronous collaboration, participants may join an on-
going collaboration activity. A latecomer should be
able to receive a consistent state of collaboration in a
“predictable” amount of time¦largely independent
of client failures or of bandwidths to other clients in
the system. Our experience with CSCW systems indi-
cates that users expect a reasonable response time
(i.e., limited largely by their bandwidth to the net-
work and the size of the state) for state transfer when
they join the system. Furthermore, existing collabo-
rators should be able to continue their work while
latecomers are joining.

PRAKASH ET AL.: DATA MANAGEMENT ISSUES AND TRADE-OFFS IN CSCW SYSTEMS 217

•� High performance in interactive response time and
latency: Users expect groupware tools they use, e.g.,
group editors and whiteboards, to have a similar re-
sponse time as single-user applications. Collaboration
with other users should have minimal effects on the
fluidity of users’ interactions with their applications.
Also, latencies should be low.

•� Persistence: A collaborative activity may be both syn-
chronous and asynchronous. It is often the case that
collaborators may not accomplish all their goals in
a single session; they may have to adjourn a session
and reconvene at a later time. In such cases, it
may be necessary to persistently save a part or all of
shared data used in a collaboration to allow retrieval
in a later session.

•� Synchronization: The shared data in a collaboration
should be consistently synchronized during the entire
collaboration. Furthermore, wherever possible, col-
laborators should be allowed to access and modify
the shared state concurrently without disrupting each
other’s work.

•� Robust collaboration: A collaboration session should
be robust. It should tolerate various failures of col-
laborators’ host machines and network connec-
tions and continue to support the work of nonfaulty
collaborators.

Two key architectural considerations for groupware
systems are: the administration of shared state and the size of
shared state. The former refers to the organizational decision
as to which collaborating processes maintain the consis-
tency of shared data. The latter refers to the amount of
shared application data in group work. In this section, we
discuss existing approaches to these issues and describe the
approach used in CBE.

4.1 Centralized vs. Replicated Administration of
Shared Data

In general, there exist two approaches to managing shared
data in groupware systems: centralized and replicated. With a
centralized approach, there exists only a single copy of the
shared data. A well-known process, often called the server,
controls access to it. Many approaches to centralizing
shared data exist. Application sharing systems, such as Mi-
crosoft NetMeeting and XTV [4], are inherently centralized
because only a single instance of the application runs, but
its GUI display goes to multiple users. User input to the
application, such as mouse-clicks, is sent to the application
process for processing, and the resulting changes to the
interface of the application are propagated to client sites.
Jupiter [5], an outgrowth of the popular MUD [6], also al-
lows sharing of applications. In Jupiter, an application con-
sists of application objects, which define the functionality of
the application, and graphical user interface objects, which
allow users access to the application objects. When the ap-
plication is shared, the application objects remain at the
server site, and only the user interface objects are replicated
at client sites. User input to the application is sent to the
server site for processing, and the results are returned to the
client sites. NSTP [7] also takes a centralized approach in

which shared objects are centrally stored at the NSTP server
site, and collaborating processes acquire remote accesses.

With a replicated approach, collaborating processes
manage shared data among themselves; the processes have
their own copies of shared data and coordinate concurrent
accesses in order to keep the state of the replicas consistent.
Most group editors adopt a replicated approach in which
text buffers are replicated at each site, and editor processes
run a synchronization algorithm among themselves in or-
der to maintain the consistency of the replicated buffer. For
example, DistEdit [8] provides locks of varying granularity
that can consist of any number of consecutive characters,
and the size of a lock dynamically grows as a user contin-
ues to type. The dOPT algorithm of Grove [9] uses an opti-
mistic strategy in that it locally transforms remote opera-
tions based on the state of the local copy of the buffer; no
locks are required. Both GroupKit [10] and MMConf [11]
provide a general-purpose, replication-based infrastructure
for running real-time, collaborative conferences; in each, an
instance of a collaborative application runs at each collabor-
ation site, and application replicas exchange messages among
themselves for replicated state consistency. GroupKit allows
customized conference registration procedures whereas
MMConf provides a set of lock-based synchronization
mechanisms upon which conference-specific synchroniza-
tion policies can be devised.

The advantages and disadvantages of centralized and
replicated approaches are well documented in the literature
[7], [11], [12]. Generally speaking, a replicated approach has
an advantage over a centralized counterpart where the is-
sues of robustness and user responsiveness are concerned.
Because each collaborating process equally assumes the
administrative responsibilities of managing shared data,
failures of one or more processes are unlikely to bring
down the entire collaboration. Furthermore, the user of a
process can directly interact with the local copy of the
shared data of the process, hence increasing the opportuni-
ties for providing performance in interactive responsive-
ness close to that of single-user application.

Because there are multiple copies of shared data in a
replicated architecture, however, it is generally expensive
to keep the state of shared data replicas synchronized. The
synchronization algorithms in DistEdit and Grove take ad-
vantage of characteristics specific to the application domain
of editing and hence can be difficult to use in a general
class of applications. Algorithms based on the distributed
transactions semantics [13], [14] are expensive to implement
and may incur significant processing overheads, degrading
response times. Indeed, the main advantage of a central-
ized approach is its ease of synchronization of shared data.
Because there exists only a single copy of the shared
data, concurrent accesses can be easily serialized by the
server process.

Accommodating latecomers to a collaboration is easier
with a centralized architecture than with a replicated
counterpart in which a complex group membership syn-
chronization protocol needs to be run among all the keepers
of replicated data whenever a latecomer is introduced. The
server in a centralized architecture can maintain the mem-
bership of collaborating processes and notify the existing

218 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

clients of the new client only when an accommodation
protocol is completed. In a replicated architecture, existing
clients may have to be suspended while a copy of shared
data is transferred to the newcomer. Furthermore, the sys-
tem may have to ensure that group members agree on the
group membership in order to maintain the state of shared
data consistent. Of course, replication strategy, though
more difficult to implement, has the the potential advan-
tage of providing better response time and fault-tolerance.

4.2 Size of Shared State
Collaboration tools, such as shared whiteboards and group
editors, inherently allow their internal state to be shared,
i.e., accessed and/or modified, by multiple users. The size
of shared state refers to the amount of shared application
data, and depending on collaboration semantics, it may
range from the entire application state to a small subset.
For example, Microsoft NetMeeting, XTV [4], and SharedX
[15] allow single-user applications to be shared among
multiple users without any code modifications by multi-
plexing window manager events. In these systems, the en-
tire state of an application, including its graphical user in-
terface and the locations of the application’s windows on
the screen, is shared. On the other hand, NSTP [7] allows
individual application objects to be shared. It provides a
centralized repository, called a Place, in which shared ob-
jects, called Things, may be stored. Then collaborating pro-
cesses acquire remote references to a set of Things and
receive update notifications whenever the state of a Thing
is changed.

The size of shared state has a significant impact on the
types of collaboration that can be supported. For example,
in a collaboration environment based on application shar-
ing as in NetMeeting, XTV, and SharedX, security can be
compromised if applications can read/write files. Further-
more, because the windows of a shared application may
have to be identically located on the screen, participants
have little control in management of screen display, which
may, in effect, prevent them from doing private work.

In contrast, several toolkits such as NSTP [7], COAST [13],
and DistView [16] allow applications to share internal ob-
jects. Applications based on these systems are “collabora-
tion aware” and can be designed to allow users to perform
both private and shared work. They can also allow users to
control their individual displays, perhaps seeing the shared
application data in different ways, and to interact in paral-
lel. Performance is also usually an order-of-magnitude
higher because internal application state changes are pro-
pagated (usually small) as opposed to user-interface up-
dates (usually larger as they can involve bitmaps and
complex graphics operations). At present, applications de-
signed to be “collaboration-aware” are much more scal-
able to large groups than single-user applications used in
application-sharing environments such as NetMeeting.

Another issue is that the size of shared state may have to
change at runtime. In addition, depending on collaboration
semantics, it may be difficult to determine the proper size
in advance. For example, many window-based editors al-
low simultaneous editing of multiple documents, and a
group editor with similar capabilities may support editing

of both private and shared documents. However, the group
editor cannot determine in advance shared documents to be
co-authored. The decision is up to users and is made at
runtime. For example, a user may decide to bring a private
paper to the attention of the user’s colleagues for their
comments. Conversely, the owner of a shared document
may want to stop the group-editing on the document in
order to finalize the document. Providing support for such
dynamics in shared state size is important in enhancing the
effectiveness of collaboration.

4.3 Shared Data Management in CBE
The shared data management in CBE is based on the notion
of stateful group communication [17], in which the underlying
communication subsystem directly manages shared appli-
cation data for its clients. Our experience with groupware
systems in wide-area networks is that clients, such as those
run from Web browsers, can often crash, be frequently
stopped or terminated by users (such as by closing the
browser window), or have poor connectivity to the net-
work. Consequently, clients cannot be expected to reliably
perform administrative tasks such as state transfer. If a cli-
ent chosen for state transfer experiences a link failure or
crashes, the new client would have to wait until another
client is chosen, and so on.

Existing group communication subsystems, such as
ISIS [18], Transis [19], and Consul [20], provide important
message ordering and consistent membership view guar-
antees and have been successfully used to support building
of robust and replicated services. They have also been used
to manage replicated state among clients in groupware
systems; for example, DistEdit [21] uses ISIS as the under-
lying communication mechanism. However, the use of this
approach is limited in groupware systems due to the inher-
ent assumption that group members are generally available
and that group membership does not frequently change.

In contrast, stateful group communication method has
the underlying communication subsystem manage shared
application data for its groups in order to provide reliable
join and state transfer. Of course, like clients, the communi-
cation servers may experience network failures or crash.
However, the assumption is that as a service provider, the
servers can be made more reliable than clients and that
their runtime environment can be better controlled, e.g.,
resources can be dedicated. Furthermore, other measures
can be taken to counter server crashes, e.g., message log-
ging and client rejoin support [17]. Message logging can
minimize the amount of data loss in case of a crash,
whereas client rejoin support allows clients to rejoin their
collaboration groups without having to start over from
scratch, which helps reduce usage overhead.

In CBE, stateful group communication is provided by
Corona [22], a group communication server. Corona models
a set of collaborating processes as a group. A group can
define and update shared application state at Corona
by broadcasting state update messages. A state update mes-
sage can contain an incremental state update for a shared
object or the object’s complete state. Corona logs state
update messages as they are broadcast. Logging is based
on the semantics of state update message; for example, a

PRAKASH ET AL.: DATA MANAGEMENT ISSUES AND TRADE-OFFS IN CSCW SYSTEMS 219

state update message with the complete state of a shared
object replaces any logged messages that contain incre-
mental state updates and old state of the object. Note that
Corona does not (or cannot) decode message contents; the
interpretation of message contents is up to clients. This
client-based semantics [7] of Corona’s shared state man-
agement is designed to support a wide variety of collabo-
rative applications.

Fig. 3 graphically illustrates the management of shared
state in Corona. Note that in addition to Corona, each client
has a copy of shared state. This is due to Corona’s state
transfer service; when a client joins a group, a snapshot of
logged messages is sent to the new client. If new messages
are broadcast, Corona forwards the messages to the client.
This join and state transfer protocol is both reliable and un-
obtrusive in that the new client can receive its group’s
shared state even when the other clients are unavailable
due to network failures or crashes and that existing clients
can continue to work while a new client is still joining.

That clients have a local copy of shared state provides
low response times for local operations, an important factor
in interactive collaborative environments. Corona also pro-
vides locks to those clients that need exclusive access to
shared objects. The Corona services are open in that clients
can choose only the services they need. For example, a
group working on a shared whiteboard may not need to
synchronize concurrent accesses to the whiteboard. Such a
group does not need to subscribe to Corona’s lock services.

4.4 Size of Shared State in CBE
In CBE, the concept of selective window sharing is em-
ployed to allow the size of shared state to be tailored to

collaboration needs. Selective window sharing allows on-
demand sharing of application windows. Today’s applica-
tions have sophisticated graphical user interface that con-
sists of multiple windows, and a window graphically dis-
plays part of application state. With selective window
sharing, users decide which windows to share at runtime.
When a window is shared, the application state displayed
in the window is also shared. The shared window then
provides a synchronized view of the shared state to collabo-
rating users. Shared windows can co-exist with “unshared”
windows, which allow users to perform private work.

Because users decide which windows to share at run-
time, the size of shared state can be tailored to collaboration
needs. For example, if the sharing of entire application in-
terface is desired, as in XTV, all the application windows
can be shared. A finer granularity can be provided by
sharing only the windows that display application state
that need to be shared.

Fig. 4 graphically illustrates selective window sharing. In
order to share a window, the user first exports the window
to a public repository, i.e., Corona in CBE. Subsequently, the
user’s coworkers can import the window from the reposi-
tory. Once the window is imported, it maintains a synchro-
nized view of shared data at all times. In order to provide
low response times, an imported window is replicated at
import time and is functionally equivalent to the exported
window. The user can interact with an imported window as
he or she would with regular windows. An imported win-
dow can be positioned on screen independently of the ex-
ported window, can be iconified, etc.

Fig. 3. Groups and shared states in Corona: circles represent collaborating processes, dotted lines depict groups, and shapes represent shared
states. In the figure, Processes A and B belong to Group G1; Process D belongs to both Group G2 and Group G3; and Process E belongs to
Group G3 and Group G4. Group G4 is a singleton group in that it only has one member. Note that Corona, as well as client processes, has copies
of the shared state of a group.

220 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

Selective window sharing is incorporated in DistView
[16]. DistView is an object-oriented toolkit that provides a
library of group-aware objects. A group-aware object can be
used both for private and collaborative work. When shared,
it is replicated at collaboration sites and maintains a con-
sistent state by exchanging state synchronization messages
with its replicas. The application model in DistView is
based on the well-known programming paradigm, called
Model-View-Controller or MVC [23]. In MVC, an applica-
tion consists of three types of objects: models, views, and
controllers. A model manages application state. A model
updates its state in response to user input and notifies one
or more views. A view is associated with a model and is
responsible for graphically displaying its model’s state on
the screen. A controller is associated with a model and is
responsible for notifying its model upon sensing user input,
e.g., mouse clicks and keyboard entries. Views can contain
other views and are organized in a hierarchy. A window is a
top-level view in a view containment hierarchy. When a
window is shared, DistView replicates the views in the
window’s hierarchy and their associated models.

DistView currently requires programmers to write code
that acquires appropriate locks to ensure consistency of
replicas. All the locks should be acquired together before a
user action because no explicit support is provided for
aborting a partially executed action if some of the locks
cannot be acquired. The COAST system [13], based on
Smalltalk, addresses this problem by modifying the Small-
talk virtual machine to support optimistic transactions and
aborts of transactions. The DECAF system [14], like
COAST, also uses optimistic transactions, but hides the

complexity of optimistic transactions from programmers
by providing a standard set of objects, such as Integers,
Strings, etc., that have rollback capability built in. All these
systems are relatively new and more experience is needed
with them to evaluate the best programming model for
building CSCW systems.

5 REDUCING COGNITIVE OVERHEAD

An infrastructure for general-purpose, large-scale collabo-
ration over a wide-area network, such as CBE, needs to
support multiple groups of users who have different goals
and need to perform a wide range of activities. In order to
facilitate such collaborative work, a system should address
the following issues:

•� Information overload: A group of users should ide-
ally be presented only with information relevant to
their work. Any other information should be “hid-
den” from the group’s view of the system, unless oth-
erwise needed. Blindly presenting all the data in the
system, irrespective of the needs of different groups,
would unnecessarily overwhelm users and degrade
the usefulness of the system as a general-purpose
collaboration infrastructure.

•� Scalable collaboration environment: The collabora-
tion environment provided by the system should be
scalable. In particular, it should allow a group of users
to simultaneously pursue different goals, form sub-
groups, and bring in the tools they need at runtime.
Further, users should be able to arrange their desktop
displays according to individual needs. Scalability can

Fig. 4. Selective window sharing. A shared window is first exported to the public repository and then imported. An imported window is replicated
and functionally equivalent to the exported window. The shared window displays a synchronized view of shared application data.

PRAKASH ET AL.: DATA MANAGEMENT ISSUES AND TRADE-OFFS IN CSCW SYSTEMS 221

also be facilitated by the support for asynchronous
collaboration, such as the session record-and-replay
capability [24]. In a large-scale collaboration where
participants may be distributed across different time
zones and/or continents, it is likely that participants
sometimes join an ongoing group session or entirely
miss a session. In such cases, asynchronous collabora-
tion support such as the ability to record the minutes
of the session and replay them at a later time would
greatly facilitate those who were absent to quickly
catch up with the current status of group work.

In this section, we describe various approaches to these
issues in existing collaborative systems.

5.1 Dealing with Information Overload
The basic approach to solving the problem of information
overload is to first evaluate incoming streams of information
against users’ needs before delivery. Then unwanted infor-
mation may be filtered out and/or the information that does
reach users may get prioritized according to users’ specifica-
tions. Many approaches are possible to specifying filtering
criteria. For example, a user may specify keywords or
phrases to look for in information contents [25]. CLUES [26]
relies on users’ everyday work environments that may
include electronic calendar, log of telephone calls, and rolo-
dex. For example, if a user has made a phone call to an
area with a certain area code, CLUES will assign a high
priority to any subsequent electronic mail from people
whose telephone numbers in the user’ rolodex have the
same area code.

Collaborative filtering [27] involves humans in the evalua-
tion of incoming data streams. For example, the filtering
process in Tapestry [27], an electronic mail system, takes
into account human reactions to received mail messages. The
reactions are captured in annotations to mail messages, and
rule-based filters may be created based on the contents of
annotations as well as the contents of mail messages. In
GroupLens [28], a news reader, users assign numeric scores
to each news article they read. The scores of different users
are correlated with each other in order to find users who
share similar taste. Before sending a news article to a user,
GroupLens first finds the existing scores on the article and
computes a score that predicts how much the recipient
would like the article. The computation is based on a heu-
ristic that “people who agreed in their subjective evaluation
of past articles are likely to agree again in the future.”

A major drawback of collaborative filtering is that it cur-
rently requires a substantial amount of preplanning on the
part of users and extensive set-up time. In Tapestry, when
writing a filter, a user has to know in advance whose an-
notations are to be included in the query. Hence, there
needs to be a prior agreement among a group of users on
types of annotations and group membership. However,
determining the exact membership of the group in advance
may be difficult as group work may require different ex-
pertise at runtime. GroupLens is learning-based in that the
more article ratings it has, the better its predictions. There-
fore, it may take substantial time before GroupLens pro-
duces useful predictions.

In CBE, the Session Manager [1] allows a group of users to
organize their shared workspace into rooms that can be used
for organizing their work and filtering out unwanted in-
formation. Fig. 2 shows the user interface of the Session
Manager. A room represents a workspace into which users
may put arbitrary objects that represent users’ work arti-
facts. A room may be either public or private. A public room
is a shared workspace for a group of users who collectively
work on the objects in the room. A private room is a private
workspace in which a user can work in private without
being exposed to others’ public work.

Rooms may be organized as a hierarchy, in which top-
most rooms represent different user communities, the
rooms at one level down represent organizations or groups
within a community and so on. Such a room hierarchy can
assist users in organizing their joint work and filtering out
events that do not pertain to their work.

CBE currently does not provide much filtering of infor-
mation within a room. Little work has been done on this
yet¦most room-based systems such as MUDs attempt to
provide all information to users. The concept of collabora-
tive filtering may be applicable there, for instance to ensure
that important chat messages are highlighted in the chat
window (any user could perhaps be allowed to mark a chat
message as important), or to indicate which windows in the
shared workspace are the focus of attention.

5.2 Scalable Collaboration Environment
The Session Manager in CBE is an example of a system that
aims to be scalable to the dynamic demands of collabora-
tive work, in terms of types of user groups, types of objects
on which collaboration occurs, and the types of tools used
for collaboration. Below, we describe some of its features
that facilitate scalability. We also compare its approach to
other key systems such as TeamWave [29] (previously
known as TeamRooms).

CBE allows one user to be present in multiple rooms si-
multaneously. This allows users to participate in multiple
collaborations, making better use of their time. In UARC,
scientists use rooms to partition their work by data sources,
and participate in multiple rooms simultaneously so that
they can observe the activity in various rooms.

Objects may be added to and deleted from rooms
as needed. Objects can be of different types and invoked
from the Session Manager to view or modify them. For ex-
ample, if the object is a URL, then on invoking that object,
a web browser starts up and displays the page that the URL
refers to.1 If the object represents a shared document, a
CBE-compatible group editor starts up and displays the
current contents of the document. Note that the users in a
room are not required to run all the objects in the room;
instead, they run only the objects of their interests. This
supports the different needs of individual users within the
same collaboration group. For example, some members of
the group may want to work on a shared paper, whereas
the others are jointly creating a design diagram on a shared
whiteboard. In order to focus on their group-editing, the

1. The Session Manager currently does not support the collaborative
viewing of URL pages.

222 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

co-authors may not want to participate in the drawing ses-
sion and vice versa.

CBE supports persistence of state across sessions to
allow participants who miss a session to catch up on
missed activity and collaborate asynchronously. Rooms and
objects persist in the sense that they outlive group sessions.
When a group of users leave a group session and reconvene
at a later time, the rooms for their work still exist in the
server, and the objects are in the same state as when whey
last left them. This efficiently allows groups’ work to span
multiple sessions.

An object in a room can also be a shared window. If sev-
eral users open a shared window object in a room, their
windows are guaranteed to be synchronized. All opera-
tions, such as scrolling, window resizing, etc., are propa-
gated among the copies of a shared window. Shared win-
dows in CBE are implemented via the model-view sharing
capability of the DistView toolkit discussed in Section 4.4.

In order to facilitate data sharing between different ac-
tivities and/or different groups of users, objects may be
either copied or moved between rooms. When an object is
copied to a room, a new instance of the copied object is
added to the room. The new instance has the same state as
the original at the time of copy, but the subsequent updates
on it have no effect on the original. Moving an object is
similar to copying an object except that the object is re-
moved from the room from which it is moved.

TeamWave [29] is another system that uses the room
metaphor for representing a shared workspace. In
TeamWave, a group of users is given a shared window
manager in which the windows of individual collaboration
tools used for their group work are displayed. Fig. 5 shows
an example of such a shared window manager. Users may
independently view different parts of the shared window
manager while working on different aspects of their work.
New tools may also be added and removed as needed.

The main advantage of the TeamWave’s approach is that
a shared window manager increases the sense of working
together for a group of users. Because the shared window
manager is shared only by the members of the group, the
users feel tightly connected with each other. However, the
shared window manager reduces flexibility in individually
arranging users’ desktops as it does not allow users to in-
dependently place collaboration tools on the screen. When
a user participates in multiple groups, the user’s desktop
may become too crowded with multiple shared window
managers. Thus there is a trade-off between the extent of
view synchronization of rooms and the control users have
over their desktop. Further experience with these systems is
required to determine the best compromise between these
competing needs.

6 ACCESS CONTROL

Proper access control is critical to the successful adaptation
of the CSCW technology. Collaborators should be able to

Fig. 5. A shared window manager in TeamWave.

PRAKASH ET AL.: DATA MANAGEMENT ISSUES AND TRADE-OFFS IN CSCW SYSTEMS 223

work without unauthorized users prying into their interac-
tions, and their physical as well as intellectual properties
should be protected from unauthorized access. Further-
more, doing so should not incur excessive overhead.

Traditional approaches typically bind user names to a set
of data objects through a set of access rights. A access con-
trol list, for example, associates a set of tuples (S, R) to a
given object, O, where S is a list of user names, and R is a
list of access rights, each of which specifies the access right
of the corresponding user in S on O.

However, an open issue is whether traditional ap-
proaches are adequate for collaborative systems. Effective
collaboration is often accomplished by collaborators spon-
taneously reacting to each other’s actions [30]. As such, the
participants in a collaborative activity should not be re-
stricted to a single role, as doing so would limit their con-
tributions [31]. For example, if a user is limited to a role of
observer in a meeting, the user would/could not express
his or her ideas at appropriate moments. Furthermore,
things often do not work out as planned, and collaborators
may have to perform unexpected tasks as a collaboration
evolves over time. For example, the unexpected early de-
parture of a secretary in a meeting would require the dele-
gation of the responsibilities of the secretary to one of the
meeting participants on the fly, and the selected person
would have to perform tasks of both the secretary and the
participant thereafter.

Capability or access control lists do not provide any pro-
visions for dealing with such dynamism and spontaneity
inherent in collaborative activities. As a result, collaborators
have to assume the responsibilities of updating access con-
trol lists depending on the collaboration context. For exam-
ple, when a user assumes a new role, an authorized user
may have to manually update a capability or access list so
that the user can access data objects needed for the new
role. Such overhead, involving the administrative aspects of
collaboration rather than collaboration itself, disrupt the
fluid interactions among collaborators and can significantly
degrade the effectiveness of collaboration.

In short, an access control mechanism for collaborative
systems should be able to incorporate the dynamism inher-
ent in collaboration. At the minimum, it should:

•� allow collaborators to effortlessly switch between
roles. Role switching should be easy and should not
incur too much overhead.

•� allow collaborators to assume multiple roles simul-
taneously.

In this section, we discuss approaches found in current
collaborative systems.

6.1 Inheritance and Dynamic Roles
Suite [32] is a general framework for building collabora-
tive applications. It allows dynamically defining and con-
figuring a wide range of collaborative interactions by pro-
viding an access control framework that allows fine-
grained access right specifications. The framework extends
the classic access control matrix model by Lampson [33]
by structuring each of the subject, access, and object dimen-
sions of the model as an inheritance-based hierarchy. In

Suite, a subject in an access control list may be either a user
name or a role.

Role-based access control (RBAC) has been advocated in
several systems [34], [35]. The basic concept of RBAC is that
permissions are associated with roles, and users are as-
signed to appropriate roles. Roles correspond to job char-
acteristics in an organization and users are given roles ac-
cording to their responsibilities and qualifications.

Access authorization on objects can then be specified for
roles without the need for specifying each user’s access to
the objects.

Examples of roles in literature include author, commentor,
principal, and observer. Because roles are assumed to have
semantics well understood in collaborators’ communities or
organizations, the collaboration context can be deduced
from the participant roles present in a collaboration. For
example, in a group-editing session, the presence of multi-
ple author roles effectively conveys that a paper is being
concurrently edited by multiple users.

Suite organizes roles as a hierarchy in which child roles
have more specific definitions than their parents’ roles. If a
user takes a role, then he or she inherits any rights associ-
ated with the parent of the role. A child role may also have
rights that override the rights of its parent role. Users may
take multiple roles and change roles dynamically. If the
multiple roles of a user have conflicting rights, the access
specification of whichever role that appears first in the ac-
cess control list is used. Suite users may extend the stan-
dard role hierarchy by defining custom roles that reflect the
particular collaboration context.

Intermezzo by Edwards [30] provides access control
based on a richer collaboration context than is supported by
existing systems. Edwards argues that the traditional role-
based mechanism does not provide enough flexibility and
responsiveness to dynamic collaboration environments. In
particular, roles in many systems are static in that a set of
roles are predefined prior to collaboration and that role
membership is specified in terms of user names. As a result,
static roles require users to anticipate various situational
variables in their collaboration, a difficult task.

Intermezzo supports dynamic roles in addition to static
roles.2 Instead of a list of user names, a dynamic role is
specified with attributes that embody situational clues
about collaboration context. The attributes are incorpo-
rated in a predicate function associated with the dynamic
role. Whether or not a particular role has access rights to
some data objects is not established at the access control
specification time. Rather, the predicate function associated
with the role is dynamically evaluated when an access re-
quest is made.

Both Suite and Intermezzo are likely to require signifi-
cant administrative overhead. Suite can require substantial
set-up efforts before collaboration can actually commence.
Defining the role hierarchies in an organization, the set of
users, mapping between users and roles and the access
right of each role can be nontrivial.

In Intermezzo, it can be difficult to define dynamic roles
and write associated predicate functions for all possible

2. The static roles are supported by means of access control lists.

224 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

collaboration contexts. Verifying the correctness of the
predicate functions can also be problematic.

6.2 Access Control in CBE
In CBE, each room is associated with its access control
list. The access right specification is role-based, and the
supported user roles include administrator, member, and
observer. Each user role is mapped to its own access rights to
rooms with a different level of service in collaboration. In
order to support the spontaneity of group work, the system
allows users to freely create rooms. Our policy allows any
user to create rooms in order to provide an open collabora-
tion environment to scientist users. However, the permis-
sion to create rooms can be specified in user roles by the
system administrator if more strict access control is needed.
By default, a user who creates a room becomes the room’s
administrator. A room administrator decides who can enter
the room and specifies access rights of users in the room. A
member user may participate in a collaborative activity by
running an object and make updates on the shared data
used in the activity. A member user is not allowed to up-
date the access rights nor delete a room, both of which are
the privileges of the administrator of the room. An observer
can also run an object (or run an application with the con-
tent of the object), but may only observe the updates on the
shared data of the activity. Since the observers cannot dis-
rupt the collaborative activity in the system, member users
feel comfortable with the idea of making the system openly
accessible over the Internet. This model can be extended to
specify access control on operations on objects which in-
clude rooms, room objects, and actions where actions are
associated with events on rooms or room objects [36]. Ex-
amples of operations on rooms are enter a room, leave a room,
and list objects in a room. The model allows user roles to be
defined based on the semantics of the collaboration. Since
the model is similar to the access control in Andrew File
System (AFS), adapted for use in collaborative systems,
users are likely to be familiar with the model. As a result,
the model is simple to understand as well as easy to use.
However, it lacks the richness of the functionality and flexi-
bility found in Suite and Intermezzo.

7 COLLABORATION AWARENESS

Collaboration awareness refers to information that enables
collaborators to know what others are doing. The aware-
ness information makes a collaboration more efficient by
allowing participants to avoid the duplication of work and
reduce conflicts. Providing adequate facilities for the
awareness information is essential to effective computer-
supported collaboration, as failing to do so may have users
guessing what others are doing, leading to wasting their
time on unproductive tasks.

Awareness is concerned with various aspects of col-
laboration. In particular, it can provide information about
participants in a collaboration. Collaborative systems typi-
cally display a list of users in a collaboration and updates
the list as users join or leave the collaboration. In addition
to information identifying individual users, e.g., their
names, the user list may convey pertinent information such

as users’ roles and participation status, e.g., the time of their
last activity. The list also often includes contact information
from their business cards, which, for instance, could be
used to send electronic mail to individual participants. The
shared workspace may also serve as a source of awareness
[10]. For example, in group editing, the knowledge about
the part of a shared paper each author is viewing may pro-
vide clues as to what each author is currently working on.

Awareness information should be seamlessly incorpo-
rated into users’ work environments and be easily accessi-
ble. The awareness information should be provided in such
a manner that it is relevant to collaboration activities at
hand and is easily distinguishable from actual work con-
tents. The awareness information should be automatically
gathered and distributed whenever possible. Entirely dele-
gating the responsibility of generating the awareness in-
formation to collaborators tends to make it unlikely that
collaborators will generate/use the information and will
render awareness features counter-productive. To this end,
Dourish and Bellotti [37] argue for the shared feedback ap-
proach. Rather than relying on external channels for com-
municating awareness information, such as electronic mail
or telephone, the awareness information should be “pre-
sented in the same shared workspace as the object of col-
laboration.” The common feature of group editors that al-
lows users to see the texts of remote writers in real time is
an example of the shared feedback approach.

7.1 Awareness Widgets
Groupkit [10] is a toolkit for building a general class of col-
laborative applications and includes a number of awareness
widgets for use in GroupKit-based applications. An aware-
ness widget is a user interface object, such as windows and
scrollbars, that is specifically designed to provide aware-
ness information. Examples of such widgets in Groupkit
include radar view, multiuser scrollbar, and telepointer. In
Groupkit, the contents of a shared workspace are displayed
in a loosely synchronized shared window, somewhat like
the root window in a windowing system. The main goal of
the GroupKit awareness widgets is to help collaborators
locate each other in the shared workspace.

A radar view shows collaborators’ locations in the shared
workspace by representing their views as rectangles in a
miniaturized version of the shared workspace. The rectan-
gles are of different colors, each corresponding to a col-
laborator. A radar view is often used with telepointers. A
telepointer is a trace of a remote mouse cursor movements,
and each rectangle in a radar view may use a telepointer
to show the mouse movements of a user whose view of
the shared workspace is represented by the rectangle. A
multiuser scrollbar also identifies users’ locations in a
shared workspace. Instead of using a miniaturized shared
workspace, however, the multiuser scrollbar is directly
incorporated into the shared window that displays the
shared workspace.

The study [38] conducted by the Groupkit designers in-
dicates that users heavily rely on the awareness infor-
mation provided by awareness widgets, especially the ra-
dar view, to coordinate their work with the others. Because
a radar view effectively indicates data artifacts that each

PRAKASH ET AL.: DATA MANAGEMENT ISSUES AND TRADE-OFFS IN CSCW SYSTEMS 225

collaborator is presently accessing, collaborators can estab-
lish the context of their colleagues’ work and plan their
own work around accessed artifacts in order to avoid con-
flicts. The study also reports that the information provided
by most of the awareness widgets is not distracting to their
work and is worth the screen real-estate the widgets take
up. In short, the study finds that the awareness information
is effective when provided appropriately.

7.2 Awareness in CBE
The Session Manager provides a list of all the users in the
system as well as a list of users in a room. The list specifies
user names and locations, i.e., the names of host machines
they are on. The list of entire users is provided on demand;
a user has to click a “who” button on the Session Manager,
at which point a separate window containing the list is dis-
played. If the user leaves the user list window open, the list
is automatically updated as users enter and leave the sys-
tem. A user may find the current users in a room by simply
clicking on the icon for the room in the Session Manager.
The list of the users in the room are displayed within the
Session Manager window, and this list is also automatically
updated as users enter and leave the room. The logic be-
hind the different supports is that the awareness of the
presence of the entire users in the system may not always
be needed for a group’s work and hence is provided on the
need-to-know basis, whereas the awareness of the current
group membership is relatively more important to the
group’s work and thus is incorporated into the main Ses-
sion Manager window.

When a room is created, it is named. Because a room
name is an arbitrary string, it may contain any pertinent
information that represents the purpose of the room. For
example, a room named “CBE Software Development” in-
dicates that the room is primarily for CBE application de-
velopers. In this way, users can be aware of what others are
doing in each room throughout the system. Also, a search
for the room of a particular interest can be done by using
awareness information like room name.

The awareness information provided by the Session
Manager can be extended to include the list of rooms that a
user is in and the list of objects a user is running. Further-
more, users can assign different colors to themselves. Then
a user could ask the Session Manager to find the rooms or
objects another user is in or running respectively, and the
Session Manager shows appropriate icons in the color of
the other user. The Session Manager could also provide a
radar view that shows clusters of rooms and object icons
with each cluster representing the rooms or objects a user is
in or running respectively. Such a radar view would pro-
vide an instant overview of a user’s location in the Session
Manager and/or the user’s current activities. In the current
implementation, the Session Manager can only display in-
formation about a single user at a time because of the prac-
tical limitation that an icon cannot show multiple colors.
However, this approach does not demand extra screen real
estate, which is an important consideration in the UARC’s
use of CBE, where scientists literally have tens of data
viewer windows open simultaneously.

The shared windows, introduced in Section 5.2, may be
viewed as a collaboration widget. Because all the physical
attributes of a shared window as well as the view of data
displayed in the window are kept synchronized, the shared
window may be considered as a workspace widget in
which users are always located in the same place and look
at the same thing. Thus the shared window helps reduce
the need for additional collaboration widgets such as radar
views or multiuser scrollbars.

8 CONCLUSIONS

In order to enhance the effectiveness of computer-
supported collaboration, collaborative systems should ad-
dress distributed systems issues in such a way that the
solutions are context-sensitive to the joint work of a group
of users. In this paper, we have identified data manage-
ment issues critical to CSCW and discussed example ap-
proaches to these issues found in collaborative systems. The
issues include:

1)� the architecture of collaborative systems, a crucial
goal of which is to allow users to access shared data
without having to pay significant performance
penalties, even when they interact over a wide-
area network,

2)� selectively delivering and/or prioritizing data accord-
ing to users’ needs, and

3)� enabling users to know the activities of their col-
leagues in order to avoid conflicts and duplica-
tion of work.

The discussed approaches are evaluated in the context of
the Collaboratory Builder’s Environment (CBE), a general
infrastructure for supporting large-scale collaborations over
a wide-area network. We find that although the basic ideas
behind these approaches were useful in CBE, the direct ap-
plication of any of these approaches is difficult. The reason
is that while the approaches do solve targeted problems,
they also make implicit assumptions that do not hold in
specific applications. For example, writing filters in Tapes-
try requires prior knowledge about the membership of a
collaboration group, which, in practice, may not be known
until collaboration is well under way. The filters are also
written in an SQL-like query language, which average
computer users are not familiar with and thus make dy-
namically creating filters in response to changing collabo-
ration needs difficult in practice. This shows that a signifi-
cant gap remains in addressing the requirements of collabo-
rative systems and that designers have to make design
trade-offs that are often difficult to evaluate.

Current research issues include increasing the usability
and scalability of CSCW systems. For example, in CBE, we
are examining issues in providing better support for tailor-
ing the Session Manager based on the needs of individual
groups. That is, users should be able to identify their needs
so that they do not have to deal with rooms and objects
other than the ones relevant to their joint work. However,
specifying the needs should not incur much overhead, and
the specifications should be allowed to change dynamically
as the group’s work evolves over time. These facilities

226 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 1, JANUARY/FEBRUARY 1999

would increase the focus of a group’s work and allow users
to freely interact with each other.

To improve usability, collecting and providing data so
that closure in dialog can be achieved in discussions among
users is another important, open issue in CSCW systems.
Often a user is not aware that other users are paying atten-
tion, even if they are displayed in the user list of a system.
In a meeting where participants are in the same physical
room, eye contact and verbal cues often serve to tell users
that they can start speaking, that others are listening, and
when to stop, etc. Without those cues, in a distributed
CSCW system, users often end up getting frustrated (e.g., if
a user asks a question but no one responds, it may not be
obvious whether no one has read the question or no one
wants to respond). We feel that the infrastructure can pro-
vide some support for achieving closure, by a judicious use
of additional media (audio, video) and by tracking activity
level of users so that a user knows if other participants are
paying attention. This, however, has obvious trade-offs
with privacy issues.

Scalability of the communication infrastructure for
CSCW systems is another important aspect. The current
implementation of CBE employs a centralized server, thus
limiting the scalability of the communication infrastructure
to medium-size groups.3 Further, in a wide-area network,
the centralized implementation may not be able to provide
“equal” performance for all users. For example, if the server
is running in Michigan, the users in California may experi-
ence longer delays or more frequent failures in received
updates than those in Michigan. Replication of the server
would help, but that can degrade the interactive responsive
times and latencies, as messages may have to go through
multiple instances of the server, leading to users experi-
encing longer delays in observing each other’s actions.
Hence, the distributed design of the server should strike a
balance between the scalability and responsiveness of the
system. In addition, it should be designed to support both
synchronous and asynchronous work and not be depend-
ent on the reliability of individual clients.

Scalability of the user-interface is another important as-
pect. It is not clear how to convey all the shared data and
awareness information to users. Scientists using the CBE
have noted that they would like to be able to work in mul-
tiple rooms simultaneously and be aware of activities of
other users in those rooms, but have problems with screen
real-estate. For making effective use of screen real-estate,
providing flexibility to users in configuring the windows on
their screens appears to be useful. On the other hand, that
makes providing awareness information about other users’
work more challenging because different users are looking
at potentially different windows. Use of multimedia chan-
nels, such as audio, may need to be investigated as addi-
tional means to convey awareness information, so as to
keep demands on screen real-estate low.

3. Our experiments show that the current implementation can accommo-
date about 40 to 50 users, whereas scientists have indicated that they would
like the system to support an order of magnitude higher.

ACKNOWLEDGMENTS

Several colleagues from the UARC project influenced the
ideas described in this paper, including Dan Atkins, Tom
Finholt, Farnam Jahanian, Robert Hall, Tim Killeen, Radu
Litiu, Jason Breslau, Gary Olson, Sushila Subramanian,
Terry Weymouth, and Gwobaw Wu. We also thank many
domain scientists who have provided feedback on the use
of the UARC system for supporting team science. This
work is supported, in part, by the National Science Foun-
dation under Cooperative Agreement No. IRI-9216848, the
National Science Foundation under Grant No. ECS-94-22701,
an IBM Partnership Award, and Intel.

REFERENCES

[1]� J.H. Lee, A. Prakash, T. Jaeger, and G. Wu, “Supporting Multi-
User, Multi-Applet Workspaces in CBE,” Proc. Sixth ACM Conf.
Computer-Supported Cooperative Work, pp. 344–353, ACM Press,
Nov. 1996.

[2]� S. Greenberg and D. Marwood, “Real-Time Groupware as a Dis-
tributed System: Concurrency Control and its Effect on the In-
terface,” Proc. Fifth Conf. Computer-Supported Cooperative Work,
pp. 207–217, Chapel Hill, N.C., 1994.

[3]� C.R. Clauer et al, “A Prototype Upper Atmospheric Research
Collaboratory (UARC),” EOS, Trans. Am. Geophysics Union,
vol. 74, 1993.

[4]� G. Chung, K. Jeffay, and H. Abdel-Wahab, “Dynamic Participation
in Computer-Based Conferencing System,” J. Computer Comm.,
vol. 17, no. 1, pp. 7–16, Jan. 1994.

[5]� D. Nichols, P. Curtis, M. Dixon, and J. Lamping, “High-Latency,
Low-Bandwidth Windowing in the Jupiter Collaboration Sys-
tem,” Proc. UIST ‘95, pp. 111–120, Pittsburgh, Pa., 1995.

[6]� P. Curtis, “Mudding: Social Phenomena in Text-Based Virtual
Realities,” Proc. Conf. Directions and Implications of Advanced Com-
puting, Berkeley, Calif., 1992.

[7]� J.F. Patterson, M. Day, and J. Kucan, “Notification Servers for
Synchronous Groupware,” Proc. Sixth ACM Conf. Computer-
Supported Cooperative Work, pp. 122–129, ACM Press, Nov. 1996.

[8]� M. Knister and A. Prakash, “DistEdit: A Distributed Toolkit for
Supporting Multiple Group Editors,” Proc. Third Conf. Computer-
Supported Cooperative Work, pp. 343–355, Oct. 1990.

[9]� C. Ellis, S.J. Gibbs, and G. Rein, “Design and Use of a Group Edi-
tor,” Eng. for Human-Computer Interaction, pp. 13–25, G. Cockton,
ed., North-Holland, Amsterdam, Sept. 1988.

[10]� M. Roseman and S. Greenberg, “Building Real Time Groupware
with GroupKit, A Groupware Toolkit,” ACM Trans. Computer-
Human Interaction, vol. 3, no. 1, pp. 66–106, Mar. 1996.

[11]� T. Crowley, P. Milazzo, E. Baker, H. Forsdick, and R. Tomlinson,
“MMConf: An Infrastructure for Building Shared Multimedia
Applications,” Proc. ACM Conf. Computer Supported Cooperative
Work, pp. 329–342, Oct. 1990.

[12]� J. Lauwers, T. Joseph, K. Lantz, and A. Romanow, “Replicated
Architectures for Shared Window Systems: A Critique,” Proc.
ACM Conf. Office Information Systems, pp. 249–260, Mar. 1990.

[13]� C. Schuckmann, L. Kirchner, J. Schummer, and J.M. Haake, “De-
signing Object-Oriented Synchronous Groupware with COAST,”
Proc. Sixth ACM Conf. Computer-Supported Cooperative Work,
pp. 30–38, ACM Press, Nov. 1996.

[14]� R. Strom, G. Banavar, K. Miller, A. Prakash, and M. Ward,
“Concurrency Control and View Notification Algorithms for
Collaborative Replicated Objects,” Proc. 17th IEEE Int’l Conf. Dis-
tributed Computing Systems (ICDCS ‘97), Baltimore, Md., pp. 194–
203, May 1997.

[15]� D. Garfinkel, B.C. Welti, and T.W. Yip, “HP Shared X: A Tool for
Real-Time Collaboration,” HP J., vol. 45, no. 4, pp. 26–33, Apr. 1994.

[16]� A. Prakash and H. Shim, “DistView: Support for Building Effi-
cient Collaborative Applications Using Replicated Objects,” Proc.
ACM Conf. Computer-Supported Cooperative Work, pp. 153–164,
ACM Press, 1994.

[17]� H.S. Shim and A. Prakash, “Tolerating Client and Communication
Failures in Distributed Groupware Systems,” Proc. Symp. Reliable
Distributed Systems, pp. 221-227, Oct. 1998.

PRAKASH ET AL.: DATA MANAGEMENT ISSUES AND TRADE-OFFS IN CSCW SYSTEMS 227

[18]� K.P. Birman and T.A. Joseph, “Exploiting Virtual Synchrony in
Distributed Systems,” Proc. 11th ACM Symp. Operating Systems
Principles, pp. 123–138, Austin, Texas, Nov. 1987.

[19]� Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis: A Com-
munication Sub-System for High Availability,” Technical Report
TR CS91-13, Computer Science Dept., Hebrew Univ., Israel,
Apr. 1992.

[20]� S. Mishra, L.L. Peterson, and R.D. Schlichting, “Consul: A Com-
munication Substrate for Fault-Tolerant Distributed Programs,”
Distributed Systems Eng. J., vol. 1, no. 2, pp. 87–103, Dec. 1993.

[21]� M. Knister and A. Prakash, “Issues in the Design of a Toolkit for
Supporting Multiple Group Editors,” Computing Systems¦J. Usenix
Assoc., vol. 6, no. 2, pp. 135–166, Spring 1993.

[22]� H. Shim, R. Hall, A. Prakash, and F. Jahanian, “Providing Flexible
Services for Managing Shared State in Collaborative Systems,”
Proc. ECSCW European Conf. Computer Supported Cooperative Work,
pp. 237–252, Kluwer, 1997.

[23]� G.E. Krasner and S.T. Pope, “A Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk,” J. Object
Oriented Programming, pp. 26–49, Aug./Sept. 1988.

[24]� N.R. Manohar and A. Prakash, “The Session Capture and Replay
Paradigm for Asynchronous Collaboration,” Proc. European Conf.
Computer Supported Cooperative Work, pp. 149–164, Kluwer
Press, 1995.

[25]� T.W. Malone, K.R. Grant, F.A. Turbak, S.A. Brobst, and M.D.
Cohen, “Intelligent Information Sharing Systems,” Comm. ACM,
pp. 390–402, 1987.

[26]� M. Marx and C. Schmandt, “CLUES: Dynamic Personalized Mes-
sage Filtering,” Proc. ACM Conf. Computer Supported Cooperative
Work, pp. 113–121, 1996.

[27]� D. Goldberg, D. Nichols, B.M. Oki, and D. Terry, “Using Collabo-
rative Filtering to Weave an Information Tapestry,” Comm. ACM,
vol. 35, no. 12, pp. 61–70, Dec. 1992.

[28]� P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“GroupLens: An Open Architecture for Collaborative Filtering of
Netnews,” Proc. ACM Conf. Computer-Supported Cooperative Work,
pp. 175–186, ACM Press, 1994.

[29]� M. Roseman and S. Greenberg, “TeamRooms: Network Places for
Collaboration,” Proc. ACM Conf. Computer-Supported Cooperative
Work, pp. 325–333, Oct. 1996.

[30]� K. Edwards, “Policies and Roles in Collaborative Applications,”
Proc. ACM Conf. Computer-Supported Cooperative Work, pp. 11–20,
ACM Press, 1996.

[31]� C.M. Neuwirth, D.S. Kaufer, R. Chandhok, and J.H. Morris, “Is-
sues in the Design of Computer Support for Co-Authoring and
Commenting,” Proc. Third Conf. Computer-Supported Cooperative
Work, pp. 183–195, Los Angeles, Oct. 1990.

[32]� H. Shen and P. Dewan, “Access Control for Collaborative Envi-
ronments,” Proc. ACM Conf. Computer Supported Cooperative Work,
pp. 51–58, 1992.

[33]� B.W. Lampson, “Protection,” ACM Operating System Rev., vol. 8,
no. 1, pp. 18–24, 1974.

[34]� D. Ferraiolo and R. Kuhn, “Role-Based Access Controls,” Proc.
15th NIST-NCSC Nat’l Computer Security Conf., Baltimore, Md.,
pp. 554–563, Oct. 1992.

[35]� R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-Based
Access Control Models,” Computer, vol. 29, no. 2, pp. 38–47,
Feb. 1996.

[36]� J.H. Lee and A. Prakash, “Malleable Shared Workspaces to Sup-
port Multiple Usage Paradigms,” Technical Report CSE-TR-370-
98, Dept. of Electrical Engineering and Computer Science, Univ. of
Mich., Aug. 1998.

[37]� P. Dourish and V. Bellotti, “Awareness and Coordination in
Shared Work Spaces,” Proc. ACM Conf. Computer Supported Coop-
erative Work, pp. 107–114, Nov. 1992.

[38]� C. Gutwin, M. Roseman, and S. Greenberg, “A Usability Study of
Awareness Widgets in a Shared Workspace Groupware System,”
Proc. ACM Conf. Computer-Supported Cooperative Work, pp. 258–
267, Oct. 1996.

Atul Prakash received a BTech degree in elec-
trical engineering from the Indian Institute of
Technology, New Delhi, in 1982; and the MS and
PhD degrees in computer science from the Uni-
versity of California at Berkeley in 1984 and
1989, respectively. He is currently an associate
professor in the Department of Electrical Engi-
neering and Computer Science at the University
of Michigan, Ann Arbor. His research interests
include computer-supported cooperative work,
distributed systems, security, and multimedia

systems. He has served on several program committees, including the
ACM CSCW conferences and the European CSCW conferences. His
work has been supported by both government and industry, including
the National Science Foundation, National Security Agency, NASA,
IBM, Hitachi Software Engineering Ltd., Intel, and Bellcore. He is a
member of the ACM, the IEEE, and the IEEE Computer Society.

Hyong Sop Shim received a BS degree in com-
puter engineering from Virginia Polytechnic In-
stitute and State University (Virginia Tech). He is
currently a PhD candidate in computer science
and engineering at the University of Michigan,
Ann Arbor. As part of his thesis work, he de-
signed the DistView toolkit and the Corona group
communication service for supporting groupware
systems. In November 1998, he joined Bellcore
as a research staff member, working in the area
of multimedia and groupware systems. His re-

search interests include distributed CSCW, multimedia systems, and
software toolkit support for groupware applications.

Jang Ho Lee received BS and MS degrees in com-
puter engineering from Seoul National University in
1990 and 1992, respectively. He is now a PhD
candidate in computer science and engineering
at the University of Michigan, Ann Arbor. Part of
his thesis work involves the Collaboratory Build-
er’s Environment toolkit, a software architecture
for supporting scalable collaboration environments.
His research interests include computer-supported
cooperative work and distributed systems. He is a
student member of the IEEE and ACM.

